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Announcements
" J
m Recitations — New Day and Room
Doherty Hall 1212
Thursdays — 5-6:30pm
Starting January 20t

m Use mailing list
701-instructors@boysenberry.srv.cs.cmu.edu



Your first consulting job
" A0
m A billionaire from the suburbs of Seattle asks

you a question:

He says: | have thumbtack, if | flip it, what's the
probability it will fall with the nail up?

You say: Please flip it a few times:
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You say: The probability is: ﬁQ - /5
He says: Why???

You say:. Because...




Thumbtack — Binomial Distribution
»
P(Heads) 0, P(Tails) =1-6
(HRTHT)= po(1-0)e (-6)

m Flips are i.i.d.:
Independent events

|dentically distributed according to Binomial
distribution

m Sequence D of ay Heads and o4 Talls

P(D|0) =0%H(1—0)T
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Maximum Likelihood Estimation
" J
m Data: Observed set D of o, Heads and o Tails
m Hypothesis: Binomial distribution
m Learning 0 is an optimization problem
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What's the objective fun/c’uDon:.— {M BT H Tf

m MLE: Choose 6 that maximizes the probability of
observed data:

P

¢ = argmax P(D|0)
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Your first learning algorithm “ -

"

argmax |In P(D | 0)

argmax  In@*H (1 — )T
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m Set derivative to zero: | ¢ | P(D|6) =0
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How many flips do | need?
" I
jg =
ap -+ or

m Billionaire says: | flipped 3 heads and 2 tails.

m You say: 0 = 3/5, | can prove it!

m He says: What if | flipped 30 heads and 20 tails?
m You say: Same answer, | can prove it!

m He says: What'’s better?

m You say: Humm... The more the merrier???
m He says: Is this why | am paying you the big bucks???



Simple bound
(based on Hoeffding's inequality)
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PAC Learning
" J
m PAC: Probably Approximate Correct

m Billionaire says: | want to know the thumbtack
parameter 0, within € = 0.1, with probability at
least 1-6 = 0.95. How many flips?
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What about prior
" A
m Billionaire says: Wait, | know that the thumbtack
is “close” to 50-50. What can you?

m You say: | can learn it the Bayesian way...

m Rather than estimating a single 6, we obtain a

distribution over possible values of 6 _ 1./,
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Bayesian Learning

" A
[} he L7 how

m Use Bayes rule: J 0 preo
P(D|6)P(0
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Bayesian Learning for Thumbtack
* S
P(0| D) x P(D|6)P(H)

m Likelihood function is simply Binomial:
P(D|0) =0%(1—0)%T

m \What about prior?
Represent expert knowledge
Simple posterior form
O € posterior

m Conjugate priors:
Closed-form representation of posterior
For Binomial, conjugate prior is Beta distribution
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Beta prior distribution — P(6)
" -

Pa—1c1 — g)Or—1
07 =0 Beta(By, Br)

P(6) =
. B(ﬁH) BT)‘f«L NivmMA (,:2,\1‘-.0’\ %0, 2
| ‘ Beta(1,1) ‘ ‘ ‘ 6 ‘ B‘ (0,2‘) ‘

m Likelihood function: P(D|0) = 0%H (1 —0)°T
m Posterior: P(0 | D) x P(D | H)P(Q)
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Posterior distribution
" JE

m Prior: Beta(8x, 1)

m Data: oy, heads and o tails

m Posterior distribution:

P(0 | D) ~ Beta(Byg + ap, B + ar)

Beta(1,1) . Beta(2,2) Beta(3,2) ] Beta(30,20)




Beta(30,20)

Using Bayesian posterior , /\
» :

m Posterior distribution: o O
P(0 | D) ~ Beta(Bg + og, Br + aT)

m Bayesian inference:
No longer single parameter:

1
ELf(0)) = [ f(0)P(6| D)do

Integral is often hard to com
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MAP: Maximum a posterlorl /\ +

aEEroxmatlon
|

P(0 | D) ~ Beta(By + oy, BT + aT)

1
ELf(0)] = /O F(0)P(0| D)do <

m As more data is observed, Beta is more certain

m MAP: use most likely parameter:

f = arg max P | D) E[f(0)] ~ £(0)
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MAP for Beta dlstrlbutlon
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P(0| D) = ~ Beta(@u+am, Br+ar)

m MAP: use most likely parameter:

§ = arg m@axP(H\D) Ay oy |
[Qf')‘ +°(H+/91+0<T_2

m Beta prior equivalent to ex?ra thumbtack flips

m As N — *, prior is “forgotten”
m But, for small sample size, prior is important!



What about continuous variables?
" A
m Billionaire says: If | am measuring a continuous
variable, what can you do for me?

m You say: Let me tell you about Gaussians...
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MLE for Gaussian
" J
m Prob. of i.i.d. samples Xy,...,Xy:
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Your second learning algorithm:
MLE for mean of a Gaussian
" ST

m \What’'s MLE for mean?

d d
—lnP(D|/'L70-) -
di d




MLE for variance Te 00 o7
" A
m Again, set derivative to zero:
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Learning Gaussian parameters
"

= MLE: ~ 1 N
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m Bayesian learning is also possible
m Conjugate priors

Mean: Gaussian prior

Variance: Wishart Distribution



Prediction of continuous variables
" J

m Billionaire says: Wait, that's not what | meant!

m You says: Chill out, dude.

m He says: | want to predict a continuous variable

for continuous inputs: | want to predict salaries
from GPA.

m You say: | can regress that... J 5=
K — TR
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The regression problem <3106

. ilhﬁ; —— LAFO, [2 1>

m Instances: <x; t> N “Lieec

m Learn: Mapping from x to t(x) ///\

m Hypothesis space: H = {hy,... hK} / 1
Given, basis functions t(x) ~ f(x) = z hi(x)

Find coeﬁ@ D
data

m Precisely, minimize the residual error:

2
T argmv‘i’nZ(t sz XJ)
J

2

- Ded
m Solve with simple matrix operations: - Jy\g(gwcomd\‘éns
Set derivative to zero = featuves

Go to recitation Thursday 1/20 “ Musoir 003 W



But, why?

" A
m Billionaire (again) says: Why sum squared error???
m You say: Gaussians, Dr. Gateson, Gaussians...

Géu&ﬂ‘.o\n S
: A
= Model: I A ek
P(t|x,w,o0) = e 202
(¢ | ) =

m Learn w using MLE



Maximizing log-likelihood

'—

InP(D | W,0)|=
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Bias-Variance Tradeoff
" S

m Choice of hypothesis class introduces ,Ie‘arnin(fg
bias ODress vy o fypellagg

J (bsc
More complex class — less bias U ,;&9;(;43
More complex class — more yafiange Wi 4 “Spe

\.l 4% A ~ % %’ﬁ.n',,.\
- \ ’(51‘{6\ j

e

\




What you need to know
" J
m (Go to recitation for regression Thawrs dae
And, other recitations too

m Point estimation:
MLE

Bayesian learning
MAP

m Gaussian estimation

m Regression
Basis function = features
Optimizing sum squared error
Relationship between regression and Gaussians

m Bias-Variance trade-off



