Review: Generalization error in finite hypothesis spaces [Haussler ’88]

Theorem: Hypothesis space H finite, dataset D with m i.i.d. samples, $0 < \varepsilon < 1$: for any learned hypothesis h that is consistent on the training data:

$$P(\text{error}_\mathcal{X}(h) > \varepsilon) \leq |H|e^{-me\varepsilon}$$

Consistent with $D \Rightarrow \text{Error}_D(h) = 0$

Zero errors in test set

$\text{error}_\mathcal{X}(h) \rightarrow$ expected error $x \in \mathcal{X}$

Even if h makes zero errors in training data, may make errors in test
Using a PAC bound

Typically, 2 use cases:

1. Pick ε and δ, give you m
2. Pick m and δ, give you ε

\[P(\text{error}_x(h) > \varepsilon) \leq |H|e^{-m\varepsilon} \]

\[\log |H|e^{-m\varepsilon} \leq \delta, \text{ log on both sides} \]

\[\ln |H| - m\varepsilon \leq \ln \delta \]

\[m \geq \frac{1}{\varepsilon} \left(\ln |H| + \ln \frac{1}{\delta} \right) \]

\[\varepsilon \geq \ln |H| + \ln \frac{1}{\delta} \]

\[\text{error}_x(h) \leq \frac{\ln |H| + \ln \frac{1}{\delta}}{m} \]

with prob. at least $1 - \delta$
Limitations of Haussler ‘88 bound

- Consistent classifier
 \[P(\text{error}_{\mathcal{X}}(h) > \epsilon) \leq |H|e^{-m\epsilon} \]
 - Zero training error!

- Size of hypothesis space
 \[|H| \]
 - what if it's too large
 - continuous
What if our classifier does not have zero error on the training data?

- A learner with zero training errors may make mistakes in test set.
- A learner with $\text{error}_D(h)$ in training set, may make even more mistakes in test set.

$\text{error}_x(h)$ relates $\text{error}_D(h)$?
Simpler question: What’s the expected error of a hypothesis?

- The error of a hypothesis is like estimating the parameter of a coin!

- Chernoff bound: for \(m \) i.d.d. coin flips, \(x_1, \ldots, x_m \), where \(x_i \in \{0, 1\} \). For \(0<\varepsilon<1 \):

\[
P \left(\theta - \frac{1}{m} \sum_{i} x_i > \varepsilon \right) \leq e^{-2m\varepsilon^2}
\]
Using Chernoff bound to estimate error of a single hypothesis

\[P \left(\theta - \frac{1}{m} \sum_{i} x_i > \epsilon \right) \leq e^{-2m\epsilon^2} \]

Given hypothesis h, how well will it do on test data?

\[
\text{error}_X(h) \equiv \Theta \\
\text{error}_D(h) \equiv \frac{1}{m} \sum_{i} x_i \\
P(\text{error}_X(h) - \text{error}_D(h) > \epsilon) \leq e^{-2m\epsilon^2}
\]
But we are comparing many hypothesis: **Union bound**

For each hypothesis h_i:

$$P(\text{error}_X(h_i) - \text{error}_D(h_i) > \epsilon) \leq e^{-2m\epsilon^2}$$

What if I am comparing two hypothesis, h_1 and h_2?

Choose h_1, because $\text{error}_D(h_1) \leq \text{error}_D(h_2)$.
Theorem: Hypothesis space H finite, dataset D with m i.i.d. samples, $0 < \epsilon < 1$: for any learned hypothesis h:

$$P (\text{error}_X(h) - \text{error}_D(h) > \epsilon) \leq |H|e^{-2me^2}$$
PAC bound and Bias-Variance tradeoff

\[P(\text{error}_x(h) - \text{error}_D(h) > \epsilon) \leq |H|e^{-2m\epsilon^2} \]

or, after moving some terms around, with probability at least 1-\(\delta\):

\[\text{error}_x(h) \leq \text{error}_D(h) + \sqrt{\frac{\text{Var} + \text{bias}}{2m} \ln \frac{|H| + 1}{\delta}} \]

- Important: PAC bound holds for all \(h\), but doesn’t guarantee that algorithm finds best \(h\)!!!
What about the size of the hypothesis space?

\[m \geq \frac{1}{2\epsilon^2} \left(\ln |H| + \ln \frac{1}{\delta} \right) \]

- How large is the hypothesis space?

|H| is large \(\Rightarrow \) need many training examples
Boolean formulas with n binary features

$$m \geq \frac{1}{2\epsilon^2} \left(\ln |H| + \ln \frac{1}{\delta} \right)$$

- Look up table:
 - x_1, \ldots, x_n, y
 - $\ln |H| = \Theta(2^n)$
 - $|H| = \sqrt{2^n}$

- Conjunctions:
 - $\langle 1, 0, ?, ?, ?, 1, \ldots \rangle$
 - $|H| = 3^n$
 - $\ln |H| = O(n)$

- Pretty good:
 - Look up table for k conjunctions:
 - $|H| = 2^k \cdot 3^{n-k}$
 - $\ln |H| = O(2^k + (n-k))$

- Grow fast with k
Number of decision trees of depth k

Recursive solution

Given n attributes

$H_k =$ Number of decision trees of depth k

$H_0 = 2$

$H_{k+1} =$ (#choices of root attribute) *

(# possible left subtrees) *

(# possible right subtrees)

$= n \times H_k \times H_k$

Write $L_k = \log_2 H_k$

$L_0 = 1$

$L_{k+1} = \log_2 n + 2L_k$

So $L_k = (2^k-1)(1+\log_2 n) + 1$

$m \geq \frac{1}{2e^2} \left(\ln |H| + \ln \frac{1}{\delta} \right)$
PAC bound for decision trees of depth k

$$m \geq \frac{\ln 2}{2\epsilon^2} \left((2^k - 1)(1 + \log_2 n) + 1 + \ln \frac{1}{\delta} \right)$$

- Bad!!!
 - Number of points is exponential in depth!

- But, for m data points, decision tree can’t get too big…
 - only reach m leaves

Number of leaves never more than number data points
Number of decision trees with k leaves

\[H_k = \text{Number of decision trees with } k \text{ leaves} \]
\[H_0 = 2 \]

\[m \geq \frac{1}{2\epsilon^2} \left(\ln |H| + \ln \frac{1}{\delta} \right) \]

Loose bound:

\[H_k \leq n^{k-1}(k+1)^{2k-1} \]

Reminder:

\[|\text{DTs depth } k| = 2 \times (2n)^{2^k-1} \]

\[\ln |H| = O(nk^2) \]
\[\ln |\text{DTs depth } k| = O(2^k n) \]

a lot better
PAC bound for decision trees with k leaves – Bias-Variance revisited

\[H_k = n^{k-1}(k + 1)^{2k-1} \]

\[\text{error}_X(h) \leq \text{error}_D(h) + \sqrt{\frac{\ln |H| + \ln \frac{1}{\delta}}{2m}} \]

\[\text{error}_X(h) \leq \text{error}_D(h) + \sqrt{\frac{(k - 1) \ln n + (2k - 1) \ln (k + 1) + \ln \frac{1}{\delta}}{2m}} \]

Suppose $k = m$

\[\emptyset \]

If $k = \alpha m$

\[\alpha < 1 \]

\[> 0 \]

\[\uparrow \text{really big} \]

\[\downarrow \text{smaller} \]
What did we learn from decision trees?

- Bias-Variance tradeoff formalized

\[
\text{error}_X(h) \leq \text{error}_D(h) + \sqrt{\frac{(k - 1) \ln n + (2k - 1) \ln(k + 1) + \ln \frac{1}{\delta}}{2m}}
\]

- Moral of the story:

Complexity of learning not measured in terms of size hypothesis space, but in maximum *number of points* that allows consistent classification

- Complexity \(m \) – no bias, lots of variance
- Lower than \(m \) – some bias, less variance
What about continuous hypothesis spaces?

\[\text{error}_X(h) \leq \text{error}_D(h) + \sqrt{\frac{\ln |H| + \ln \frac{1}{\delta}}{2m}} \]

- Continuous hypothesis space:
 - \(|H| = \infty\)
 - Infinite variance???

- As with decision trees, only care about the maximum number of points that can be classified exactly!
How many points can a linear boundary classify exactly? (1-D)
How many points can a linear boundary classify exactly? (2-D)

+ → yes

+ → yes

- → yes

complexity 3

+ -
- + no!
How many points can a linear boundary classify exactly? (d-D)

\[wx + b = 0 \]

\[-wx + b < 0 \]

\[d + 1 \]

\[d+1 \text{ variables need } d+1 \text{ constraints} \]

\[\Rightarrow d+1 \text{ points} \]
PAC bound using VC dimension

- Number of training points that can be classified exactly is VC dimension!!!
 - Measures relevant size of hypothesis space, as with decision trees with k leaves

\[
\text{error}_X(h) \leq \text{error}_D(h) + \sqrt{\frac{VC(H) \left(\ln \frac{2m}{VC(H)} + 1 \right) + \ln \frac{4}{\delta}}{m}}
\]
Shattering a set of points

Definition: a dichotomy of a set S is a partition of S into two disjoint subsets.

Definition: a set of instances S is shattered by hypothesis space H if and only if for every dichotomy of S there exists some hypothesis in H consistent with this dichotomy.

Question: classify exactly
VC dimension

Definition: The *Vapnik-Chervonenkis dimension*, $VC(H)$, of hypothesis space H defined over instance space X is the size of the largest finite subset of X shattered by H. If arbitrarily large finite sets of X can be shattered by H, then $VC(H) \equiv \infty$.
Examples of VC dimension

- **Linear classifiers:**
 - \(VC(H) = d+1 \), for \(d \) features plus constant term \(b \)

- **Neural networks**
 - \(VC(H) = \#\text{parameters} \)
 - Local minima means NNs will probably not find best parameters

- **1-Nearest neighbor?**
 - \(VC(1-\text{NN}) = \infty \)
PAC bound for SVMs

- SVMs use a linear classifier
 - For d features, $VC(H) = d+1$:

$$\text{error}_X(h) \leq \text{error}_D(h) + \sqrt{(d + 1) \left(\ln \frac{2m}{d+1} + 1 \right) + \ln \frac{4}{\delta}}$$
VC dimension and SVMs: Problems!!!

Doesn’t take margin into account

\[\text{error}_X(h) \leq \text{error}_D(h) + \sqrt{\frac{(d + 1) \left(\ln \frac{2m}{d+1} + 1 \right) + \ln \frac{4}{\delta}}{m}} \]

- What about kernels?
 - Polynomials: num. features grows really fast = Bad bound

 \[\text{num. terms} = \binom{p+n-1}{p} = \frac{(p+n-1)!}{p!(n-1)!} \]

 \(n \) – input features
 \(p \) – degree of polynomial

 - Gaussian kernels can classify any set of points exactly
Margin-based VC dimension

- **H**: Class of linear classifiers: $w \cdot \Phi(x)$ (b=0)
 - Canonical form: $\min_j |w \cdot \Phi(x_j)| = 1$
 - $\text{VC}(H) = R^2 \cdot w \cdot w$
 - Doesn’t depend on number of features!!!
 - $R^2 = \max_j \Phi(x_j) \cdot \Phi(x_j)$ – magnitude of data
 - R^2 is bounded even for Gaussian kernels \rightarrow bounded VC dimension

- Large margin, low $w \cdot w$, low VC dimension – Very cool!
Applying margin VC to SVMs?

\[\text{error}_X(h) \leq \text{error}_D(h) + \sqrt{\frac{VC(H) \left(\ln \frac{2m}{VC(H)} + 1 \right) + \ln \frac{4}{\delta}}{m}} \]

- \(VC(H) = R^2 \mathbf{w} \mathbf{w} \)
 - \(R^2 = \max_j \Phi(x_j) \cdot \Phi(x_j) \) – magnitude of data, doesn’t depend on choice of \(\mathbf{w} \)
- SVMs minimize \(\mathbf{w} \cdot \mathbf{w} \)

- SVMs minimize VC dimension to get best bound?
 - Not quite right: 😞
 - Bound assumes VC dimension chosen before looking at data
 - Would require union bound over infinite number of possible VC dimensions…
 - But, it can be fixed!
Structural risk minimization theorem

\[
\text{error}_x(h) \leq \text{error}_D^\gamma(h) + C \sqrt{\frac{R^2}{\gamma^2} \ln m + \ln \frac{1}{\delta}}
\]

as \(\delta \rarr 0 \) variance goes down

\[
\text{error}_D^\gamma(h) = \text{num. points with margin} < \gamma \leq \frac{1}{2}
\]

more training errors

- For a family of hyperplanes with margin \(\gamma > 0 \)
 - \(\mathbf{w} \cdot \mathbf{w} \leq 1 \)
- SVMs maximize margin \(\gamma \) + hinge loss
 - Optimize tradeoff between training error (bias) versus margin \(\gamma \) (variance)
Reality check – Bounds are loose

Bound can be very loose, why should you care?

- There are tighter, albeit more complicated, bounds
- Bounds gives us formal guarantees that empirical studies can’t provide
- Bounds give us intuition about complexity of problems and convergence rate of algorithms

\[
\text{error}_X(h) \leq \text{error}_D(h) + \sqrt{\frac{(d + 1) \left(\ln \frac{2m}{d+1} + 1 \right) + \ln \frac{4}{\epsilon}}{m}}
\]
What you need to know

- Finite hypothesis space
 - Derive results
 - Counting number of hypothesis
 - Mistakes on Training data

- Complexity of the classifier depends on number of points that can be classified exactly
 - Finite case – decision trees
 - Infinite case – VC dimension

- Bias-Variance tradeoff in learning theory
- Margin-based bound for SVM
- Remember: will your algorithm find best classifier?