Point Estimation Linear Regression

Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

January 12th, 2005

Announcements

- Recitations New Day and Room
 - □ Doherty Hall 1212
 - Thursdays 5-6:30pm
 - □ Starting January 20th
- Use mailing list
 - □ 701-instructors@boysenberry.srv.cs.cmu.edu

Your first consulting job

- A billionaire from the suburbs of Seattle asks you a question:
 - □ He says: I have thumbtack, if I flip it, what's the probability it will fall with the nail up?

D=3/E

You say: Please flip it a few times:

tails

- □ You say: The probability is:
- ■He says: Why???
- ☐ You say: Because...

Thumbtack – Binomial Distribution

■ P(Heads) = θ , P(Tails) = 1- θ

- Flips are i.i.d.:
 - □ Independent events
 - Identically distributed according to Binomial distribution
- Sequence *D* of α_H Heads and α_T Tails

$$P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

Maximum Likelihood Estimation

- - **Data**: Observed set D of α_H Heads and α_T Tails
 - **Hypothesis:** Binomial distribution
 - Learning θ is an optimization problem
 - □ What's the objective function? $\{HHTHT\}$
 - MLE: Choose θ that maximizes the probability of observed data:

$$\widehat{\theta} = \underset{\theta}{\operatorname{arg\,max}} P(\mathcal{D} \mid \theta)$$

$$= \underset{\theta}{\operatorname{arg\,max}} \ln P(\mathcal{D} \mid \theta)$$

$$= \underset{\theta}{\operatorname{simpkr with In}}$$

Your first learning algorithm 4 -

Set derivative to zero:
$$\frac{d}{d\theta} \ln P(\mathcal{D} \mid \theta) = 0$$

$$\frac{d \ln P(D|\theta)}{d\theta} = \frac{d}{d\theta} \times_{H} \ln \theta + \frac{d}{d\theta} \times_{T} \ln 1 - \theta$$

How many flips do I need?

$$\hat{\theta} = \frac{\alpha_H}{\alpha_H + \alpha_T}$$

- Billionaire says: I flipped 3 heads and 2 tails.
- You say: θ = 3/5, I can prove it!
- He says: What if I flipped 30 heads and 20 tails?
- You say: Same answer, I can prove it!
- He says: What's better?
- You say: Humm... The more the merrier???
- He says: Is this why I am paying you the big bucks???

Simple bound (based on Hoeffding's inequality)

For
$$N = \alpha_H + \alpha_T$$
, and $\widehat{\theta} = \frac{\alpha_H}{\alpha_H + \alpha_T}$

■ Let $\tilde{\theta}^*$ be the true parameter, for any $\epsilon > 0$:

$$P(|\hat{\theta} - \theta^*| \ge \epsilon) \le 2e^{-2N\epsilon^2} \le \sqrt{\epsilon}$$

take In of both sides: In[2e^-2NE2] = In2 - 2NE2 < In 5 move things => 2NE2 7 In2 + In/5 => N > [In2 + In]

PAE Probably Approx. Correct

PAC Learning

- PAC: Probably Approximate Correct
- Billionaire says: I want to know the thumbtack parameter θ , within ε = 0.1, with probability at least 1- δ = 0.95. How many flips?

$$P(|\hat{\theta} - \theta^*| \ge \epsilon) \le 2e^{-2N\epsilon^2}$$
 $r_{1}arrange: \qquad N > \frac{1}{2\epsilon^2} [\ln 2 + \ln 6]$

What about prior

- Billionaire says: Wait, I know that the thumbtack is "close" to 50-50. What can you?
- You say: I can learn it the Bayesian way...

Rather than estimating a single θ, we obtain a distribution over possible values of θ ρος μετίου καινή κ

HATHT ->

Bayesian Learning

Use Bayes rule:

$$P(\theta \mid \mathcal{D}) = \frac{P(\mathcal{D} \mid \theta)}{P(\mathcal{D})}$$

Or equivalently:

$$P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta)$$

I make sure things addupto 1

Bayesian Learning for Thumbtack

$$P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta)$$

Likelihood function is simply Binomial:

$$P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

- What about prior?
 - □ Represent expert knowledge
 - Simple posterior form
- Conjugate priors:
 - Closed-form representation of posterior
 - □ For Binomial, conjugate prior is Beta distribution

Beta prior distribution – $P(\theta)$

- Likelihood function: $P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 \theta)^{\alpha_T}$
- Posterior: $P(\theta \mid D) \propto P(D \mid \theta)P(\theta)$ $P(\theta \mid D) \propto \theta^{AH} (1-\theta)^{AT} \cdot \theta^{BH^{-1}} (1-\theta)^{BT^{-1}}$ $= \theta^{AH^{+}BH^{-1}} (1-\theta)^{AT} \cdot \theta^{AH^{-1}} (1-\theta)^{AT^{-1}}$ $\sim \beta e^{AH^{+}BH^{-1}} (1-\theta)^{AT^{-1}} + \beta e^{AH^{-1}}$

Posterior distribution

■ Prior: $Beta(\beta_H, \beta_T)$

■ Data: α_H heads and α_T tails

Posterior distribution:

$$P(\theta \mid \mathcal{D}) \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

Using Bayesian posterior

Posterior distribution:

$$P(\theta \mid \mathcal{D}) \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

- Bayesian inference:
 - □ No longer single parameter:

$$E[f(\theta)] = \int_0^1 f(\theta) P(\theta \mid \mathcal{D}) d\theta$$

□ Integral is often hard to compute

MAP: Maximum a posteriori approximation

$$P(\theta \mid \mathcal{D}) \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

$$E[f(\theta)] = \int_0^1 f(\theta) P(\theta \mid \mathcal{D}) d\theta$$

- As more data is observed, Beta is more certain
- MAP: use most likely parameter:

$$\widehat{\theta} = \arg\max_{\theta} P(\theta \mid \mathcal{D}) \quad E[f(\theta)] \approx f(\widehat{\theta})$$

$$\stackrel{?}{=} \frac{\beta_H + \zeta_H}{\beta_H + \zeta_H + \beta_T + \zeta_T} \quad \text{No!}$$

MAP for Beta distribution

MAP: use most likely parameter:

$$\widehat{\theta} = \arg\max_{\theta} P(\theta \mid \mathcal{D}) = \underbrace{\beta_H + \zeta_H - I}_{\beta_H + \zeta_H + \beta_T + \zeta_T - 2}$$

- Beta prior equivalent to extra thumbtack flips
- As $N \rightarrow \infty$, prior is "forgotten"
- But, for small sample size, prior is important!

What about continuous variables?

- 190
 - Billionaire says: If I am measuring a continuous variable, what can you do for me?
 - You say: Let me tell you about Gaussians...

$$P(x \mid \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

MLE: Restimate M,0 from iid samples

MLE for Gaussian

■ Prob. of i.i.d. samples $x_1,...,x_N$:

$$P(\mathcal{D} \mid \mu, \sigma) = \underbrace{\left(\frac{1}{\sigma\sqrt{2\pi}}\right)^{N}}_{i=1} \prod_{i=1}^{N} e^{\frac{-(x_{i}-\mu)^{2}}{2\sigma^{2}}}$$
Normalization likelihood

Log-likelihood of data:

$$\begin{split} \ln P(\mathcal{D} \mid \mu, \sigma) &= \ln \left[\left(\frac{1}{\sigma \sqrt{2\pi}} \right)^N \prod_{i=1}^N e^{\frac{-(x_i - \mu)^2}{2\sigma^2}} \right] \\ &= -N \ln \sigma \sqrt{2\pi} - \sum_{i=1}^N \frac{(x_i - \mu)^2}{2\sigma^2} \end{split}$$

Your second learning algorithm: MLE for mean of a Gaussian

■ What's MLE for mean?

$$\frac{d}{d\mu} \ln P(\mathcal{D} \mid \mu, \sigma) = \frac{d}{d\mu} \left[-N \ln \sigma \sqrt{2\pi} - \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

$$= \frac{d}{d\mu} \left[-N \ln \sigma \sqrt{2\pi} \right] - \sum_{i=1}^{N} \frac{d}{d\mu} \left[\frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

$$= \frac{\partial}{\partial \mu} \left[-N \ln \sigma \sqrt{2\pi} \right] - \sum_{i=1}^{N} \frac{\partial}{\partial \mu} \left[\frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

$$= \frac{\partial}{\partial \mu} \left[-N \ln \sigma \sqrt{2\pi} \right] - \sum_{i=1}^{N} \frac{\partial}{\partial \mu} \left[\frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

$$= \frac{\partial}{\partial \mu} \left[-N \ln \sigma \sqrt{2\pi} \right] - \sum_{i=1}^{N} \frac{\partial}{\partial \mu} \left[\frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

$$= \frac{\partial}{\partial \mu} \left[-N \ln \sigma \sqrt{2\pi} \right] - \sum_{i=1}^{N} \frac{\partial}{\partial \mu} \left[\frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

$$= \frac{\partial}{\partial \mu} \left[-N \ln \sigma \sqrt{2\pi} \right] - \sum_{i=1}^{N} \frac{\partial}{\partial \mu} \left[\frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

$$= \frac{\partial}{\partial \mu} \left[-N \ln \sigma \sqrt{2\pi} \right] - \sum_{i=1}^{N} \frac{\partial}{\partial \mu} \left[\frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

$$= \frac{\partial}{\partial \mu} \left[-N \ln \sigma \sqrt{2\pi} \right] - \sum_{i=1}^{N} \frac{\partial}{\partial \mu} \left[\frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

$$= \frac{\partial}{\partial \mu} \left[-N \ln \sigma \sqrt{2\pi} \right] - \sum_{i=1}^{N} \frac{\partial}{\partial \mu} \left[\frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

$$= \frac{\partial}{\partial \mu} \left[-N \ln \sigma \sqrt{2\pi} \right] - \sum_{i=1}^{N} \frac{\partial}{\partial \mu} \left[\frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

$$= \frac{\partial}{\partial \mu} \left[-N \ln \sigma \sqrt{2\pi} \right] - \sum_{i=1}^{N} \frac{\partial}{\partial \mu} \left[\frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

$$= \frac{\partial}{\partial \mu} \left[-N \ln \sigma \sqrt{2\pi} \right] - \sum_{i=1}^{N} \frac{\partial}{\partial \mu} \left[\frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

$$= \frac{\partial}{\partial \mu} \left[-N \ln \sigma \sqrt{2\pi} \right] - \sum_{i=1}^{N} \frac{\partial}{\partial \mu} \left[\frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

$$= \frac{\partial}{\partial \mu} \left[-N \ln \sigma \sqrt{2\pi} \right] - \sum_{i=1}^{N} \frac{\partial}{\partial \mu} \left[\frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

$$= \frac{\partial}{\partial \mu} \left[-N \ln \sigma \sqrt{2\pi} \right] - \sum_{i=1}^{N} \frac{\partial}{\partial \mu} \left[\frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

$$= \frac{\partial}{\partial \mu} \left[-N \ln \sigma \sqrt{2\pi} \right] - \sum_{i=1}^{N} \frac{\partial}{\partial \mu} \left[\frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

$$= \frac{\partial}{\partial \mu} \left[-N \ln \sigma \sqrt{2\pi} \right] - \sum_{i=1}^{N} \frac{\partial}{\partial \mu} \left[\frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

$$= \frac{\partial}{\partial \mu} \left[-N \ln \sigma \sqrt{2\pi} \right] - \sum_{i=1}^{N} \frac{\partial}{\partial \mu} \left[\frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

$$= \frac{\partial}{\partial \mu} \left[-N \ln \sigma \sqrt{2\pi} \right] - \sum_{i=1}^{N} \frac{\partial}{\partial \mu} \left[\frac{\partial}{\partial \mu} \left[\frac{\partial}{\partial \mu} \right] \right]$$

$$= \frac{\partial}{\partial \mu} \left[-N \ln \sigma \sqrt{2\pi} \right] - \sum_{i=1}^{N} \frac{\partial}{\partial \mu} \left[\frac{\partial}{\partial \mu} \left[\frac{\partial}{\partial \mu} \right] \right]$$

$$= \frac{\partial}{\partial \mu} \left[-N \ln \sigma \sqrt{2\pi} \right] - \sum_{i=1}^{N} \frac{\partial}{\partial \mu} \left[\frac{\partial}{\partial \mu} \left[\frac{\partial}{\partial \mu} \right] \right]$$

$$= \frac{\partial}{\partial \mu} \left[-N \ln \sigma \sqrt{2\pi} \right] - \sum_{i=1}^{N} \frac{\partial}{\partial \mu} \left[\frac{\partial}{\partial \mu} \left[\frac{\partial}{\partial \mu} \right] \right]$$

$$= \frac{\partial}{\partial \mu} \left[-N \ln \sigma \sqrt{2\pi} \right] - \sum_{i=1}^{N} \frac{\partial}{\partial \mu} \left[\frac{\partial}{\partial \mu} \left[\frac{\partial}{\partial \mu} \right] \right$$

MLE for variance

Again, set derivative to zero:

$$\frac{d}{d\mathbf{p}} \ln P(\mathcal{D} \mid \mu, \sigma) = \frac{d}{d\mathbf{p}} \left[-N \ln \sigma \sqrt{2\pi} - \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

$$= \frac{d}{d\mathbf{p}} \left[-N \ln \sigma \sqrt{2\pi} \right] - \sum_{i=1}^{N} \frac{d}{d\mathbf{p}} \left[\frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

$$= \frac{1}{\sqrt{2\sigma^2}} \left[-N \ln \sigma \sqrt{2\pi} \right] - \sum_{i=1}^{N} \frac{d}{d\mathbf{p}} \left[\frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

$$= \frac{1}{\sqrt{2\sigma^2}} \left[-N \ln \sigma \sqrt{2\pi} \right] - \sum_{i=1}^{N} \frac{d}{d\mathbf{p}} \left[\frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

$$= \frac{1}{\sqrt{2\sigma^2}} \left[-N \ln \sigma \sqrt{2\pi} \right] - \sum_{i=1}^{N} \frac{d}{d\mathbf{p}} \left[\frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

$$= \frac{1}{\sqrt{2\sigma^2}} \left[-N \ln \sigma \sqrt{2\pi} \right] - \sum_{i=1}^{N} \frac{d}{d\mathbf{p}} \left[\frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

Learning Gaussian parameters

MLE:

$$\widehat{\mu} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$\widehat{\sigma}^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \widehat{\mu})^2$$

- Bayesian learning is also possible
- Conjugate priors
 - Mean: Gaussian prior
 - □ Variance: Wishart Distribution

Prediction of continuous variables

- Billionaire says: Wait, that's not what I meant!
- You says: Chill out, dude.
- He says: I want to predict a continuous variable for continuous inputs: I want to predict salaries from GPA.

You say: I can regress that...

Salaries

Fig. 1

Fig.

The regression problem (3.9,90k) Instances: $\langle x_j, t_i \rangle$

- **Learn:** Mapping from x to t(x)
- **Hypothesis space:**
 - □ Given, basis functions
 - □ Find coeffs $\mathbf{w} = \{w_1, ..., w_k\}$

$$H = \{h_1, \dots, h_K\}$$

$$\underbrace{t(\mathbf{x})}_{\text{data}} \approx \widehat{f}(\mathbf{x}) = \sum_{i} w_{i} h_{i}(\mathbf{x})$$

Precisely, minimize the residual error:

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_{j} \left(t(\mathbf{x}_j) - \sum_{i} w_i h_i(\mathbf{x}_j) \right)^2$$

- Solve with simple matrix operations:
 - Set derivative to zero
 - Go to recitation Thursday 1/20

But, why?

- 100
 - Billionaire (again) says: Why sum squared error???
 - You say: Gaussians, Dr. Gateson, Gaussians...

Model:
$$\int \frac{\zeta_{\text{Aussian}}}{P(t \mid \mathbf{x}, \mathbf{w}, \sigma)} = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-\left[t - \sum_{i} w_{i} h_{i}(\mathbf{x})\right]^{2}}{2\sigma^{2}}}$$

■ Learn w using MLE

Maximizing log-likelihood

Maximize:
$$\ln P(\mathcal{D} \mid \mathbf{w}, \sigma) = \ln \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^{N} \prod_{j=1}^{N} e^{-\left[t_{j} - \sum_{i} w_{i} h_{i}(\mathbf{x}_{j})\right]^{2}} e^{\frac{1}{2\sigma^{2}}}$$

$$= \ln \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^{N} \prod_{j=1}^{N} e^{-\left[t_{j} - \sum_{i} w_{i} h_{i}(\mathbf{x}_{j})\right]^{2}}$$

$$= \ln \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^{N} \prod_{j=1}^{N} e^{-\left[t_{j} - \sum_{i} w_{i} h_{i}(\mathbf{x}_{j})\right]^{2}}$$

$$= \lim_{\sigma \neq 0} \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^{N} \prod_{j=1}^{N} e^{-\left[t_{j} - \sum_{i} w_{i} h_{i}(\mathbf{x}_{j})\right]^{2}}$$

$$= \lim_{\sigma \neq 0} \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^{N} \prod_{j=1}^{N} e^{-\left[t_{j} - \sum_{i} w_{i} h_{i}(\mathbf{x}_{j})\right]^{2}}$$

$$= \lim_{\sigma \neq 0} \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^{N} \prod_{j=1}^{N} e^{-\left[t_{j} - \sum_{i} w_{i} h_{i}(\mathbf{x}_{j})\right]^{2}}$$

$$= \lim_{\sigma \neq 0} \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^{N} \prod_{j=1}^{N} e^{-\left[t_{j} - \sum_{i} w_{i} h_{i}(\mathbf{x}_{j})\right]^{2}}$$

$$= \lim_{\sigma \neq 0} \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^{N} \prod_{j=1}^{N} e^{-\left[t_{j} - \sum_{i} w_{i} h_{i}(\mathbf{x}_{j})\right]^{2}}$$

$$= \lim_{\sigma \neq 0} \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^{N} \prod_{j=1}^{N} e^{-\left[t_{j} - \sum_{i} w_{i} h_{i}(\mathbf{x}_{j})\right]^{2}}$$

$$= \lim_{\sigma \neq 0} \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^{N} \prod_{j=1}^{N} e^{-\left[t_{j} - \sum_{i} w_{i} h_{i}(\mathbf{x}_{j})\right]^{2}}$$

$$= \lim_{\sigma \neq 0} \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^{N} \prod_{j=1}^{N} e^{-\left[t_{j} - \sum_{i} w_{i} h_{i}(\mathbf{x}_{j})\right]^{2}}$$

$$= \lim_{\sigma \neq 0} \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^{N} \prod_{j=1}^{N} e^{-\left[t_{j} - \sum_{i} w_{i} h_{i}(\mathbf{x}_{j})\right]^{2}}$$

$$= \lim_{\sigma \neq 0} \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^{N} \prod_{j=1}^{N} e^{-\left[t_{j} - \sum_{i} w_{i} h_{i}(\mathbf{x}_{j})\right]^{2}}$$

$$= \lim_{\sigma \neq 0} \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^{N} \prod_{j=1}^{N} e^{-\left[t_{j} - \sum_{i} w_{i} h_{i}(\mathbf{x}_{j})\right]^{2}}$$

$$= \lim_{\sigma \neq 0} \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^{N} \prod_{j=1}^{N} e^{-\left[t_{j} - \sum_{i} w_{i} h_{i}(\mathbf{x}_{j})\right]^{2}}$$

$$= \lim_{\sigma \neq 0} \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^{N} \prod_{j=1}^{N} e^{-\left[t_{j} - \sum_{i} w_{i} h_{i}(\mathbf{x}_{j})\right]^{2}}$$

$$= \lim_{\sigma \neq 0} \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^{N} \prod_{j=1}^{N} e^{-\left[t_{j} - \sum_{i} w_{i} h_{i}(\mathbf{x}_{j})\right]^{2}}$$

$$= \lim_{\sigma \neq 0} \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^{N} \prod_{j=1}^{N} e^{-\left[t_{j} - \sum_{i} w_{i} h_{i}(\mathbf{x}_{j})\right]^{2}}$$

$$= \lim_{\sigma \neq 0} \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^{N} \prod_{j=1}^{N} e^{-\left[t_{j} - \sum_{i} w_{i} h_{i}(\mathbf{x}_{j})\right]^{2}}$$

$$= \lim_{\sigma \neq 0} \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^{N} \prod_{j=1}^{N} e^{-\left[t_{j} - \sum_{i} w_{i} h_{i}(\mathbf{x}_{j})\right]^{2}}$$

$$= \lim_{\sigma \neq 0} \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^{N} \prod_{j=1}^{N} e^{-\left[t_{j} - \sum_{i} w_{i} h_{i}(\mathbf{x}_{j})\right]^{2}}$$

$$= \lim_{$$

Bias-Variance Tradeoff

□ More complex class → less bias

lines

□ More complex class → more wariange

What you need to know

- Go to recitation for regression Thursday
 - □ And, other recitations too
- Point estimation:

 - □ Bayesian learning
 - □ MAP
- Gaussian estimation
- Regression
 - □ Basis function = features
 - Optimizing sum squared error
 - □ Relationship between regression and Gaussians
- Bias-Variance trade-off