Neural Networks

in I le chure

Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

January 31st, 2005

Announcements

- First homework due Wednesday
 - Beginning of class
 - ☐ If using late days (24 hours per late day), timestamp and hand to Sharon Cavlovich, Wean Hall 5315

We is the weight for constant: x=1 45 Logistic regression

■ P(Y|X) represented by:

$$P(Y=1\mid x,W) =$$

$$egin{align} rac{\partial \ell(W)}{\partial w_i} &= \sum\limits_j x_i^j [y^j - P(Y^j = 1 \mid x^j, W)] \ &= \sum\limits_j x_i^j [y^j - g(w_0 + \sum\limits_j w_i x_i^j)] \end{aligned}$$

 $1+e^{-(w_0+\sum_i w_i x_i)}$

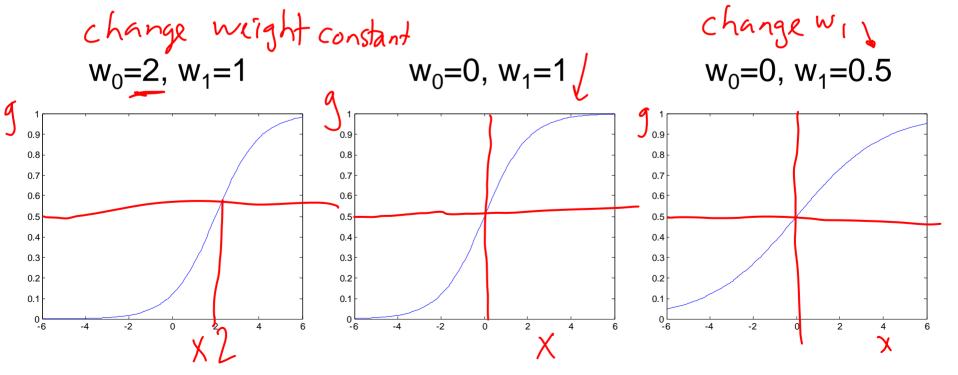
 $= g(w_0 + \sum w_i x_i)$

$$w_i \leftarrow w_i + \eta \sum_j x_i^j \delta^j$$

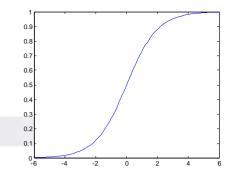
 $\delta^j = y^j - g(w_0 + \sum_i w_i x_i^j)$

Sigmoid

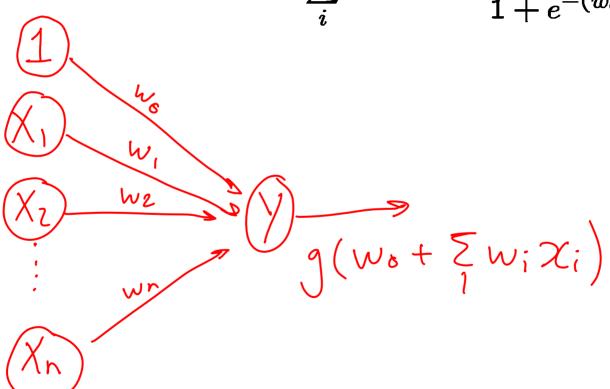
$$g(w_0 + \sum_i w_i x_i) = \frac{1}{1 + e^{-(w_0 + \sum_i w_i x_i)}}$$



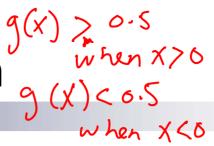
Perceptron as a graph

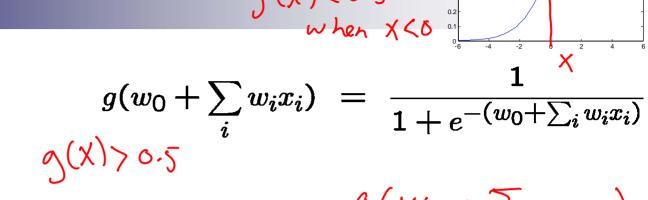


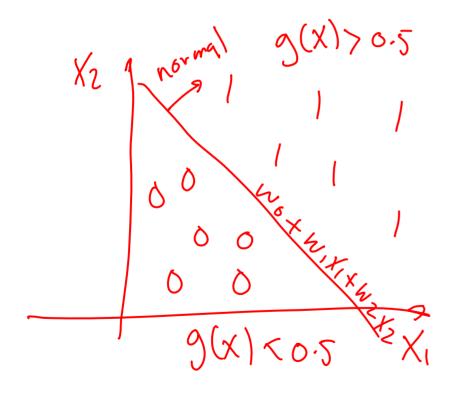
$$g(w_0 + \sum_i w_i x_i) = \frac{1}{1 + e^{-(w_0 + \sum_i w_i x_i)}}$$



Linear perceptron classification region







Optimizing the perceptron

Trained to minimize sum-squared error

$$\ell(W) = \frac{1}{2} \sum_{j} [y^{j} - g(w_{0} + \sum_{i} w_{i} x_{i}^{j})]^{2}$$

$$\frac{\partial \ell(W)}{\partial w_{i}} = \sum_{j} - [y^{j} - g(w_{0} + \sum_{i} w_{i} x_{i}^{j})]_{*}$$

$$\frac{\partial}{\partial w_{i}} g(w_{0} + \sum_{i} w_{i} x_{i}^{j})$$

Derivative of sigmoid

$$\frac{\partial \ell(W)}{\partial w_{i}} = -\sum_{j} [y^{j} - g(w_{0} + \sum_{i} w_{i}x_{i}^{j})] x_{i}^{j} g'(w_{0} + \sum_{i} w_{i}x_{i}^{j})$$

$$g(x) = \frac{1}{1 + e^{-x}} \qquad \frac{\partial g(x)}{\partial x} = \frac{e^{-x}}{(1 + e^{-x})^{2}}$$

$$= \frac{1}{(1 + e^{-x})^{2}} \qquad \frac{(1 + e^{-x})^{2}}{(1 + e^{-x})^{2}}$$

$$= \frac{1}{(1 + e^{-x})^{2}} \qquad \frac{(1 + e^{-x})^{2}}{(1 + e^{-x})^{2}}$$

The perceptron learning rule

$$w_i \leftarrow w_i + \eta \sum_j x_i^j \delta^j$$
 $\delta^j = [y^j - g(w_0 + \sum_i w_i x_i^j)] g^j (1 - g^j)$
 $g^j = g(w_0 + \sum_i w_i x_i^j)$

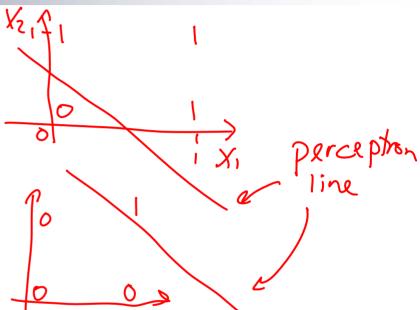
Compare to MLE:

$$w_i \leftarrow w_i + \eta \sum_j x_i^j \delta^j \delta^j \delta^j = [y^j - g(w_0 + \sum_i w_i x_i^j)]$$

Percepton, linear classification, Boolean functions

■ Can learn $x_1 \lor x_2$

■ Can learn $x_1 \wedge x_2$



Can learn any conjunction or disjunction

$$X_1 \wedge \mathcal{N}_2 \wedge X_3 \wedge X_5 \wedge \mathcal{N}_6$$

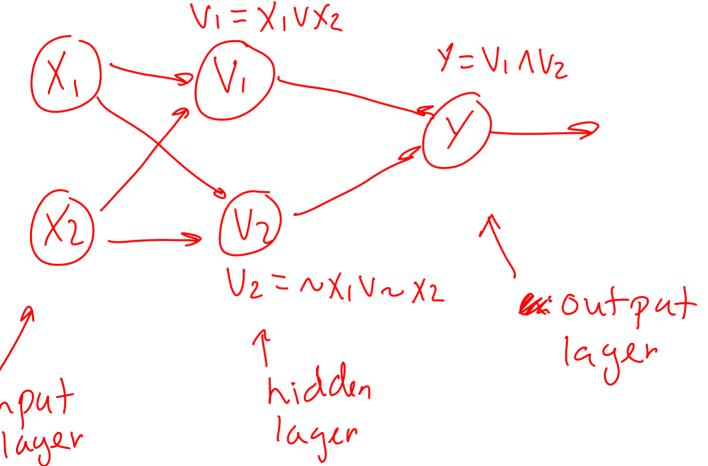
 $X_1 \vee \mathcal{N}_2 \vee X_3 \vee X_5 \vee \mathcal{N}_4$

Percepton, linear classification, **Boolean functions**

Can perceptrons do everything?

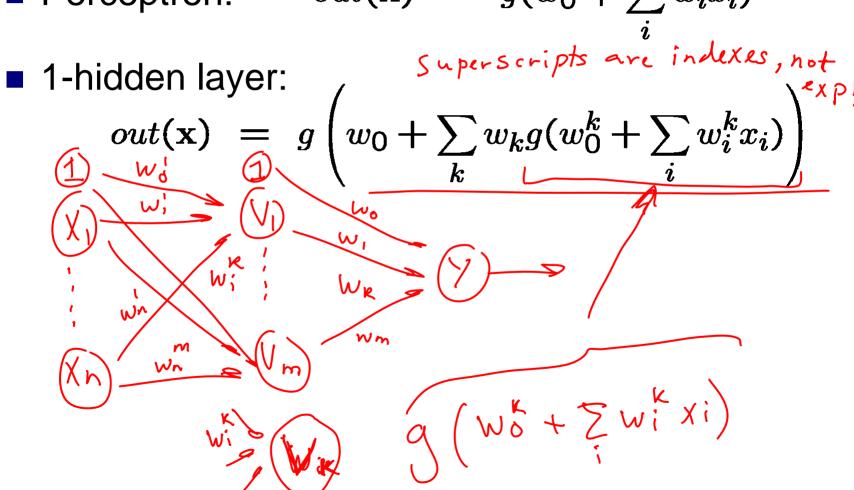
Going beyond linear classification

■ Solving the XOR problem $(X_1 \lor X_2) \land (\sim X_1 \lor \sim X_2)$



Hidden layer

 $out(\mathbf{x}) = g(w_0 + \sum w_i x_i)$ Perceptron:

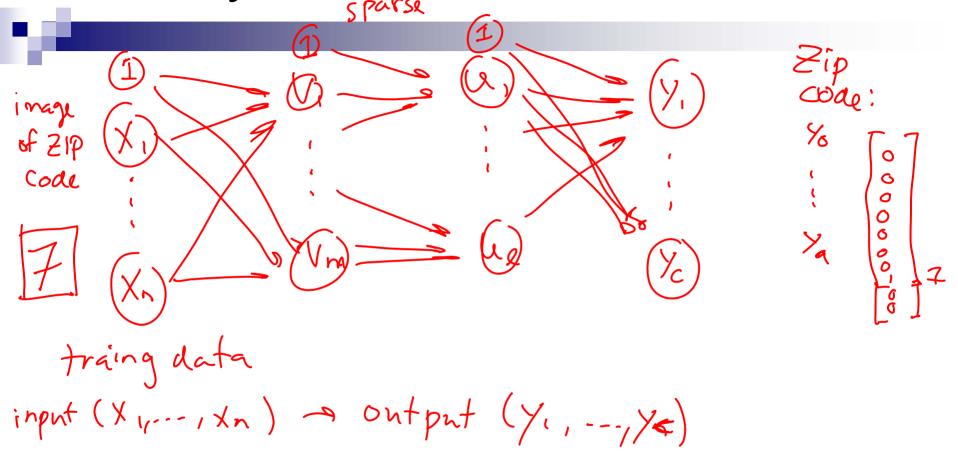


Gradient descent for 1-hidden layer

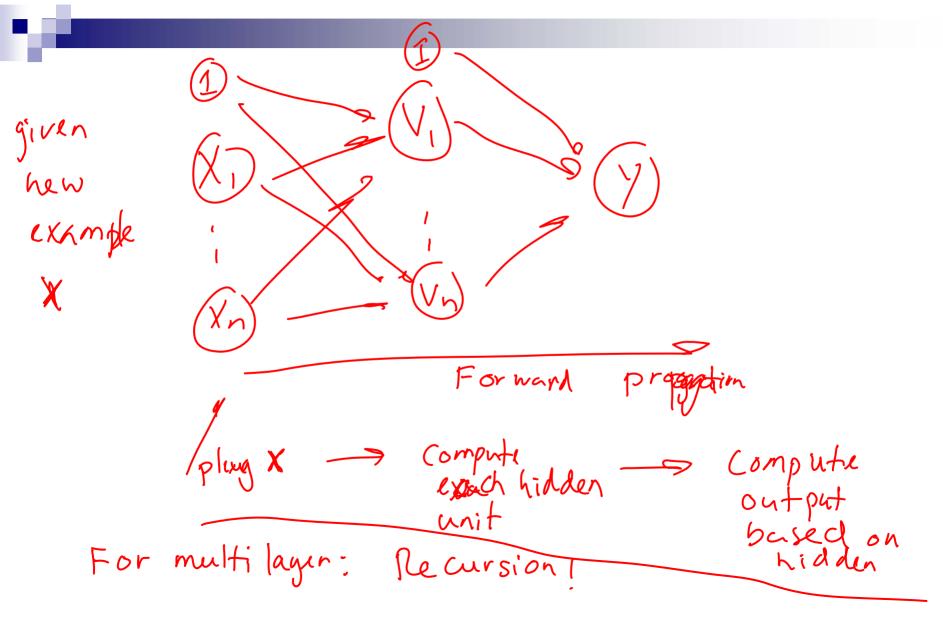
Perceptron $w_i \leftarrow w_i + \eta \ x_i \ \delta$ $[y-g(w_0+\sum w_ix_i)]g(1-g)$ $out(\mathbf{x}) = g\left(\sum_{k} w_{k}g(\sum_{i} w_{i}^{k}x_{i})\right) \left(\sum_{i} w_{i}^{k}x_{i}\right) \left(\sum_{i} w_{i}^{k}$ $\frac{\partial \ell(W)}{\partial w} = -[y - out(\mathbf{x})] \frac{\partial out(\mathbf{x})}{\partial w}$ hidden <u>dout(x)</u> = g(\(\Sigmu\), \(\gamma'\), \(\ga Lager: = g(\(\frac{1}{2}\winxi\) g(\(\frac{1}{2}\winxi\) \(\frac{1}{2}\winxi\) \(\frac{1}{2}\winxi\) Dout(x) = g'(Zwxg(Zw;xi)). Dw;[Zwxg(Zw;xi)]

Dw; WK 9'(\(\in \wi\) \(\in \);

Multilayer neural networks



Forward propagation - prediction



Back-propagation - learning

Basically gradient descent

For each example X, y

For ward propagation

Backwards updating

weights

Back-propagation - learning

$$w_{i} \leftarrow w_{i} + \eta x_{i} \delta$$

$$\delta = [y - g(w_{0} + \sum_{i} w_{i}x_{i})]g(1 - g)$$
[Hidden unit:

$$x_{i} \qquad \qquad \forall k \qquad \forall k \qquad \forall k \qquad \forall k \leq k \leq k$$
Computed

by forward propagation x_{2}

$$x_{1} \qquad \qquad \forall k \qquad \forall k \qquad \forall k \qquad \forall k \leq k \leq k$$

$$y_{2} \qquad \delta = g(\sum_{k} w_{i}x_{k}) + g(\sum_{k} w_{i}x_{k})$$

$$x_{1} \qquad \qquad \forall k \qquad \forall k \qquad \forall k \qquad \forall k \leq k \leq k$$
Start of recursion for δ :
$$x_{1} \qquad \qquad x_{2} \qquad \qquad x_{3} \qquad \qquad x_{4} \qquad \qquad x_{5} \qquad \qquad x_{5} \qquad \qquad x_{5} \qquad \qquad x_{5} \qquad \qquad x_{6} \qquad \qquad x_{7} \qquad \qquad x_$$

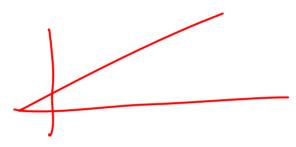
Many possible response functions

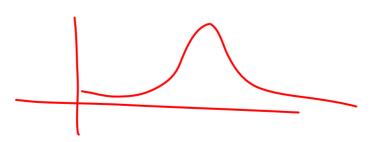
Sigmoid

Linear

Exponential

Gaussian





...

Convergence of backprop

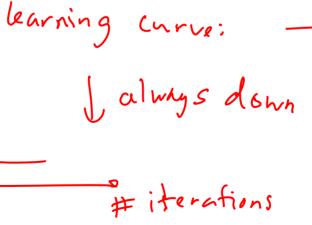
- Perceptron leads to convex optimization
 - ☐ Gradient descent reaches global minima

- Multilayer neural nets not convex
 - Gradient descent gets stuck in local minima
 - □ Hard to set learning rate
 - □ Selecting number of hidden units and layers = fuzzy process
 - NNs falling in disfavor in last few years
 - As we'll see in second half of the semester, kernel trick is a good alternative
 - Nonetheless, neural nets are one of the most used ML approaches

Training set error

- Neural nets represent complex functions
 - Output becomes more complex with gradient steps

Training set error



What about test set error?

Overfitting

- Output fits training data "too well"
 - □ Poor test set accuracy
- Overfitting the training data
 - Related to bias-variance tradeoff
 - □ One of central problems of ML
- Avoiding overfitting?
 - More training data
 - □ Regularization
 - □ Early stopping
 - □ Next few lectures

What you need to know

- Perceptron:
 - Representation
 - □ Perceptron learning rule
 - Derivation
- Multilayer neural nets
 - Representation
 - Derivation of backprop
 - Learning rule
- Overfitting
 - Definition
 - ☐ Training set versus test set
 - Learning curve
 - □ Next few classes: strategies for dealing with overfitting