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Announcements
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Use mailing list
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Your first consulting job

A billionaire from the suburbs of Seattle asks 
you a question:

He says: I have thumbtack, if I flip it, what’s the 
probability it will fall with the nail up?
You say: Please flip it a few times:

You say: The probability is:

He says: Why???
You say: Because…



Thumbtack – Binomial Distribution

P(Heads) = θ,  P(Tails) = 1-θ

Flips are i.i.d.:
Independent events
Identically distributed according to Binomial 
distribution

Sequence D of αH Heads and αT Tails  



Maximum Likelihood Estimation

Data: Observed set D of αH Heads and αT Tails  
Hypothesis: Binomial distribution 
Learning θ is an optimization problem

What’s the objective function?

MLE: Choose θ that maximizes the probability of 
observed data:



Your first learning algorithm

Set derivative to zero:



How many flips do I need?

Billionaire says: I flipped 3 heads and 2 tails.
You say: θ = 3/5, I can prove it!
He says: What if I flipped 30 heads and 20 tails?
You say: Same answer, I can prove it!

He says: What’s better?
You say: Humm… The more the merrier???
He says: Is this why I am paying you the big bucks???



Simple bound 
(based on Hoeffding’s inequality)

For N = αH+αT, and

Let θ* be the true parameter, for any ε>0:



PAC Learning

PAC: Probably Approximate Correct
Billionaire says: I want to know the thumbtack 
parameter θ, within ε = 0.1, with probability at 
least 1-δ = 0.95. How many flips?



What about prior 

Billionaire says: Wait, I know that the thumbtack 
is “close” to 50-50. What can you?
You say: I can learn it the Bayesian way…

Rather than estimating a single θ, we obtain a 
distribution over possible values of θ



Bayesian Learning

Use Bayes rule:

Or equivalently:



Bayesian Learning for Thumbtack

Likelihood function is simply Binomial:

What about prior?
Represent expert knowledge
Simple posterior form

Conjugate priors:
Closed-form representation of posterior
For Binomial, conjugate prior is Beta distribution



Beta prior distribution – P(θ)

Likelihood function:
Posterior:



Posterior distribution

Prior:
Data: αH heads and αT tails

Posterior distribution: 



Using Bayesian posterior

Posterior distribution: 

Bayesian inference:
No longer single parameter:

Integral is often hard to compute



MAP: Maximum a posteriori 
approximation

As more data is observed, Beta is more certain

MAP: use most likely parameter:



MAP for Beta distribution

MAP: use most likely parameter:

Beta prior equivalent to extra thumbtack flips
As N →∞, prior is “forgotten”
But, for small sample size, prior is important!



What about continuous variables?

Billionaire says: If I am measuring a continuous 
variable, what can you do for me?
You say: Let me tell you about Gaussians…



MLE for Gaussian

Prob. of i.i.d. samples x1,…,xN:

Log-likelihood of data:



Your second learning algorithm:
MLE for mean of a Gaussian
What’s MLE for mean?



MLE for variance

Again, set derivative to zero:



Learning Gaussian parameters

MLE:

Bayesian learning is also possible
Conjugate priors

Mean: Gaussian prior
Variance: Wishart Distribution



Prediction of continuous variables

Billionaire says: Wait, that’s not what I meant!     
You says: Chill out, dude.
He says: I want to predict a continuous variable 
for continuous inputs: I want to predict salaries 
from GPA.
You say: I can regress that…



The regression problem
Instances: <xj, tj>
Learn: Mapping from x to t(x)
Hypothesis space:

Given, basis functions
Find coeffs w={w1,…,wk}

Precisely, minimize the residual error:

Solve with simple matrix operations:
Set derivative to zero
Go to recitation Thursday 1/20



Billionaire (again) says: Why sum squared error???
You say: Gaussians, Dr. Gateson, Gaussians…

Model:

Learn w using MLE

But, why?



Maximizing log-likelihood

Maximize:



Bias-Variance Tradeoff

Choice of hypothesis class introduces learning 
bias

More complex class → less bias
More complex class → more variance



What you need to know

Go to recitation for regression
And, other recitations too

Point estimation:
MLE
Bayesian learning
MAP

Gaussian estimation
Regression

Basis function = features
Optimizing sum squared error
Relationship between regression and Gaussians

Bias-Variance trade-off


