Instance-based

Learning

Machine Learning — 10701/15781

Carlos Guestrin
Carnegie Mellon University

February 14th, 2005



Announcements
" J
m Reminder: Second homework due Monday 215t



Why not just use Linear Regression?
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Using data to predict new data
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Nearest neighbor
" J
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Univariate 1-Nearest Neighbor
" S

Given datapoints (X;,Y,) (X5,Y5).-(X\:Yn),Where we assume y,=f(s;) for some

unknown function f. A
Given query point x,, your job is to predict y ~ f (Xq ) %wz

Nearest Neighbor: SN
1. Find the closest x; in our set of datapoints P "
i(nn) = argmin ‘xi - xq‘
%‘D}Ld’ |
. A
2. Predict D o o5
. RS ‘
Here'’s a LS
dataset with A’% ( |
one Input, one gleer%lotgégtls
OUtpUt and datapoint
four

datapoints.



1-Nearest Neighbor is an example of....

Instance-based learning
" A
A function approximator

that has been around
since about 1910.

To make a prediction,
search database for
similar datapoints, and fit
with the local points.

Four things make a memory based learner:

| A distance metric

n How many nearby neighbors to look at? < — A
| A weighting function (optional)

| How to fit with the local points?



1-Nearest Neighbor
" J

Four things make a memory based learner:

1. A distance metric
Euclidian (and many more)

2.  How many nearby neighbors to look at?
One

3. A weighting function (optional)
Unused

4.  How to fit with the local points?
Just predict the same output as the nearest neighbor.



Multivariate 1-NN examples
" J

Regression Classification
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Multivariate distance metrics
" A

Suppose the input vectors x1, x2, ...xn are two dimensional:
Xy = (Xg0 0 X0 ) X = (g1, Xpp) 4 Xy = ( Xy » Xn2 )-
One can draw the nearest-neighbor regions in input space.

Dist(x,.x;) = (% = %)% + (X2 = X2)?  Dist(x,,x) =(q = X3)2+(3x;, = 3x,)?

The relative scalings in the distance metric affect region shapes.



Euclidean distance metric

oA, Al

D(X,X") = oJ x - X
Or equivalently, ( ) \/Z L\)
Wi thr St <o
where D(x,X) = \/(X X) Z(X X')
Gl 0 0
5 _ 0 o} 0
0 0 N |

Other Metrics...

m Mahalanobis, Rank-based, Correlation-based,...




Notable distance metrics

(and thelir level sets)
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Consistency of 1-NN
" J

m Consider an estimato@trained on n examples
e.g., 1-NN, neural nets, regression,..
m Estimator is consistent if predlctlon eIror goes to zero as
amount of data increases
e.g., for no noise data, consistent if:

im MSE(f,) =0

n—=00

/',

m Regression is not consistent!
Representation bias

m 1-NN is consistent (under some mild fineprint)

What about variance???




1-NN overfits?

S
~
0
g
*
0
8
)
j—
3
~

¢
[

mizrate

attributel

I~ Some casss, 1- NN orpsrenhally lewg dehg,

el




k-Nearest Neighbor
" J

Four things make a memory based learner:

1. A distance metric
Euclidian (and many more)

2. How many nearby neighbors to look at?
K

1. A weighting function (optional)
Unused

2. How to fit with the local points?
Just predict the average output among the k nearest neighbors.
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k-Nearest Neighbor (here k=9)
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K-nearest neighbor for function fitting smoothes away noise, but there are
clear deficiencies.

What can we do about all the discontinuities that k-NN gives us?



Weighted k-NNs
" J
m Neighbors are not all the same
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. Kw  Sawexll Ko \"“"3<
Kernel regression

" S /. ——

Four things make a memory based learner: W A /

1. A distance metric
Euclidian (and many more)

2. How many nearby neighbors to look at? —>
All of them j
3. A weighting function (option / 5W\d w idHh ( D\’
w; = exp(-D(x;, query)= /K>
Nearby points to the query are weighted strongly, far points
weakly. The K, parameter is the Kernel Width. Very
Important.

4. How to fit with the local points?
Predic lghted average of the outputs:

Lpredict = 2wy, / Zw,
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Typically optimize K,

/rLg_gmdl\entdescent

(Our examples use Gaussian)



Kernel regression predictions
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Increasing the kernel width K, means further away points get an
opportunity to influence you.

As K2 oo, the prediction tends to the global average.



Kernel regression on our test cases
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Choosing a good K, is important. Not just for Kernel Regression, but
for all the locally weighted learners we’re about to see.



Kernel regression can look bad

<L9/2

KW = Best. KW = Best. KW = Best.
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Time to try something more powerful...



Locally weighted regression
" J
O\B - ? WA A
‘{w‘\—ﬂ
Kernel regression:

Take a very very conservative function approximator
called AVERAGING. Locally weight it.

Locally weighted regression:

Take a conservative function approximator called
LINEAR REGRESSION. Locally weight it.



Locally weighted regression
" J

C Four things make a memory based learner:
- A distance metric

Any

C How many nearby neighbors to look at?
All of them

- A weighting function (optional)
Kernels

wi = exp(-D(xi, query)2 / Kw2)

m  How to fit with the local points?
/ n n
General weighted regression:

p=argmind w’(y, -}
B k=1

Q\ Ker el wrt 3,




How LWR works
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Another view of LWR
" A

/kernel too wide - includes nonlinear region

kernel just right _ .
kernel too narrow — excludes some of linear region

Image from Cohn, D.A., Ghahramani, Z., and Jordan, M.1. (1996) "Active Learning with Statistical Models", JAIR Volume 4, pages 129-145.



LWR on our test cases

KW = 1/16 of x-axis KW = 1/32 of x-axis KW = 1/8 of x-axis width.
width. width.
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Locally weighted polynomial

regression

A+bx + ¢ x?
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Kernel Regression LW Linear Regression
Kernel width K,, at optimal  Kernel width K,, at optimal
level. level.

KW = 1/100 x-axis KW = 1/40 x-axis

LW Quadratic Regression
Kernel width K,, at optimal
level.

KW = 1/15 x-axis

iacrnese Lo wch’H\

Local quadratic regression is easy: just add quadratic terms to the
WXTWX matrix. As the regression degree increases, the kernel width

can increase without introducing bias.



Curse of dimensionality for
Instance-based learning
S

rachcal
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m Must store and retreve all data!
Most real work done during testing
For every test sample, must search through all dataset — very slow!
We’'ll see fast methods for dealing with large datasets

m Instance-based learning often poor with noisy or irrelevant
features



Curse of the Iirrelevant feature
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What you need to know
"
m K-NN
Simplest learning algorithm
With sufficient data, very hard to beat “strawman” approach
Picking k?
m Kernel regression

Set k to n (number of data points) and optimize weights by
gradient descent

Smoother than k-NN
m Locally weighted regression
Generalizes kernel regression, not just local average

m Curse of dimensionality
Tackling large datasets
Irrelevant features often killers for instance-based approaches
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m This lecture contains some material from

Andrew Moore’s excellent collection of ML
tutorials:

http://www.cs.cmu.edu/~awm/tutorials
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