Instance-based Learning

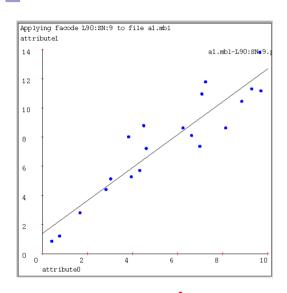
Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

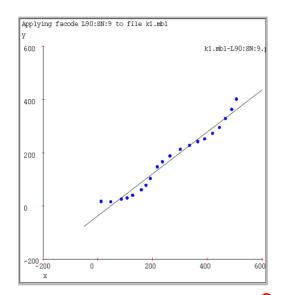
February 14th, 2005

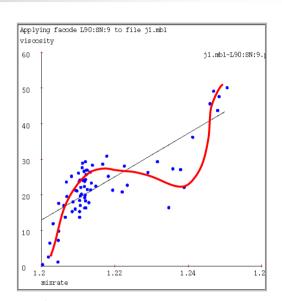
Announcements

■ Reminder: Second homework due Monday 21st

Why not just use Linear Regression?

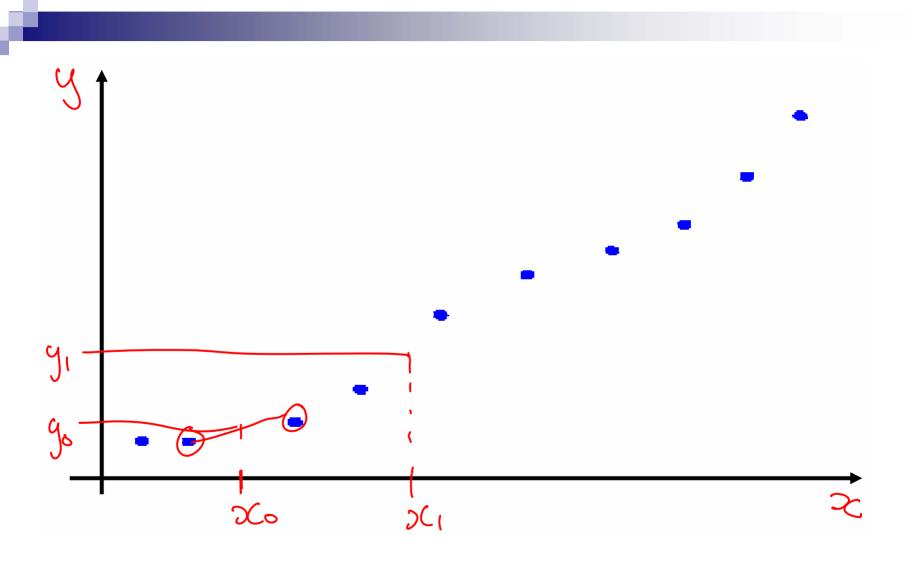




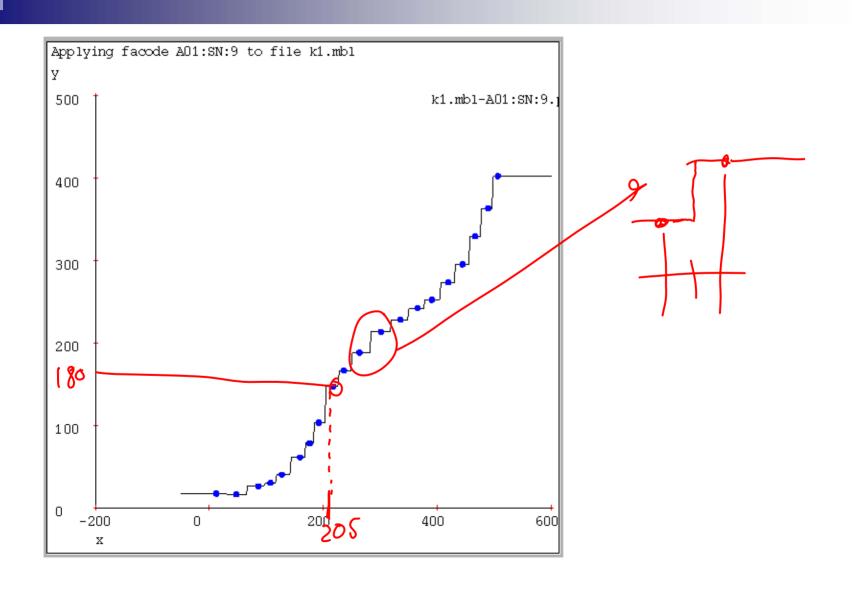


More basis functions

Using data to predict new data



Nearest neighbor

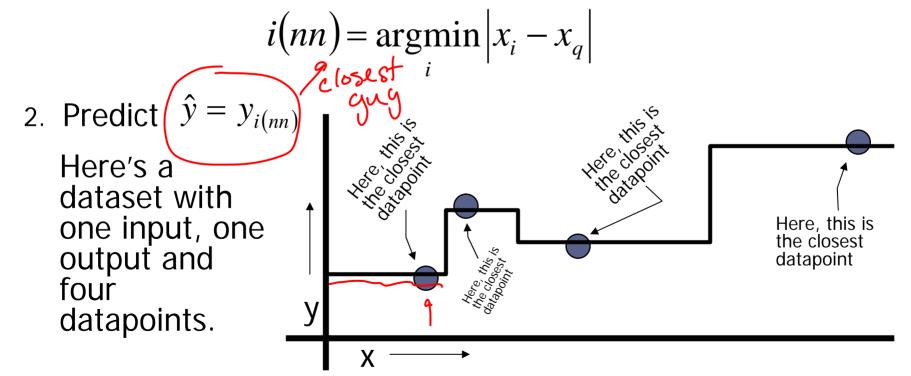


Univariate 1-Nearest Neighbor

Given datapoints (x_1, y_1) (x_2, y_2) .. (x_N, y_N) , where we assume $y = f(s_i)$ for some unknown function f.

unknown function f. Given query point x_q , your job is to predict $\hat{y} \approx f(x_q)$ Nearest Neighbor:

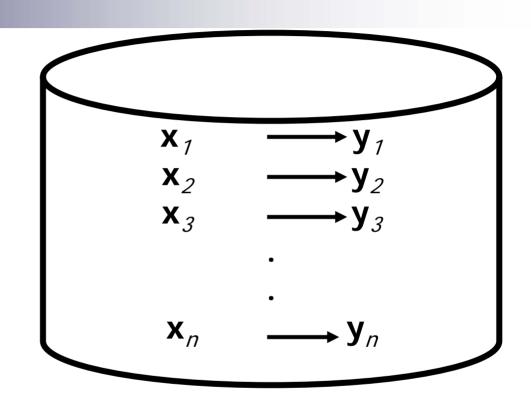
1. Find the closest x_i in our set of datapoints



1-Nearest Neighbor is an example of.... **Instance-based learning**

A function approximator that has been around since about 1910.

To make a prediction, search database for similar datapoints, and fit with the local points.



Four things make a memory based learner:

- A distance metric
- How many nearby neighbors to look at? multiple
- A weighting function (optional)
- How to fit with the local points?

1-Nearest Neighbor

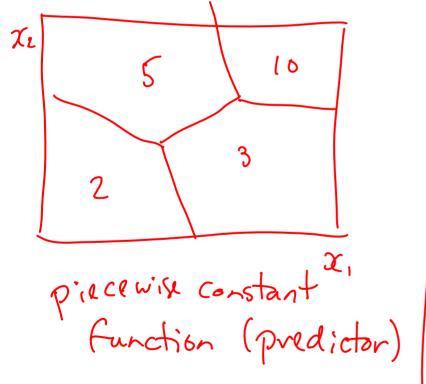
Four things make a memory based learner:

- A distance metric
 Euclidian (and many more)
- How many nearby neighbors to look at?
- A weighting function (optional)
 Unused
- 4. How to fit with the local points?

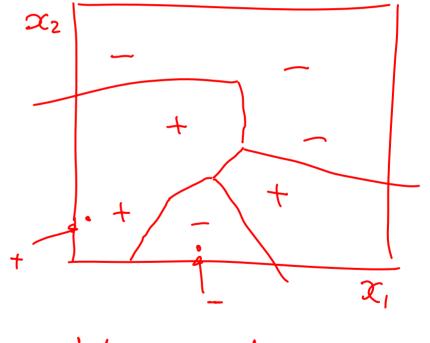
 Just predict the same output as the nearest neighbor.

Multivariate 1-NN examples

Regression



Classification



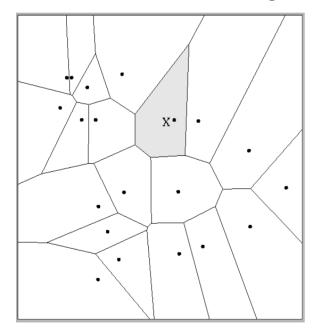
Voronoi diagram

Multivariate distance metrics

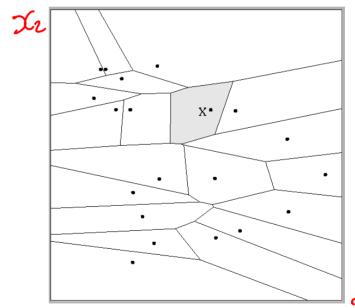
Suppose the input vectors x1, x2, ...xn are two dimensional:

$$\mathbf{x}_1 = (x_{11}, x_{12}), \mathbf{x}_2 = (x_{21}, x_{22}), \dots \mathbf{x}_N = (x_{N1}, x_{N2}).$$

One can draw the nearest-neighbor regions in input space.



Dist
$$(\mathbf{x}_{i}, \mathbf{x}_{i}) = (x_{i1} - x_{i1})^{2} + (x_{i2} - x_{i2})^{2}$$



$$Dist(\mathbf{x}_{i}, \mathbf{x}_{j}) = (x_{i1} - x_{j1})^{2} + (x_{i2} - x_{j2})^{2} \qquad Dist(\mathbf{x}_{i}, \mathbf{x}_{j}) = (x_{i1} - x_{j1})^{2} + (3x_{i2} - 3x_{j2})^{2}$$

The relative scalings in the distance metric affect region shapes.

Euclidean distance metric

where

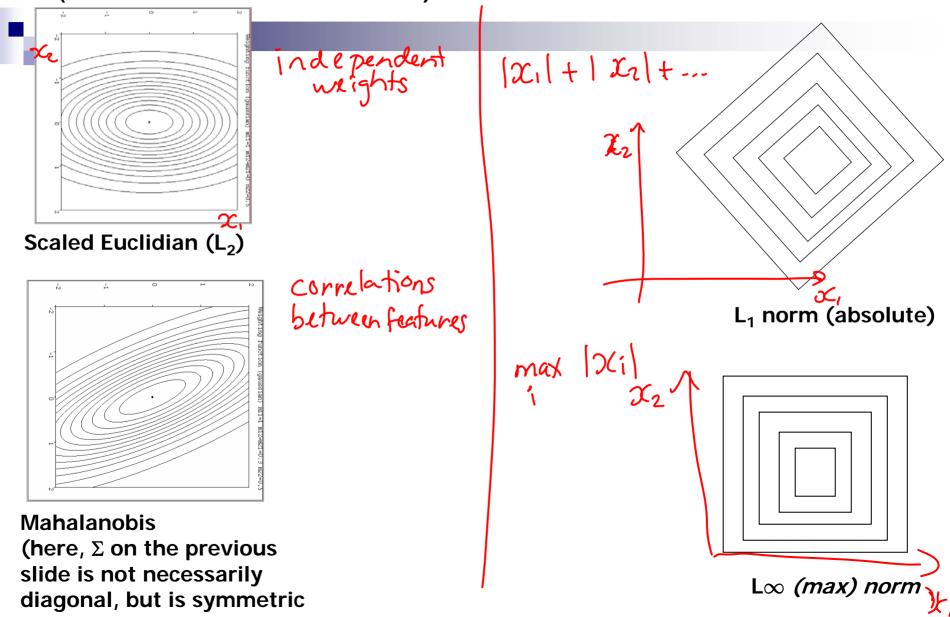
Or equivalently,
$$D(\mathbf{x},\mathbf{x}') = \sqrt{\sum_{i} \sigma_{i}^{2} \left(x_{i} - x_{i}'\right)^{2}}$$
 where
$$D(\mathbf{x},\mathbf{x}') = \sqrt{(\mathbf{x} - \mathbf{x}')^{T} \sum_{i} \left(\mathbf{x} - \mathbf{x}'\right)}$$

$$\Sigma = \begin{bmatrix} \sigma_1^2 & 0 & \cdots & 0 \\ 0 & \sigma_2^2 & \cdots & 0 \\ \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & \sigma_N^2 \end{bmatrix}$$

Other Metrics...

Mahalanobis, Rank-based, Correlation-based,...

Notable distance metrics (and their level sets)



Consistency of 1-NN

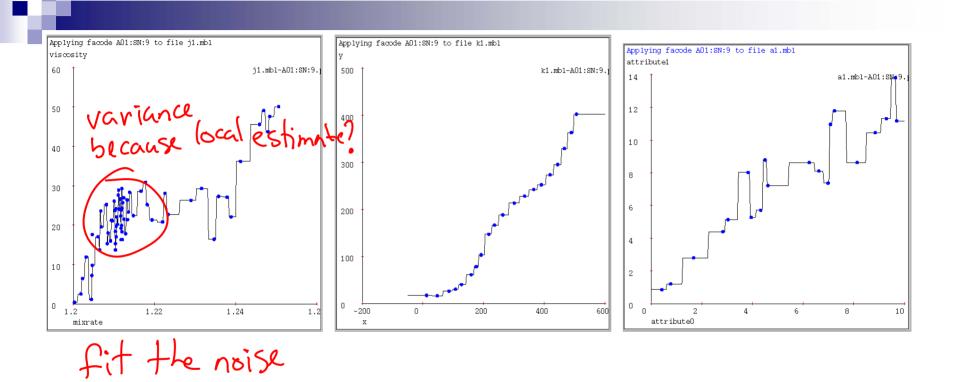
- Consider an estimator f_n trained on n examples
 - □ e.g., 1-NN, neural nets, regression,...
- Estimator is consistent if prediction error goes to zero as
 - amount of data increases
 - □ e.g., for no noise data, consistent if:

$$\lim_{n\to\infty} MSE(f_n) = 0$$

- Regression is not consistent!
 - □ Representation bias
- 1-NN is consistent (under some mild fineprint)

What about variance???

1-NN overfits?



In Some cases, 1-NN exponentially large detaset need.

k-Nearest Neighbor

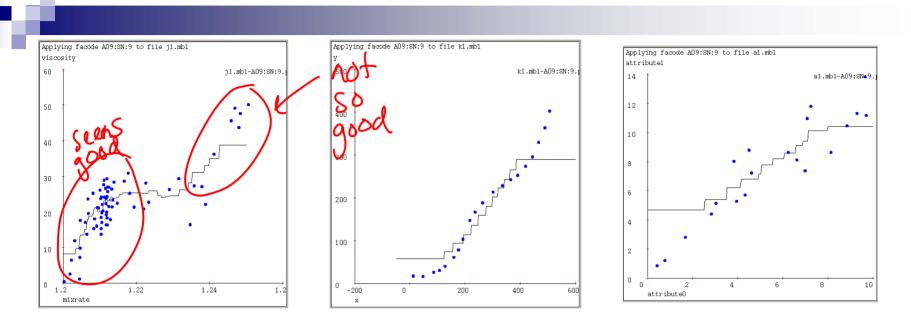
Four things make a memory based learner:

- A distance metric
 Euclidian (and many more)
- How many nearby neighbors to look at?
- A weighting function (optional)
 Unused
- 2. How to fit with the local points?

Just predict the average output among the k nearest neighbors.

query
$$x_q$$
, $kNN(x_q)$:
$$\hat{y} = \sum_{i \in KNN(x_q)} y_i$$

k-Nearest Neighbor (here k=9)

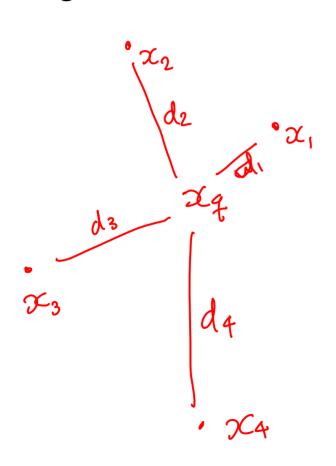


K-nearest neighbor for function fitting smoothes away noise, but there are clear deficiencies.

What can we do about all the discontinuities that k-NN gives us?

Weighted k-NNs

Neighbors are not all the same



Kernel regression

Four things make a memory based learner:

- 1. A distance metric **Euclidian (and many more)**
- 2. How many nearby neighbors to look at?

 All of them
- 3. A weighting function (optional) $\mathbf{w}_i = \exp(-D(\mathbf{x}_i, \mathbf{query})^2 / (\mathbf{K}_w^2)$

Nearby points to the query are weighted strongly, far points weakly. The K_W parameter is the **Kernel Width**. Very important.

4. How to fit with the local points?

Predict the weighted average of the outputs:

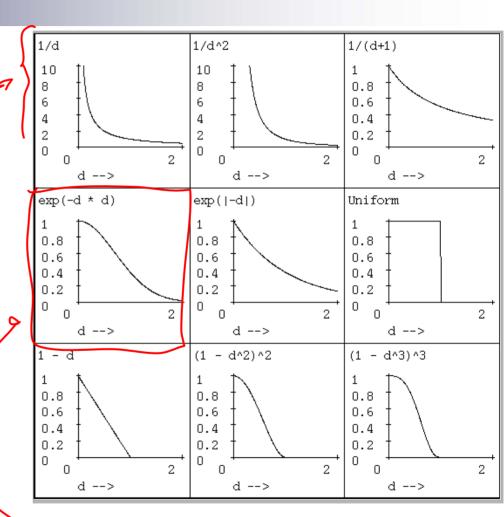
predict =
$$\sum w_i y_i / \sum w_i$$

Weighting functions

often, behave similarly in practice

$$w_i = \exp(-D(x_i, query)^2 / K_w^2)$$

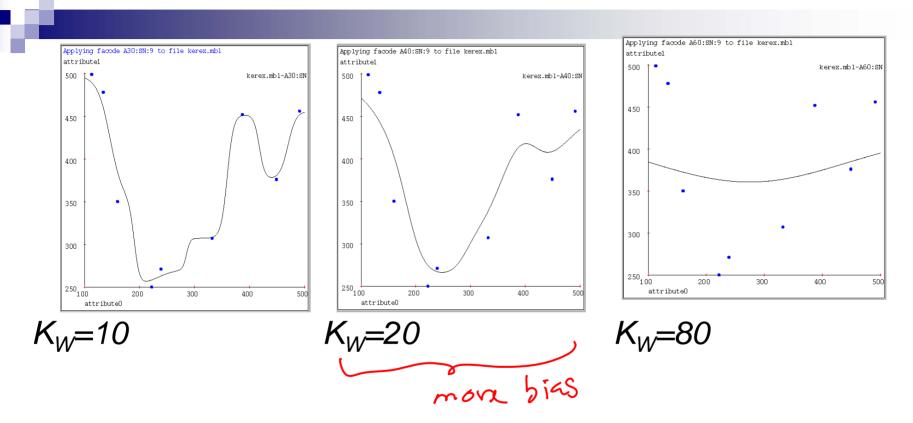
$$w_i = \overline{d(x_i, x_i)}$$



Typically optimize K_w using gradient descent

(Our examples use Gaussian)

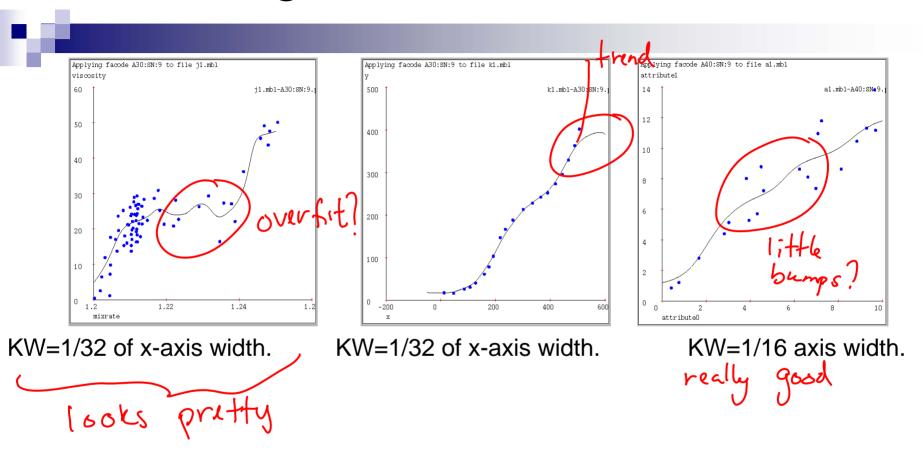
Kernel regression predictions



Increasing the kernel width K_w means further away points get an opportunity to influence you.

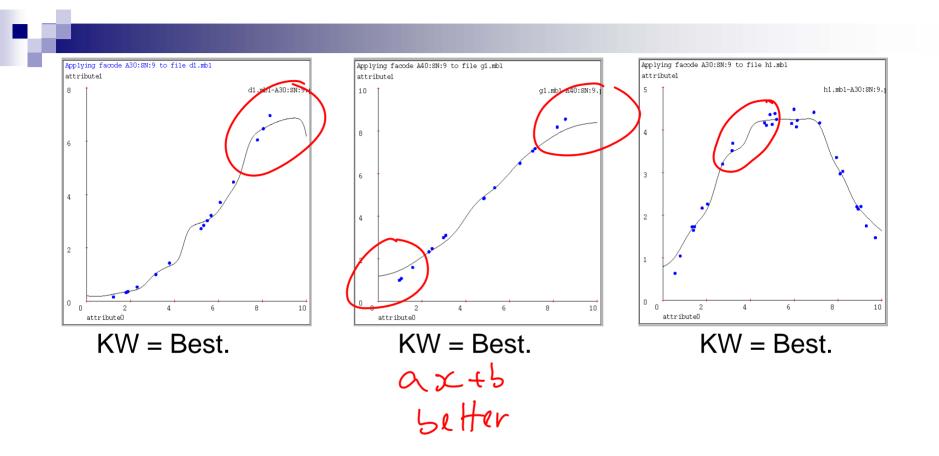
As $K_w \rightarrow \infty$, the prediction tends to the global average.

Kernel regression on our test cases



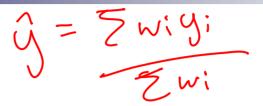
Choosing a good K_w is important. Not just for Kernel Regression, but for all the locally weighted learners we're about to see.

Kernel regression can look bad



Time to try something more powerful...

Locally weighted regression



Kernel regression:

Take a very very conservative function approximator called AVERAGING. Locally weight it.

Locally weighted regression:

Take a conservative function approximator called LINEAR REGRESSION. Locally weight it.

Locally weighted regression

- Four things make a memory based learner:
- A distance metricAny
- How many nearby neighbors to look at?

All of them

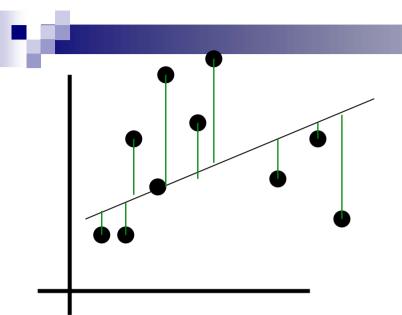
- A weighting function (optional)
 Kernels
 - \square wi = exp(-D(xi, query)2 / Kw2)
- How to fit with the local points?

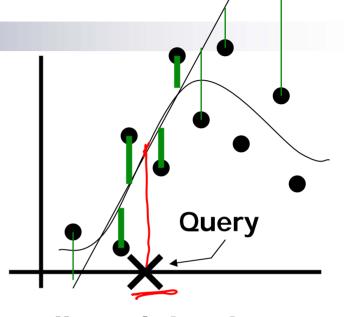
General weighted regression:

$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}} \sum_{k=1}^{N} w_k^2 (y_k - \beta^T x_k)^2$$

Kernel wort Xq

How LWR works





Linear regression

 Same parameters for all queries

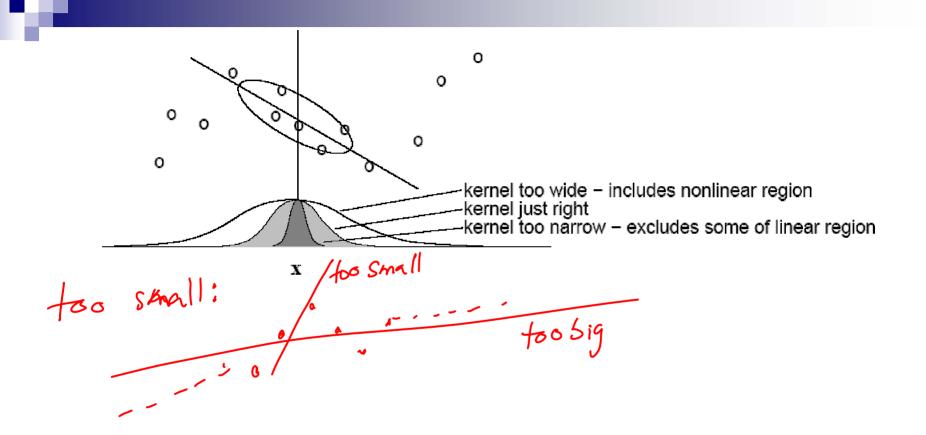
$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\mathrm{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathrm{T}} \mathbf{Y}$$

 Solve weighted linear regression for each query

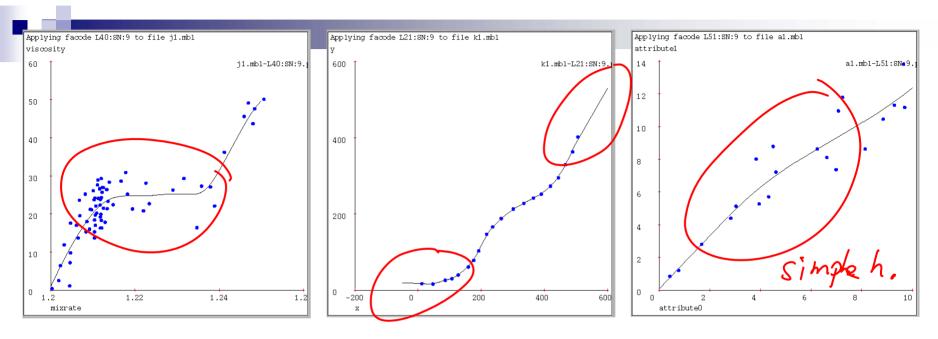
$$\hat{\beta} = (WX^TWX)^{-1}WX^TWY$$

$$W = \begin{pmatrix} w_1 & 0 & 0 & 0 \\ 0 & w_2 & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & w_n \end{pmatrix}$$

Another view of LWR



LWR on our test cases



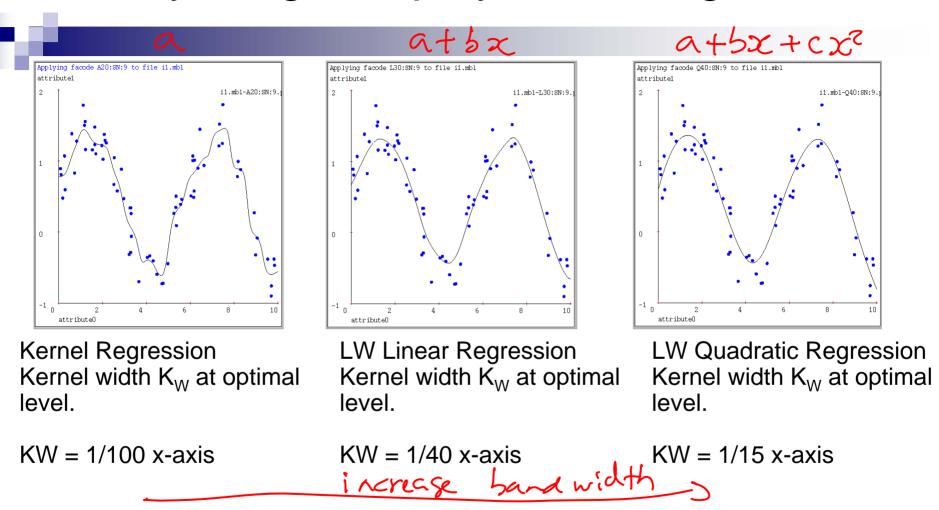
KW = 1/16 of x-axis width.

KW = 1/32 of x-axis width.

KW = 1/8 of x-axis width.

gaussian Kernels ax+5 regression

Locally weighted polynomial regression



Local quadratic regression is easy: just add quadratic terms to the WXTWX matrix. As the regression degree increases, the kernel width can increase without introducing bias.

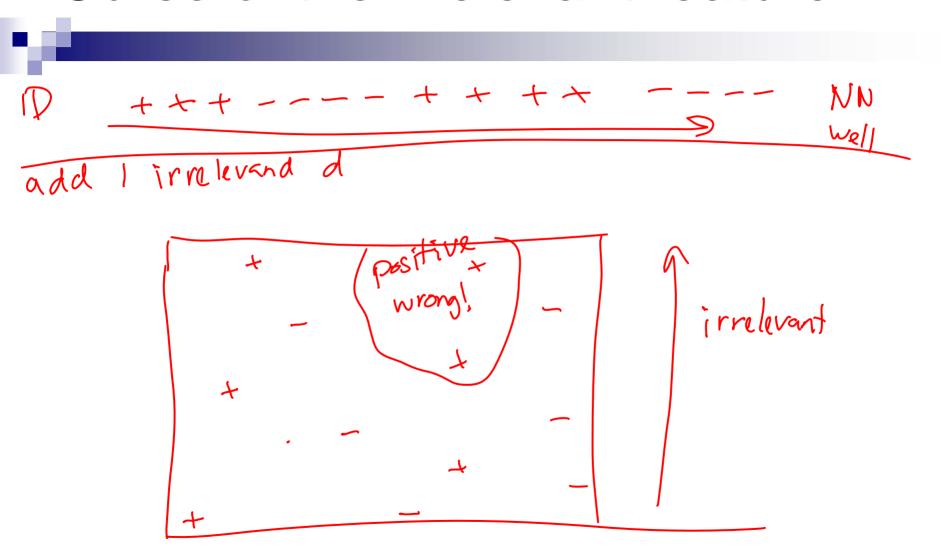
Curse of dimensionality for instance-based learning

- Must store and retreve all data!
 - Most real work done during testing
 - ☐ For every test sample, must search through all dataset very slow!

problem

- □ We'll see fast methods for dealing with large datasets
- Instance-based learning often poor with noisy or irrelevant features

Curse of the irrelevant feature



What you need to know

- k-NN
 - □ Simplest learning algorithm
 - □ With sufficient data, very hard to beat "strawman" approach
 - □ Picking k?
- Kernel regression
 - Set k to n (number of data points) and optimize weights by gradient descent
 - ☐ Smoother than k-NN
- Locally weighted regression
 - □ Generalizes kernel regression, not just local average
- Curse of dimensionality
 - □ Tackling large datasets
 - □ Irrelevant features often killers for instance-based approaches

Acknowledgment

- This lecture contains some material from Andrew Moore's excellent collection of ML tutorials:
 - □ http://www.cs.cmu.edu/~awm/tutorials