Bayesian Networks – Inference (cont.)

Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University
March 26th, 2006

Required Readings from Koller & Friedman:
Representation: 2.1, 2.2
Inference: 5.1, 6.1, 6.2, 6.7.1
Optional:
2.3, 5.2, 5.3, 6.3, 6.7.2
Marginalization

\[P(F, S, N) = P(F) \cdot P(S|F) \cdot P(N|S) \]

\[P(F = t, N = \epsilon) = \sum_s P(F = t, S = s, N = \epsilon) \]
\[= P(F = t) \cdot P(S = t | F = t) \cdot P(N = \epsilon | S = \epsilon) \]
\[+ P(F = t) \cdot P(S = \epsilon | F = t) \cdot P(N = \epsilon | S = \epsilon) \]
Probabilistic inference example

\[P(F = t, N = t) = \sum_{a, s, h} P(F = t, A = a, S = s, H = h, N = t) \]
\[8 = 2^3 \]

\[P(F) P(A) P(S | FA) P(H | IS) P(N | S) \]

(4 vars., each with 3 vals.
\[P(A = t, B = t) \Rightarrow \text{sum } 3^8 \]

Inference seems exponential in number of variables!
Understanding variable elimination – Order can make a HUGE difference

\[P(F, N) = \sum_{a, s} P(F) \cdot P(a) \cdot P(s|Fa) \cdot P(N|s) \cdot P(s) \]

\[g(F, a, N, s) \]

16 entries
Variable elimination algorithm

- Given a BN and a query $P(X|e) \propto P(X,e)$
- Instantiate evidence e
- Prune non-ancestors of $\{X,e\}$
- Choose an ordering on variables, e.g., X_1, \ldots, X_n
- For $i = 1$ to n, If $X_i \notin \{X,e\}$
 - Collect factors f_1, \ldots, f_k that include X_i
 - Generate a new factor by eliminating X_i from these factors

\[g = \sum_{X_i} \prod_{j=1}^{k} f_j \]

- Variable X_i has been eliminated!
- Normalize $P(X,e)$ to obtain $P(X|e)$
Complexity of variable elimination – (Poly)-tree graphs

Variable elimination order:
Start from “leaves” up – find topological order, eliminate variables in reverse order

Linear in number of variables!!! (versus exponential)
Complexity of variable elimination – Graphs with loops

Exponential in number of variables in largest factor generated
Complexity of variable elimination – Tree-width

Moralize graph:
Connect parents into a clique and remove edge directions

Complexity of VE elimination:
(“Only”) exponential in tree-width
Tree-width is maximum node cut +1
Example: Large tree-width with small number of parents

Compact representation \Rightarrow Easy inference 😞
Choosing an elimination order

- Choosing best order is NP-complete
 - Reduction from MAX-Clique
- Many good heuristics (some with guarantees)
- Ultimately, can’t beat NP-hardness of inference
 - Even optimal order can lead to exponential variable elimination computation
- In practice
 - Variable elimination often very effective
 - Many (many many) approximate inference approaches available when variable elimination too expensive
Most likely explanation (MLE)

Query: $\arg\max_{x_1,\ldots,x_n} P(x_1,\ldots,x_n \mid c)$

Using Bayes rule:
$$\arg\max_{x_1,\ldots,x_n} P(x_1,\ldots,x_n \mid e) = \arg\max_{x_1,\ldots,x_n} \frac{P(x_1,\ldots,x_n, e)}{P(e)}$$

Normalization irrelevant:
$$\arg\max_{x_1,\ldots,x_n} P(x_1,\ldots,x_n \mid e) = \arg\max_{x_1,\ldots,x_n} P(x_1,\ldots,x_n, e)$$
Max-marginalization

Flu → Sinus → Nose=t
Example of variable elimination for MLE – Forward pass
Example of variable elimination for MLE – Backward pass
MLE Variable elimination algorithm – Forward pass

- Given a BN and a MLE query $\max_{x_1,\ldots,x_n} P(x_1,\ldots,x_n,e)$
- Instantiate evidence e
- Choose an ordering on variables, e.g., X_1, \ldots, X_n
- For $i = 1$ to n, if $X_i \notin \{e\}$
 - Collect factors f_1,\ldots,f_k that include X_i
 - Generate a new factor by eliminating X_i from these factors
 $$g = \max_{x_i} \prod_{j=1}^{k} f_j$$
 - Variable X_i has been eliminated!
MLE Variable elimination algorithm – Backward pass

- \(\{x_1^*, \ldots, x_n^*\} \) will store maximizing assignment

For \(i = n \) to 1, if \(X_i \notin \{e\} \)

- Take factors \(f_1, \ldots, f_k \) used when \(X_i \) was eliminated
- Instantiate \(f_1, \ldots, f_k \), with \(\{x_{i+1}^*, \ldots, x_n^*\} \)
 - Now each \(f_j \) depends only on \(X_i \)
- Generate maximizing assignment for \(X_i \):

\[
x_i^* \in \text{argmax}_{x_i} \prod_{j=1}^{k} f_j
\]
What you need to know

- Bayesian networks
 - A useful compact representation for large probability distributions

- Inference to compute
 - Probability of X given evidence e
 - Most likely explanation (MLE) given evidence e
 - Inference is NP-hard

- Variable elimination algorithm
 - Efficient algorithm (“only” exponential in tree-width, not number of variables)
 - Elimination order is important!
 - Approximate inference necessary when tree-width too large
 - Not covered this semester
 - Only difference between probabilistic inference and MLE is “sum” versus “max”
HMMs

Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University
March 26th, 2005

Classic HMM tutorial – see class website:
Adventures of our BN hero

- Compact representation for probability distributions
- Fast inference
- Fast learning

But... Who are the most popular kids?

1. Naïve Bayes
2 and 3. Hidden Markov models (HMMs) Kalman Filters
Handwriting recognition

Character recognition, e.g., kernel SVMs
Example of a hidden Markov model (HMM)
Understanding the HMM Semantics

\[X_1 = \{a, \ldots, z\} \rightarrow X_2 = \{a, \ldots, z\} \rightarrow X_3 = \{a, \ldots, z\} \rightarrow X_4 = \{a, \ldots, z\} \rightarrow X_5 = \{a, \ldots, z\} \]
HMMs semantics: Details

Just 3 distributions:

\[P(X_1) \]

\[P(X_i \mid X_{i-1}) \]

\[P(O_i \mid X_i) \]
HMMs semantics: Joint distribution

\[P(X_1, \ldots, X_n \mid o_1, \ldots, o_n) = P(X_{1:n} \mid o_{1:n}) \]
\[\propto P(X_1)P(o_1 \mid X_1) \prod_{i=2}^{n} P(X_i \mid X_{i-1})P(o_i \mid X_i) \]
Learning HMMs from fully observable data is easy

Learn 3 distributions:

\[P(X_1) \]

\[P(O_i \mid X_i) \]

\[P(X_i \mid X_{i-1}) \]
Possible inference tasks in an HMM

Marginal probability of a hidden variable:

Viterbi decoding – most likely trajectory for hidden vars:
Using variable elimination to compute $P(X_i | o_{1:n})$

Variable elimination order?

Example:
What if I want to compute $P(X_i | o_{1:n})$ for each i?

Variable elimination for each i?

Variable elimination for each i, what’s the complexity?
Reusing computation

$X_1 = \{a, \ldots, z\} \rightarrow X_2 = \{a, \ldots, z\} \rightarrow X_3 = \{a, \ldots, z\} \rightarrow X_4 = \{a, \ldots, z\} \rightarrow X_5 = \{a, \ldots, z\}$

Compute:

$P(X_i \mid o_1..n)$
The forwards-backwards algorithm

\[P(X_i \mid o_{1..n}) \]

- **Initialization:** \(\alpha_1(X_1) = P(X_1)P(o_1 \mid X_1) \)
- For \(i = 2 \) to \(n \)
 - Generate a forwards factor by eliminating \(X_{i-1} \)

 \[
 \alpha_i(X_i) = \sum_{x_{i-1}} P(o_i \mid X_i)P(X_i \mid X_{i-1} = x_{i-1})\alpha_{i-1}(x_{i-1})
 \]

- **Initialization:** \(\beta_n(X_n) = 1 \)
- For \(i = n-1 \) to \(1 \)
 - Generate a backwards factor by eliminating \(X_{i+1} \)

 \[
 \beta_i(X_i) = \sum_{x_{i+1}} P(o_{i+1} \mid x_{i+1})P(x_{i+1} \mid X_i)\beta_{i+1}(x_{i+1})
 \]

- \(\forall \ i, \) probability is: \(P(X_i \mid o_{1..n}) = \alpha_i(X_i)\beta_i(X_i) \)
Most likely explanation

Compute:

Variable elimination order?

Example:
The Viterbi algorithm

- **Initialization:** \(\alpha_1(X_1) = P(X_1)P(o_1 \mid X_1) \)
- **For** \(i = 2 \) to \(n \)
 - Generate a forwards factor by eliminating \(X_{i-1} \)
 \[
 \alpha_i(X_i) = \max_{x_{i-1}} P(o_i \mid X_i)P(X_i \mid X_{i-1} = x_{i-1})\alpha_{i-1}(x_{i-1})
 \]
- **Computing best explanation:** \(x_n^* = \arg\max_{x_n} \alpha_n(x_n) \)
- **For** \(i = n-1 \) to \(1 \)
 - Use \(\arg\max \) to get explanation:
 \[
 x_i^* = \arg\max_{x_i} P(x_{i+1}^* \mid x_i)\alpha_i(x_i)
 \]
What you’ll implement 1: multiplication

$$\alpha_i(X_i) = \max_{x_{i-1}} P(o_i \mid X_i) P(X_i \mid X_{i-1} = x_{i-1}) \alpha_{i-1}(x_{i-1})$$
What you’ll implement 2: max & argmax

\[\alpha_i(X_i) = \max_{x_{i-1}} P(o_i \mid X_i) P(X_i \mid X_{i-1} = x_{i-1}) \alpha_{i-1}(x_{i-1}) \]
Higher-order HMMs

Add dependencies further back in time → better representation, harder to learn
What you need to know

- Hidden Markov models (HMMs)
 - Very useful, very powerful!
 - Speech, OCR,…
 - Parameter sharing, only learn 3 distributions
 - Trick reduces inference from $O(n^2)$ to $O(n)$
 - Special case of BN