# Instance-based Learning

Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

February 14<sup>th</sup>, 2005

#### Announcements

■ Reminder: Second homework due Monday 21st

#### Why not just use Linear Regression?







More basis functions

## Using data to predict new data



## Nearest neighbor



#### Univariate 1-Nearest Neighbor

Given datapoints  $(x_1, y_1)$   $(x_2, y_2)$ .. $(x_N, y_N)$ , where we assume  $y = f(s_i)$  for some unknown function f.

unknown function f. Given query point  $x_q$ , your job is to predict  $\hat{y} \approx f(x_q)$  Nearest Neighbor:

1. Find the closest  $x_i$  in our set of datapoints



#### 1-Nearest Neighbor is an example of.... **Instance-based learning**

A function approximator that has been around since about 1910.

To make a prediction, search database for similar datapoints, and fit with the local points.



#### Four things make a memory based learner:

- A distance metric
- How many nearby neighbors to look at? multiple
- A weighting function (optional)
- How to fit with the local points?

#### 1-Nearest Neighbor

#### Four things make a memory based learner:

- A distance metric
   Euclidian (and many more)
- How many nearby neighbors to look at?
- A weighting function (optional)
   Unused
- 4. How to fit with the local points?

  Just predict the same output as the nearest neighbor.

#### Multivariate 1-NN examples

#### Regression



#### Classification



Voronoi diagram

#### Multivariate distance metrics

Suppose the input vectors x1, x2, ...xn are two dimensional:

$$\mathbf{x}_1 = (x_{11}, x_{12}), \mathbf{x}_2 = (x_{21}, x_{22}), \dots \mathbf{x}_N = (x_{N1}, x_{N2}).$$

One can draw the nearest-neighbor regions in input space.



Dist
$$(\mathbf{x}_{i}, \mathbf{x}_{i}) = (x_{i1} - x_{i1})^{2} + (x_{i2} - x_{i2})^{2}$$



$$Dist(\mathbf{x}_{i}, \mathbf{x}_{j}) = (x_{i1} - x_{j1})^{2} + (x_{i2} - x_{j2})^{2} \qquad Dist(\mathbf{x}_{i}, \mathbf{x}_{j}) = (x_{i1} - x_{j1})^{2} + (3x_{i2} - 3x_{j2})^{2}$$

The relative scalings in the distance metric affect region shapes.

#### Euclidean distance metric

where

Or equivalently, 
$$D(\mathbf{x},\mathbf{x}') = \sqrt{\sum_{i} \sigma_{i}^{2} \left(x_{i} - x_{i}'\right)^{2}}$$
 where 
$$D(\mathbf{x},\mathbf{x}') = \sqrt{(\mathbf{x} - \mathbf{x}')^{T} \sum_{i} \left(\mathbf{x} - \mathbf{x}'\right)}$$

$$\Sigma = \begin{bmatrix} \sigma_1^2 & 0 & \cdots & 0 \\ 0 & \sigma_2^2 & \cdots & 0 \\ \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & \sigma_N^2 \end{bmatrix}$$

#### Other Metrics...

Mahalanobis, Rank-based, Correlation-based,...

## Notable distance metrics (and their level sets)



### Consistency of 1-NN

- Consider an estimator  $f_n$  trained on n examples
  - □ e.g., 1-NN, neural nets, regression,...
- Estimator is consistent if prediction error goes to zero as
  - amount of data increases
    - □ e.g., for no noise data, consistent if:

$$\lim_{n\to\infty} MSE(f_n) = 0$$

- Regression is not consistent!
  - □ Representation bias
- 1-NN is consistent (under some mild fineprint)

What about variance???

#### 1-NN overfits?



In Some cases, 1-NN exponentially large detaset need.

### k-Nearest Neighbor

#### Four things make a memory based learner:

- A distance metric
   Euclidian (and many more)
- How many nearby neighbors to look at?
- A weighting function (optional)
   Unused
- 2. How to fit with the local points?

Just predict the average output among the k nearest neighbors.

query 
$$x_q$$
,  $kNN(x_q)$ :
$$\hat{y} = \sum_{i \in KNN(x_q)} y_i$$

## k-Nearest Neighbor (here k=9)



K-nearest neighbor for function fitting smoothes away noise, but there are clear deficiencies.

What can we do about all the discontinuities that k-NN gives us?

## Weighted k-NNs

Neighbors are not all the same



## Kernel regression



Four things make a memory based learner:

- 1. A distance metric **Euclidian (and many more)**
- 2. How many nearby neighbors to look at?

  All of them
- 3. A weighting function (optional)  $\mathbf{w}_i = \exp(-D(\mathbf{x}_i, \mathbf{query})^2 / (\mathbf{K}_w^2)$

Nearby points to the query are weighted strongly, far points weakly. The K<sub>W</sub> parameter is the **Kernel Width**. Very important.

4. How to fit with the local points?

Predict the weighted average of the outputs:

predict = 
$$\sum w_i y_i / \sum w_i$$

## Weighting functions

often, behave similarly in practice

$$w_i = \exp(-D(x_i, query)^2 / K_w^2)$$

$$w_i = \overline{d(x_i, x_i)}$$



Typically optimize K<sub>w</sub> using gradient descent

(Our examples use Gaussian)

## Kernel regression predictions



Increasing the kernel width  $K_w$  means further away points get an opportunity to influence you.

As  $K_w \rightarrow \infty$ , the prediction tends to the global average.

#### Kernel regression on our test cases



Choosing a good  $K_w$  is important. Not just for Kernel Regression, but for all the locally weighted learners we're about to see.

#### Kernel regression can look bad



Time to try something more powerful...

#### Locally weighted regression



#### Kernel regression:

Take a very very conservative function approximator called AVERAGING. Locally weight it.

#### Locally weighted regression:

Take a conservative function approximator called LINEAR REGRESSION. Locally weight it.

## Locally weighted regression

- Four things make a memory based learner:
- A distance metricAny
- How many nearby neighbors to look at?

All of them

- A weighting function (optional)
   Kernels
  - $\square$  wi = exp(-D(xi, query)2 / Kw2)
- How to fit with the local points?

General weighted regression:

$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}} \sum_{k=1}^{N} w_k^2 (y_k - \beta^T x_k)^2$$

Kernel wort Xq

#### How LWR works





#### Linear regression

 Same parameters for all queries

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\mathrm{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathrm{T}} \mathbf{Y}$$

 Solve weighted linear regression for each query

$$\hat{\beta} = (WX^TWX)^{-1}WX^TWY$$

$$W = \begin{pmatrix} w_1 & 0 & 0 & 0 \\ 0 & w_2 & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & w_n \end{pmatrix}$$

#### Another view of LWR



#### LWR on our test cases



KW = 1/16 of x-axis width.

KW = 1/32 of x-axis width.

KW = 1/8 of x-axis width.

gaussian Kernels ax+5 regression

#### Locally weighted polynomial regression



Local quadratic regression is easy: just add quadratic terms to the WXTWX matrix. As the regression degree increases, the kernel width can increase without introducing bias.

## Curse of dimensionality for instance-based learning

- Must store and retreve all data!
  - Most real work done during testing
  - ☐ For every test sample, must search through all dataset very slow!

problem

- □ We'll see fast methods for dealing with large datasets
- Instance-based learning often poor with noisy or irrelevant features

#### Curse of the irrelevant feature



#### What you need to know

- k-NN
  - □ Simplest learning algorithm
  - □ With sufficient data, very hard to beat "strawman" approach
  - □ Picking k?
- Kernel regression
  - Set k to n (number of data points) and optimize weights by gradient descent
  - ☐ Smoother than k-NN
- Locally weighted regression
  - □ Generalizes kernel regression, not just local average
- Curse of dimensionality
  - □ Tackling large datasets
  - □ Irrelevant features often killers for instance-based approaches

#### Acknowledgment

- This lecture contains some material from Andrew Moore's excellent collection of ML tutorials:
  - □ <a href="http://www.cs.cmu.edu/~awm/tutorials">http://www.cs.cmu.edu/~awm/tutorials</a>