
Max-Margin Markov Networks,  B. Taskar, C. Guestrin and D. Koller. Neural 
Information Processing Systems Conference (NIPS03), 2003. 
http://www.cs.berkeley.edu/~taskar/pubs/mmmn.ps
Learning Associative Markov Networks,  B. Taskar, V. Chatalbashev and D. Koller. 
Twenty First International Conference on Machine Learning (ICML04), 2004.
http://www.cs.berkeley.edu/~taskar/pubs/mmamn.ps
Max-Margin Parsing,  B. Taskar, D. Klein, M. Collins, D. Koller and  C. Manning. 
Empirical Methods in Natural Language Processing (EMNLP04), 2004. 
http://www.cs.berkeley.edu/~taskar/pubs/mmcfg.ps

Graphical Models meet Margin-
based Learning

Machine Learning – 10701/15781
Carlos Guestrin

Carnegie Mellon University

April 13th, 2005



Next few lectures
Today – Advanced topic in graphical models
Next week – learning to make decisions with 
reinforcement learning
Week after – Dealing with very large datasets, 
active learning and BIG PICTURE



Handwriting Recognition

Character recognition: kernel SVMs
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Support Vector Machines

Advantages: SVM

High-dim learning (kernels)

Generalization bounds



Handwriting Recognition 2

SVMs for sequences?

brake
aaaaa
brick brace

Problem: # of classes exponential in length
brare

zzzzz
.....



Handwriting Recognition 2

Graphical models: HMMs, MNs
Linear in length



SVMs vs. MNs

Advantages: SVM MN

High-dim learning (kernels)

Generalization bounds

Efficiently exploit 
label correlations



SVMs, MNs vs. M3Ns

Advantages: SVM MN M3N

High-dim learning (kernels)

Generalization bounds

Efficiently exploit 
label correlations



Chain Markov Net (aka CRF*)

P(y|x) = Z(x) Πi φ(xi,yi) Πi φ(yi,yi+1)
1

φ(xi,yi) = exp{∑α wαfα(xi,yi)} 

φ(yi,yi+1) = exp{∑β wβfβ (yi,yi+1)} 

fβ(y,y’) = I(y=‘z’,y’=‘a’)
a-z a-z a-z a-z a-z

fα(x,y) = I(xp=1, y=‘z’)
y

x

*Lafferty et al. 01



Chain Markov Net (aka CRF*)

Πi φ(xi,yi) = exp{∑α wα ∑i fα(xi,yi)} 

Πi φ(yi,yi+1) = exp{∑β wβ ∑i fβ (yi,yi+1)} 

P(y|x) = Z(x) Πi φ(xi,yi) Πi φ(yi,yi+1) 
1 = Z(x) exp{wTf(x,y)}

1

w = [… , wα , … , wβ, …]

f(x,y) = [… , fα(x,y) , … , fβ(x,y) , …]

fβ(x,y) = #(y=‘z’,y’=‘a’)
a-z a-z a-z a-z a-zy

fα(x,y) = #(xp=1, y=‘z’)

x

*Lafferty et al. 01



Max (Conditional) Likelihood

x1,t(x1)
…

xm,t(xm)

D

Estimation Classification

f(x,y)

Don’t need to learn entire distribution!



OCR Example
We want:
argmaxword wT f( ,word) = “brace”

Equivalently:
wT f( ,“brace”) > wT f(       ,“aaaaa”)
wT f( ,“brace”) > wT f(       ,“aaaab”)
…
wT f( ,“brace”) > wT f(       ,“zzzzz”)

a lot!



Max Margin Estimation
Goal:  find w such that

wTf(x,t(x)) > wTf(x,y)         x∈D y≠t(x)
wT[f(x,t(x)) – f(x,y)] > 0

Maximize margin γ
Gain over y grows with # of mistakes in y: ∆tx(y)
∆t        (“craze”) = 2              ∆t        (“zzzzz”) = 5

w>∆fx(y) > 0w>∆fx(y) ≥ γ

A  A

w>∆f (“craze”) ≥ 2γ w>∆f (“zzzzz”) ≥ 5γ

∆tx(y)



M3Ns

x1,t(x1)
…

xm,t(xm)

D

Estimation Classification

f(x,y)



M3Ns

Estimation

Dual Quadratic
Program

Exponential 
size

Polynomial 
size

Factored 
Dual



M3N Dual
α (“craze”)w>∆f (“craze”) ≥ 2γ

α (“zzzzz”)w>∆f (“zzzzz”) ≥ 5γ

Exponential number of variables
αx(y) represents a probability distribution

Key insight from graphical models:
Can use network structure to factorize distribution



Dual = Probability Distribution

αx(y)
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Factored Dual Variables
Introduce factored dual variables:

Linear in the size of the network

Rewrite dual using µ’s:
maximize  QuadraticObjective(µ)
s.t. µ ∈ ConsistentMarginals (linear constraints)

Equivalent to original dual!



Factored Objective
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Factored Objective



Factored Constraints
normalization

non-negativity

If network is a tree
Else add clique tree constraints

normalization

non-negativity

agreement

triangulation



Factored Dual

Objective is quadratic in network size
Constraint set is exponential in tree-width

Linear for sequences and trees
Complexity same as inference
and max likelihood



Factored Dual

Kernel trick works!
Node and edge potentials can use kernels

nodes ⇒

edges ⇒



Generalization Bound

Theorem:

with probability at least 1-δ.
Training set 

per-label γ-error
Test set 

per-label error

Distribution-free
First per-label bound
Dependence on L logarithmic vs. linear [Colllins 01]

L = number of nodes and edges



Handwriting Recognition
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cubic
kernelLength: ~8 chars

Letter: 16x8 pixels 
10-fold Train/Test
5000/50000 letters
600/6000 words 

Models:
Multiclass-SVMs*
CRFs
M3 nets 

better

45% error reduction over linear CRFs
33% error reduction over multiclass SVMs

*Crammer & Singer 01



Named Entity Recognition
Locate and classify named entities in sentences:

4 categories: organization, person, location, misc.
e.g. “U.N. official Richard Butler heads for Baghdad”.

CoNLL 03 data set (200K words train, 50K words test)
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Hypertext Classification
WebKB dataset

Four CS department websites: 1300 pages/3500 links
Classify each page: faculty, course, student, project, other
Train on three universities/test on fourth

53% error reduction over SVMs
38% error reduction over RMNs

relaxed 
dual

*Taskar et al 02

better

loopy belief propagation



M3Ns
Basic algorithm works for any low tree-width graphical model

Estimation

Dual Quadratic
Program

Exponential 
size

Polynomial 
size

Factored 
Dual



Other possible max-margin 
learning problems

Large tree-width Markov networks with attractive 
potentials
Parsing using probabilistic context-free grammars
Learning to cluster
Max-margin learning of any poly-time problem..



Associative Markov networks

Point features
spin-images, point height

Edge features
length of edge, edge orientation 

yi

yj

φij

φi

“associative”
restriction



Max-margin AMNs results

Label: ground, building, tree, shrub
Training: 30 thousand points     Testing: 3 million points











Segmentation results

Hand labeled 180K test points

Model Accuracy

SVM 68%

V-SVM 73%

M3N 93%



Max-margin parsing
Classic learning 
problem:

P(NP→{NP,PP})
P(NP→{DT,NN})
…

Usually, learn 
probabilities with 
counts
Learn max-margin 
discriminative model



PCFG

#(NP → DT NN)

…

#(PP → IN NP)

…

#(NN → ‘sea’)



Disulfide bonds: non-bipartite matching
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Fariselli & Casadio `01, Baldi et al. ‘04



Scoring function

1

2 3

4

6 5

RSCCPCYWGGCPWGQNCYPEGCSGPKV
1     2         3                             4                 5                          6       

RSCCPCYWGGCPWGQNCYPEGCSGPKV
1     2         3 4                                  5  6       

String features: 
residues, physical properties



Learning to cluster
Output:
Distance function

Input:
Solution to 
clustering 
problems



Learning to cluster results

Input

User 1 User 2

Output

Given image Output 1 Output 2



Learning to optimize
Given poly-time optimization problem

Minimum spanning tree
Bipartite matching
Shortest path
…

Max-margin learning optimization criterion
Weights of Markov network
Clustering distance function
Edge weights
…



Conclusion
Combine strengths of kernels and graphical models

Incorporate high-dim features
Exploit correlations and structure

Efficient representation and learning procedure 
Exact for triangulated networks (low-treewidth)
Approximate for untriangulated networks
Efficient SMO-like solver using network inference

Generalization guarantees
Per-label bound

Outperforms standard methods 
OCR, Information Extraction and Hypertext Classification
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