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~_Next few lectures
=
= Today — Advanced topic in graphical models
= Next week — learning to make decisions with
reinforcement learning

= Week after — Dealing with very large datasets,
active learning and BIG PICTURE



Handwriting Recognition
"

Character recognition: kernel SVMs




i Suggort Vector Machines

Advantages: SVM

High-dim learning (kernels) J

Generalization bounds J




Handwriting Recognition 2
"

fa{

SVMs for sequences?
Problem: # of classes exponential in length

IznﬁJrK word & b
rare \:-..

145~ aaaaa



Handwriting Recognition 2
"

fa{

Graphical models: HMMs, MNs
hrtkinear in lengti,, Ko Netwey g

020202020 ?—0—9- -0
€




SVMs vs. MNs
" BN

Advantages:

SVM

MN

High-dim learning (kernels)

Generalization bounds

Efficiently exploit
label correlations

XK
XX




i SVMSi MNS vs. M3Ns
Advantages: SVM MN M3N

High-dim learning (kernels)

Generalization bounds

Efficiently exploit
label correlations

XK
XX

ANANEN
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Chain Markov Net (aka CRF*)™%
"
4™ h(-) 20
Py 1X) = .H D0<,¥1), [T 9(;,Yi 1) pater fnchon
O0xiyi) = eXp{Za W“f‘i‘.,(,ff;’}'i)},\own

O(YinYir1) = exp{2s Wyl (Vi.Vir1)}

*Lafferty et al. 01
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Chain Markov Net (aka CRF*)
"

P(YIx) = Z(Ax) [T 00X, Yi) LT 0(Yi.Yis1) = % exp{w'f(x,y)}

/OD - ["’\-QP\V\

I oY) = exp{Z, W B Rk, , ..., w,, .] %
IT; d(yiYyirr) = exp{Z, f\@ﬁ)}f) FE M} T.0OGY) 5 oy fB(X’y) o]

D)
y

f,(X,y) = #(X,=1, y="2')
< 12 Tl Ed [d =

*Lafferty et al. 01




~_Max ‘Conditional) Likelih)ood
3 Wi (zy

(alx = | .
(o ) T
x1,t(x1) L
Vlgs | S -39 Estimation Classification
XM t(x™m)

!_/ ma><|m|zew

log Pw (t(x) | x)
f(x.y) Xga

Don’t need to learn entire distribution!



OCR Example
" A

= We want:
argmax,,..q W' f(iz,word) = “brace”

= Equivalently:
w! f(HE, “brace”) > w' f(BZ@a,“aaaaa”)
w! f(BZMa,“brace”) > w' f( &I, “aaaab™)

\

w! f(HZ’8,“brace”) > w' f(IZEE,“22222”) )



i Max I\/Iargin Estimation

= Goal: find va’f&mh that /
wIf(x,t(x)) > w'f(x,y) VxeD Vy;tt(x;

WT\[f(X,t(X)) - f(x,y)J] >0
~"

WTAT, () = YAt (y)

= Maximize margin vy

= Gain over y grows with # of mistakes in y: At (y)
Atm(“craze”) =2 At(“zzzzz”) =5

W' Af e (“craze”) > 2y W' Al (“222777) > 5y

CWt:] 07//‘“”




Estimation

Classification

T

Tf(x,y)

arg maxy w
wawﬂ\«]



Exponential
size
Dual Quadratic 0 Factored
Program Dual



~__MSN Dual
WTAfpgmm(“craze”) > 2y ==p O.pomp(“Craze”)
W AT (V222277) 2 By == Ot("ZZZZZ"

= Exponential number of variables
= a,(Y) represents a probability distribution

= Key insight from graphical models:
= Can use network structure to factorize distribution



Dual = Probability Distribution
" I .,

MaXq L LOZX(Y)A’GX(Y) — = L L ax (y) o (y')

xx’yy
Zax(y) =1 and ax(y) >0 Vxe& DVy
y

@)

b
b
b

Cp
ol

o N



Factored Dual Variables
'_

s Introduce factored dual variables:

pwi(y) = Y ay)  wii(ysy) = D aly)

= Linear in the size of the network

= Rewrite dual using /'s:
maximize QuadraticObjective(w)
s.t. u € ConsistentMarginals (linear constraints)

Equivalent to original dual!



Factored ODbjective
"
> a()Aty) — 3 alal)ANy) ARG

v P Y.y’
Eo[Qt(y)}

At(y) = Y At(y:)

Eo[At(y)] = Eu[At(y)]




Factored Objective
"

> a(Aty) =5 3 al)aly)Af (y) ' Af(y)

< _— 1M_/
Bal& ] 5 EalBEW] T BRI ()]

At(y) = 3 At(y:) Af(y) =3 Af(y) + ) Aty y5)

iJ

Eo[At(y)] = EulAt(y)] Eo[Af(y)] = Eu[Af(y)]

BulAU)] S Bl AT BAAL)]



Factored Constraints
'_
» a(y) =1 normalization

y
a(y) >0 non-negativity

@ ‘ ‘ If network Is a tree

Else add clique tree constraints

> u(y) =1 > u(yi,y;) =1 normalization
u(y;) > 0 1(y;,y;) > 0 non-negativity
w(yi) = (i, y;) agreement
Yj

1(-) € CliqueTreePolytope triangulation



Factored Dual

max, Y‘ Eux[Atx(y)] — = Y‘ B[O ()] B [Af(y)]

XX

%
o+

v 1~
L s

<(yv;) =1 pux(y;,y;) >0 pu
\ov L/ I~a\v ) J J —
Yi

J

ux(-) € CliqueTreePolytopex

J

1,7 j/

= Objective is quadratic in network size

= Constraint set Is exponential in tree-width

= Linear for sequences and trees

=« Complexity same as inference
and max likelihood




Factored Dual
"._1

max, ) Eux|Atx(y)] —

\ O\ FrAC 7. N1 4 rac 7 I\

? Lux|RIx(Y)] Eu lRLLg\y )],
X,x’

N |

¢ ¢(X7/[j$)

nodes = »_ Zux(yi)uxf(yz@i)TAfxf(yé)

1,Y; kvy];

edges = 3> 3 yux(uis )i vk Ui TB e (i ) T A (v} U

1y km

TR

= Kernel trick works!
= Node and edge potentials can use kernels



Generalization Bound
» B

Theorem:
Per-label loss £ for m training examples:

ExL(w,x) < ESE’Y(W,X)+J [||Af|| ||W||2[|n @

Y Y wﬁv aS magin

Test set Training set 11 Creag(s
per-label error per-label y-error with probability at least 1-6.

= Distribution-free
= First per-label bound

= Dependence on L logarithmic vs. linear [Colllins 01]
= L = number of nodes and edges




MGMM,

[ [ ] [ )(
Handwriting RecogmtmmﬁL@
" A
O raw W quadratic O cubic

Length: ~8 chars 30 - pixels kernel kernel

5
=
| &
Letter: 16x8 pixels  © B
10-fold Train/Test ¢ 2% | [——— ™ l better
4
()]
(@)
©
5
>
8
S

Hi

H

5000/50000 letters
600/6000 words

20 -

Models:
Multiclass-SV
CRFs
M3 nets

0 0¢ ?—S’E—Q——gw
#|cle #|cle

NG
*Crammer & Singer 01




Named Entity Recognition

= Locate and classify named entities in sentences:
= 4 categories: organization, person, location, misc.
= e.g. “U.N. official Richard Butler heads for Baghdad”.

= CoNLL O3 data set (200K words train, 50K words test)

0090999 V1 Woetter

N S
S I vSsF X
SO L ¥ o K ¥
LK <y 2 <
> L Q¥ < S

y;, = org/per/loc/misc/none

fy;, x) = [...,
I(y;=org, x;="U.N."),
|(y;=per, x,=capitalized),
I(y,=loc, x;=known city),

cor ]

@ CRFs O MA3N Linear B M~3N Quad



Hypertext Classification

H
= WebKB dataset
= Four CS department websites: 1300 pages/3500 links
= Classify each page: faculty, course, student, project, other
= Train on three universities/test on fourth

o - 1better

relaxed
dual

Test Error
|_\
@)

5396 error reduction over SVMs
38%0 error reduction over RMNs

loopy belief propagation

*Taskar et al 02

B SVMs B RMNS B M™3Ns



M3NS

Basic algorithm works for any low tree-width graphical model
 hain Frees low vee-widsh

é)yg*og-cg / J{G\C\;‘j / ;l\
Estimation dbz/iﬂo

Exponential
size (
Dual Quadratic 0 Factored

Program Dual




Other possible max-margin

" Iearning Rroblems

= Large tree-width Markov networks with attractive
potentials

= Parsing using probabilistic context-free grammars
= Learning to cluster
= Max-margin learning of any poly-time problem..




Assoclative Markov networks
" A

P(y|x) H¢i(yiaXi> [1 ¢ (vi, v, xi5) = exp{w ' f(x,y)}

] A
“ Point features Edge features '
spin-images, point height length of edge, edge orientation
o ¢i;(1,1)
“assoclative” . 1 Boras

restriction i Wi ¥j) = dij(k, k) > 1




Max- margln AMNS results

Voted-SVM AMN

Label: ground, building, tree, shrub
Training: 30 thousand points  Testing: 3 million points






g

e

£

T









i Segmentation results

Hand labeled 180K test points

Model | Accuracy

SVM 68%0

V-SVM 13%

M3N 93%




i I\/Iax—margin parsing

= Classic learning
problem:
« (P(NP—{NP,PP})>
= P(NP—{DT,NN})

DlT NlN ﬂl\T NlP = Usually, learn
o sea of NN probabilities with

| counts

red
= Learn max-margin
discriminative model




Ply|x)x JI P(A—a)=exp{w f(x,y)}

A—ae(Xx,y)
. #(NP — DT NN)
!'/_,"N_\_
NP VP
nﬂw VMP f:XXy—>§Rd

| | | T
Mo seren wos o pr [ #(PP > IN NP)
N ~ T

DT NN IN NP

| | | |
a sea of NN

|
red

#(NN — ‘sea’)



Disulfide bonds: non-bipartite matching
"

B . | |
RSCCPCYWGGCPWGQNCYPEGCSGPKYV

Fariselli & Casadio “01, Baldi et al. ‘04



i Scoring function

RSCCPCYWGGCPWGQNCYPEGCSGPKY ()il

YWGGCPWGQ YPEGCSGPK
— 4 6 _/

X46

(X46) String features:
residues, physical properties

s(x,y) =Y yiw £(xi;) =w!f(x,y)
]



i Learning to cluster

Input: Output:

Solution to Distance function

clustering l\

problems and bbdd

1 C[V\S‘]‘w?hj S Adtznc ﬁ“"é?%’ér\
~ (P)"l)lllns X'} /)(S

/\[ SC..or( S(X;)(B
_,_ [
W o)




i Learning to cluster results




i Learning to optimize

= Given poly-time optimization problem
= Minimum spanning tree
= Bipartite matching
= Shortest path

= Max-margin learning optimization criterion
= Weights of Markov network
= Clustering distance function
=« Edge weights



~___Conclusion
=
= Combine strengths of kernels and graphical models
= Incorporate high-dim features

= EXploit correlations and structure

= Efficient representation and learning procedure
= Exact for triangulated networks (low-treewidth)
= Approximate for untriangulated networks
= Efficient SMO-like solver using network inference

= Generalization guarantees
= Per-label bound

= Outperforms standard methods
= OCR, Information Extraction and Hypertext Classification



_~__Acknowledgements
=
= This lecture describes recent research (and slides)
by Ben Taskar, more details:

= Ben Taskar’s Thesis: Learning Structured Prediction
Models: A Large Margin Approach. Stanford University,
CA, December 2004.

= http://www.cs.berkeley.edu/~taskar/pubs/thesis.pdf



http://www.cs.berkeley.edu/%7Etaskar/pubs/thesis.pdf
http://www.cs.berkeley.edu/%7Etaskar/pubs/thesis.pdf
http://www.cs.berkeley.edu/%7Etaskar/pubs/thesis.pdf
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