Max-Margin Markov Networks, B. Taskar, C. Guestrin and D. Koller. Neural Information Processing Systems Conference (NIPS03), 2003.

http://www.cs.berkeley.edu/~taskar/pubs/mmmn.ps

Learning Associative Markov Networks, B. Taskar, V. Chatalbashev and D. Koller. Twenty First International Conference on Machine Learning (ICML04), 2004.

http://www.cs.berkeley.edu/~taskar/pubs/mmamn.ps

Max-Margin Parsing, B. Taskar, D. Klein, M. Collins, D. Koller and C. Manning. Empirical Methods in Natural Language Processing (EMNLP04), 2004.

http://www.cs.berkeley.edu/~taskar/pubs/mmcfg.ps

Graphical Models meet Marginbased Learning

Machine Learning – 10701/15781

Carlos Guestrin

Carnegie Mellon University

April 13th, 2005

Next few lectures

- Today Advanced topic in graphical models
- Next week learning to make decisions with reinforcement learning
- Week after Dealing with very large datasets, active learning and BIG PICTURE

Handwriting Recognition

Character recognition: kernel SVMs

Support Vector Machines

Advantages:	SVM
High-dim learning (kernels)	
Generalization bounds	

Handwriting Recognition 2

SVMs for sequences?

Problem: # of classes exponential in length

Handwriting Recognition 2

Graphical models: HMMs, MNs

Linear in length

SVMs vs. MNs

Advantages:	SVM	MN
High-dim learning (kernels)		X
Generalization bounds		×
Efficiently exploit label correlations	X	

SVMs, MNs vs. M³Ns

Advantages:	SVM	MN	M ³ N
High-dim learning (kernels)		X	
Generalization bounds		×	
Efficiently exploit label correlations	X		

Chain Markov Net (aka CRF*)

$$P(\mathbf{y} \mid \mathbf{x}) = \frac{1}{Z(\mathbf{x})} \prod_{i} \phi(\mathbf{x}_{i}, y_{i}) \prod_{i} \phi(y_{i}, y_{i+1})$$

$$\phi(\mathbf{x}_i, y_i) = \exp\{\sum_{\alpha} w_{\alpha} f_{\alpha}(\mathbf{x}_i, y_i)\}\$$

$$\phi(y_i, y_{i+1}) = \exp\{\sum_{\beta} w_{\beta} f_{\beta} (y_i, y_{i+1})\}$$

*Lafferty et al. 01

Chain Markov Net (aka CRF*)

$$P(\mathbf{y} \mid \mathbf{x}) = \frac{1}{Z(\mathbf{x})} \prod_{i} \phi(\mathbf{x}_{i}, y_{i}) \prod_{i} \phi(y_{i}, y_{i+1}) = \frac{1}{Z(\mathbf{x})} \exp\{\mathbf{w}^{T}\mathbf{f}(\mathbf{x}, \mathbf{y})\}$$

$$\Pi_{\mathbf{i}} \, \phi(\mathbf{x}_{\mathbf{i}}, \mathbf{y}_{\mathbf{i}}) = \exp\{\sum_{\alpha} \mathbf{w}_{\alpha} \sum_{\mathbf{i}} f_{\alpha}(\mathbf{x}_{\mathbf{i}}, \mathbf{y}_{\mathbf{i}})\}_{\alpha}, \dots, \mathbf{w}_{\beta}, \dots]$$

$$\Pi_{i} \phi(y_{i}, y_{i+1}) = \exp\{\sum_{\beta} f(\mathbf{x}_{\beta}) (\mathbf{y}_{i}, y_{i+1})\} f_{\alpha}(\mathbf{x}, \mathbf{y}), \dots, f_{\beta}(\mathbf{x}, \mathbf{y}), \dots]$$

*Lafferty et al. 01

Max (Conditional) Likelihood

 $\log P_{\mathbf{w}}(\mathbf{y} \mid \mathbf{x}) = \mathbf{w}^{\top} \mathbf{f}(\mathbf{x}, \mathbf{y}) - \log Z_{\mathbf{w}}(\mathbf{x})$

Don't need to learn entire distribution!

OCR Example

We want:

```
\operatorname{argmax}_{\operatorname{word}} \mathbf{w}^{\mathsf{T}} \mathbf{f}(\mathbf{b} \mathcal{C} \mathbf{e}, \operatorname{word}) = \text{"brace"}
```

Equivalently:

```
w^{T} f(\text{brace}, \text{"brace"}) > w^{T} f(\text{brace}, \text{"aaaaa"})
w^{T} f(\text{brace}, \text{"brace"}) > w^{T} f(\text{brace}, \text{"aaaaab"})
\dots
w^{T} f(\text{brace}, \text{"brace"}) > w^{T} f(\text{brace}, \text{"zzzzz"})
```

Max Margin Estimation

Goal: find w such that

$$\mathbf{w}^{\mathsf{T}}\mathbf{f}(\mathbf{x},\mathbf{t}(\mathbf{x})) > \mathbf{w}^{\mathsf{T}}\mathbf{f}(\mathbf{x},\mathbf{y}) \qquad \forall \, \mathbf{x} \in \mathsf{D} \quad \forall \, \mathbf{y} \neq \mathbf{t}(\mathbf{x})$$

$$\mathbf{w}^{\mathsf{T}}[\mathbf{f}(\mathbf{x},\mathbf{t}(\mathbf{x})) - \mathbf{f}(\mathbf{x},\mathbf{y})] > 0$$

$$\mathbf{w}^{\mathsf{T}}\Delta\mathbf{f}_{\mathbf{x}}(\mathbf{y}) \geq \gamma \Delta\mathbf{t}_{\mathbf{x}}(\mathbf{y})$$

- Maximize margin γ
- Gain over y grows with # of mistakes in y: $\Delta t_x(y)$

$$\Delta \mathbf{t}_{\text{brace}}(\text{"craze"}) = 2 \qquad \Delta \mathbf{t}_{\text{brace}}(\text{"zzzzz"}) = 5$$

$$\mathbf{w}^{\top} \Delta \mathbf{f}_{\text{brace}}(\text{"craze"}) \geq 2\gamma \qquad \mathbf{w}^{\top} \Delta \mathbf{f}_{\text{brace}}(\text{"zzzzz"}) \geq 5\gamma$$

M^3Ns

Estimation

 $\begin{aligned} & \max_{||\mathbf{w}|| \leq 1} \quad \gamma \\ & \mathbf{w}^{\top} \Delta \mathbf{f}_{\mathbf{x}}(\mathbf{y}) \geq \gamma \Delta \mathbf{t}_{\mathbf{x}}(\mathbf{y}) \end{aligned}$

Classification

 $\mathsf{arg}\,\mathsf{max}_{\mathbf{y}}\,\mathbf{w}^{\top}\mathbf{f}(\mathbf{x},\mathbf{y})$

M^3Ns

Estimation

Polynomial size

Factored

Dual

Dual Quadratic Program

M³N Dual

$$\mathbf{w}^{\top} \Delta \mathbf{f}_{\text{brace}}(\text{"craze"}) \geq 2\gamma \qquad \qquad \alpha_{\text{brace}}(\text{"craze"})$$

$$\mathbf{w}^{\top} \Delta \mathbf{f}_{\text{brace}}(\text{"zzzzz"}) \geq 5\gamma \qquad \qquad \alpha_{\text{brace}}(\text{"zzzzzz"})$$

$$\begin{aligned} & \max_{\alpha} & \sum_{\mathbf{x}} \sum_{\mathbf{y}} \alpha_{\mathbf{x}}(\mathbf{y}) \Delta t_{\mathbf{x}}(\mathbf{y}) - \frac{1}{2} \sum_{\mathbf{x}, \mathbf{x}'} \sum_{\mathbf{y}, \mathbf{y}'} \alpha_{\mathbf{x}}(\mathbf{y}) \alpha_{\mathbf{x}'}(\mathbf{y}') \Delta f_{\mathbf{x}}(\mathbf{y})^{\top} \Delta f_{\mathbf{x}'}(\mathbf{y}') \\ & \text{s.t.} & \sum_{\mathbf{y}} \alpha_{\mathbf{x}}(\mathbf{y}) = 1 \text{ and } \alpha_{\mathbf{x}}(\mathbf{y}) \geq 0 \quad \forall \mathbf{x} \in D \forall \mathbf{y} \end{aligned}$$

- Exponential number of variables
 - $\boldsymbol{\alpha}_{\mathbf{x}}(\mathbf{y})$ represents a probability distribution
- Key insight from graphical models:
 - Can use network structure to factorize distribution

Dual = Probability Distribution

$$\max_{\alpha} \sum_{\mathbf{x}} \sum_{\mathbf{y}} \alpha_{\mathbf{x}}(\mathbf{y}) \Delta \mathbf{t}_{\mathbf{x}}(\mathbf{y}) - \frac{1}{2} \sum_{\mathbf{x}, \mathbf{x}'} \sum_{\mathbf{y}, \mathbf{y}'} \alpha_{\mathbf{x}}(\mathbf{y}) \alpha_{\mathbf{x}'}(\mathbf{y}') \Delta \mathbf{f}_{\mathbf{x}}(\mathbf{y})^{\top} \Delta \mathbf{f}_{\mathbf{x}'}(\mathbf{y}')$$
s.t.
$$\sum_{\mathbf{y}} \alpha_{\mathbf{x}}(\mathbf{y}) = 1 \text{ and } \alpha_{\mathbf{x}}(\mathbf{y}) \geq 0 \quad \forall \mathbf{x} \in D \ \forall \mathbf{y}$$

Factored Dual Variables

Introduce factored dual variables:

$$\mu_i(y_i) \equiv \sum_{\mathbf{y} \sim y_i} \alpha(\mathbf{y}) \qquad \mu_{ij}(y_i, y_j) \equiv \sum_{\mathbf{y} \sim y_i, y_j} \alpha(\mathbf{y})$$

- Linear in the size of the network
- Rewrite dual using μ 's:

maximize QuadraticObjective(μ)

s.t. $\mu \in ConsistentMarginals$ (linear constraints)

Equivalent to original dual!

Factored Objective

$$\sum_{\mathbf{y}} \alpha(\mathbf{y}) \Delta \mathbf{t}(\mathbf{y}) - \frac{1}{2} \sum_{\mathbf{y}, \mathbf{y}'} \alpha(\mathbf{y}) \alpha(\mathbf{y}') \Delta \mathbf{f}(\mathbf{y})^{\top} \Delta \mathbf{f}(\mathbf{y}')$$

$$E_{\alpha}[\Delta \mathbf{t}(\mathbf{y})]$$

$$\Delta t(y) = \sum_{i} \Delta t(y_i)$$

$$E_{\alpha}[\Delta t(y)] = E_{\mu}[\Delta t(y)]$$

Factored Objective

$$\sum_{\mathbf{y}} \alpha(\mathbf{y}) \Delta \mathbf{t}(\mathbf{y}) - \frac{1}{2} \sum_{\mathbf{y}, \mathbf{y}'} \alpha(\mathbf{y}) \alpha(\mathbf{y}') \Delta \mathbf{f}(\mathbf{y})^{\top} \Delta \mathbf{f}(\mathbf{y}')$$

$$E_{\alpha}[\Delta \mathbf{t}(\mathbf{y})] - \frac{1}{2} E_{\alpha}[\Delta \mathbf{f}(\mathbf{y})]^{\top} E_{\alpha}[\Delta \mathbf{f}(\mathbf{y})]$$

$$\Delta \mathbf{t}(\mathbf{y}) = \sum_{i} \Delta \mathbf{t}(y_i)$$

$$\Delta \mathbf{f}(\mathbf{y}) = \sum_{i} \Delta \mathbf{f}(y_i) + \sum_{ij} \Delta \mathbf{f}(y_i, y_j)$$

$$E_{\alpha}[\Delta t(y)] = E_{\mu}[\Delta t(y)]$$

$$E_{\alpha}[\Delta f(y)] = E_{\mu}[\Delta f(y)]$$

$$E_{\mu}[\Delta \mathbf{t}(\mathbf{y})] - \frac{1}{2} E_{\mu}[\Delta \mathbf{f}(\mathbf{y})]^{\top} E_{\mu}[\Delta \mathbf{f}(\mathbf{y})]$$

Factored Constraints

$$\sum_{\mathbf{y}} \alpha(\mathbf{y}) = 1 \qquad \text{normalization}$$

 $\alpha(y) \ge 0$ non-negativity

triangulation

$$\sum_{y_i}\mu(y_i)=1$$
 $\sum_{y_i,y_j}\mu(y_i,y_j)=1$ normalization $\mu(y_i)\geq 0$ $\mu(y_i,y_j)\geq 0$ non-negativity $\mu(y_i)=\sum_{y_i}\mu(y_i,y_j)$ agreement

 $\mu(\cdot) \in \mathsf{CliqueTreePolytope}$

Factored Dual

$$\max_{\boldsymbol{\mu}} \quad \sum_{\mathbf{x}} E_{\mu_{\mathbf{x}}}[\Delta \mathbf{t}_{\mathbf{x}}(\mathbf{y})] - \frac{1}{2} \sum_{\mathbf{x}, \mathbf{x}'} E_{\mu_{\mathbf{x}}}[\Delta \mathbf{f}_{\mathbf{x}}(\mathbf{y})]^{\top} E_{\mu_{\mathbf{x}'}}[\Delta \mathbf{f}_{\mathbf{x}'}(\mathbf{y}')]$$
s.t.
$$\sum_{\mathbf{y}_i} \mu_{\mathbf{x}}(\mathbf{y}_i) = 1 \quad \mu_{\mathbf{x}}(\mathbf{y}_i, \mathbf{y}_j) \geq 0 \quad \mu_{\mathbf{x}}(\mathbf{y}_i) = \sum_{\mathbf{y}_i} \mu_{\mathbf{x}}(\mathbf{y}_i, \mathbf{y}_j)$$

$$\mu_{\mathbf{x}}(\cdot) \in \mathsf{CliqueTreePolytope_{\mathbf{x}}}$$

- Objective is quadratic in network size
- Constraint set is exponential in tree-width
 - Linear for sequences and trees
 - Complexity same as inference and max likelihood

Factored Dual

$$\mathsf{max}_{\mu} \quad \sum_{\mathbf{x}} E_{\mu_{\mathbf{x}}}[\Delta \mathbf{t}_{\mathbf{x}}(\mathbf{y})] - \frac{1}{2} \sum_{\mathbf{x},\mathbf{x}'} E_{\mu_{\mathbf{x}}}[\Delta \mathbf{f}_{\mathbf{x}}(\mathbf{y})]^{\top} E_{\mu_{\mathbf{x}'}}[\Delta \mathbf{f}_{\mathbf{x}'}(\mathbf{y}')]$$

$$\begin{aligned} &\text{nodes} \Rightarrow \sum_{i,y_i} \sum_{k,y_k'} \mu_{\mathbf{x}}(y_i) \mu_{\mathbf{x}'}(y_k') \Delta \mathbf{f}_{\mathbf{x}}(y_i)^{\top} \Delta \mathbf{f}_{\mathbf{x}'}(y_k') + \\ &\text{edges} \Rightarrow \sum_{ij} \sum_{km} \mu_{\mathbf{x}}(y_i,y_j) \mu_{\mathbf{x}'}(y_k',y_m') \Delta \mathbf{f}_{\mathbf{x}}(y_i,y_j)^{\top} \Delta \mathbf{f}_{\mathbf{x}'}(y_k',y_m') \\ &y_i,y_j \ y_k',y_m' \end{aligned}$$

- Kernel trick works!
 - Node and edge potentials can use kernels

Generalization Bound

Theorem:

Per-label loss \mathcal{L} for m training examples:

$$E_{\mathbf{x}}\mathcal{L}(\mathbf{w}, \mathbf{x}) \leq E_{S}\mathcal{L}^{\gamma}(\mathbf{w}, \mathbf{x}) + \sqrt{\frac{K}{m} \left[\frac{||\Delta \mathbf{f}||^{2} ||\mathbf{w}||^{2}}{\gamma^{2}} [\ln m + \ln L] + \ln \frac{1}{\delta} \right]}$$

Test set Training set per-label error per-label γ-error

with probability at least 1- δ .

- Distribution-free
- First per-label bound
- Dependence on L logarithmic vs. linear [Colllins 01]
 - L = number of nodes and edges

Handwriting Recognition

Named Entity Recognition

- Locate and classify named entities in sentences:
 - 4 categories: organization, person, location, misc.
 - e.g. "U.N. official Richard Butler heads for Baghdad".
- CoNLL 03 data set (200K words train, 50K words test)

y_i = org/per/loc/misc/none

$$f(y_i, x) = [..., I(y_i = org, x_i = "U.N."), I(y_i = per, x_i = capitalized), I(y_i = loc, x_i = known city), ..., I(y_i = known city), ..., I$$

Hypertext Classification

- WebKB dataset
 - Four CS department websites: 1300 pages/3500 links
 - Classify each page: faculty, course, student, project, other
 - Train on three universities/test on fourth

M^3Ns

Basic algorithm works for any low tree-width graphical model

Estimation

Other possible max-margin learning problems

- Large tree-width Markov networks with attractive potentials
- Parsing using probabilistic context-free grammars
- Learning to cluster
- Max-margin learning of any poly-time problem..

Associative Markov networks

$$P(\mathbf{y} \mid \mathbf{x}) \propto \prod_{i} \phi_{i}(y_{i}, \mathbf{x}_{i}) \prod_{ij} \phi_{ij}(y_{i}, y_{j}, \mathbf{x}_{ij}) = \exp\{\mathbf{w}^{\top}\mathbf{f}(\mathbf{x}, \mathbf{y})\}$$
Point features
spin-images, point height
length of edge, edge orientation

"associative" $\phi_{ij}(y_i, y_j) =$

Max-margin AMNs results

Label: ground, building, tree, shrub

Training: 30 thousand points Testing: 3 million points

Segmentation results

Hand labeled 180K test points

Model	Accuracy
SVM	68%
V-SVM	73%
M ³ N	93%

Max-margin parsing

- Classic learning problem:
 - $P(NP \rightarrow \{NP,PP\})$
 - P(NP→{DT,NN})
 - **.** . . .
- Usually, learn probabilities with counts
- Learn max-margin discriminative model

PCFG

$$P(\mathbf{y} \mid \mathbf{x}) \propto \prod_{A \to \alpha \in (\mathbf{x}, \mathbf{y})} P(A \to \alpha) = \exp\{\mathbf{w}^{\mathsf{T}} \mathbf{f}(\mathbf{x}, \mathbf{y})\}$$

Disulfide bonds: non-bipartite matching

Fariselli & Casadio `01, Baldi et al. '04

Scoring function

$$s_{46}(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{f}(\mathbf{x}_{46})$$
 String features: residues, physical properties

$$s(\mathbf{x}, \mathbf{y}) = \sum_{ij} y_{ij} \mathbf{w}^{\top} \mathbf{f}(\mathbf{x}_{ij}) \equiv \mathbf{w}^{\top} \mathbf{f}(\mathbf{x}, \mathbf{y})$$

Learning to cluster

Input: Solution to clustering problems **Output: Distance function**

Learning to cluster results

Input

User 1 User 2

Output

Given image

Output 1

Output 2

Learning to optimize

- Given poly-time optimization problem
 - Minimum spanning tree
 - Bipartite matching
 - Shortest path
 - **...**
- Max-margin learning optimization criterion
 - Weights of Markov network
 - Clustering distance function
 - Edge weights
 - **...**

Conclusion

- Combine strengths of kernels and graphical models
 - Incorporate high-dim features
 - Exploit correlations and structure
- Efficient representation and learning procedure
 - Exact for triangulated networks (low-treewidth)
 - Approximate for untriangulated networks
 - Efficient SMO-like solver using network inference
- Generalization guarantees
 - Per-label bound
- Outperforms standard methods
 - OCR, Information Extraction and Hypertext Classification

Acknowledgements

- This lecture describes recent research (and slides) by Ben Taskar, more details:
 - Ben Taskar's Thesis: <u>Learning Structured Prediction</u> <u>Models: A Large Margin Approach</u>. Stanford University, CA, December 2004.
 - http://www.cs.berkeley.edu/~taskar/pubs/thesis.pdf