Reducing Data Dimension

Recommended reading:
 Bishop, chapter 3.6, 8.6
* Wall et al., 2003
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Outline

* Feature selection
— Single feature scoring criteria
— Search strategies

e Unsupervised dimension reduction using all features
— Principle Components Analysis
— Singular Value Decomposition
— Independent components analysis

o Supervised dimension reduction
— Fisher Linear Discriminant
— Hidden layers of Neural Networks



Dimensionality Reduction

Why?

e Learning a target function from data where some
features are irrelevant

« Wish to visualize high dimensional data

e Sometimes have data whose “intrinsic” dimensionality Is
smaller than the number of features used to describe it -
recover intrinsic dimension



Supervised Feature Selection



Supervised Feature Selection

Problem: Wish to learn f: X = Y, where X=<X,, ... X
But suspect not all X, are relevant

Approach: Preprocess data to select only a subset of the X;

 Score each feature, or subsets of features
— How?

o Search for useful subset of features to represent data
— How?
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Scoring Individual Features X;

Common scoring methods:

 Training or cross-validated accuracy of single-feature
classifiers f: X; 2Y

e Estimated mutual information between X, and Y :

N7 x

F(XY) =Y P(Xi = k,Y = y)log i = B Y =)
T P(X; =k)P(Y =y)

« 2 statistic to measure independence between X. and Y

« Domain specific criteria
— Text: Score “stop” words (“the”, “of”, ...) as zero
— fMRI: Score voxel by T-test for activation versus rest condition



Choosing Set of Features

Common methods:

Forwardl: Choose the n features with the highest scores

Forward?2:
— Choose single highest scoring feature X,

— Rescore all features, conditioned on X, being
selected
« E.g, Score(X))= Accuracy({X;, X,})
« E.g., Score(X) = I1(X,Y |X,)
— Repeat, calculating new conditioned scores on each
iteration



Choosing Set of Features

Common methods:

Backwardl: Start with all features, delete the n with lowest
scores

Backward?2: Start with all features, score each feature
conditioned on assumption that all others are included.
Then:

— Remove feature with the lowest (conditioned) score
— Rescore all features, conditioned on the new, reduced feature set
— Repeat
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Feature Selection: Text Classification

Approximately 105 words in English [Rogati&Yang, 2002]
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Figure 2: Top 3 feature selection methods for Reuters-21578 (Macro F1)

|IG=information gain, chi= y2 , DF=doc frequency,



Impact of Feature Selection on Classification of
fMRI Data

[Pereira et al., 2005]

Accuracy classifying
category of word read

by subject
'
#voxels mean | subjects

2338 320B  332B  424B  474B  496B 77 868

50 0.735 0.783 0.817 0.55 0.783 0.75 0.8 0.65 0.75
100 0.742 0.767 0.8 0.533  0.817 0.85  0.783 0.6 0.783
200 0.737 0.783 0.783 0517 0.817 0.883 0.75 0.583  0.783
300 0.75 0.8 0.817 0.567 0.833 0.883 0.75 0.583 0.767
400 0.742 0.8 0.783  0.583 0.85 0.833  0.75  0.583 0.75

800 0.735 0.833 0.817  0.567  0.833  0.833 0.7 0.55 0.75

1600 0.698 0.8 0.817 0.45 0.783  0.833 0.633 0.5 0.75
all (~2500) 0.638 0.767 0.767 0.25 0.75 0.833 0.567 0.433 0.733

Table 1: Average accuracy across all pairs of categories, restricting the procedure to
use a certain number of voxels for each subject. The highlighted line corresponds to the
best mean accuracy, obtained using 300 voxels.

Voxels scored by p-value of regression to predict voxel value from the task



Summary: Supervised Feature Selection

Approach: Preprocess data to select only a subset of the X

e Score each feature
— Mutual information, prediction accuracy, ...

e Find useful subset of features based on their scores
— Greedy addition of features to pool
— Greedy deletion of features from pool
— Considered independently, or in context of other selected features

Always do feature selection using training set only (not test
set!)

— Often use nested cross-validation loop:
* Quter loop to get unbiased estimate of final classifier accuracy
* Inner loop to test the impact of selecting features



Unsupervised Dimensionality Reduction
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Unsupervised mapping to lower dimension

Differs from feature selection in two ways:

* Instead of choosing subset of features, create new
features (dimensions) defined as functions over all
features

 Don’t consider class labels, just the data points
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Principle Components Analysis

e |dea:

— Given data points in d-dimensional space, project into lower
dimensional space while preserving as much information as
possible

* E.g., find best planar approximation to 3D data
* E.g., find best planar approximation to 104 D data

— In particular, choose projection that minimizes the squared error
In reconstructing original data



PCA: Find Projections to Minimize Reconstruction Error

Assume data is set of d-dimensional vectors, where nth vector Is

x"' = (x7...zg)

We can represent these in terms of any d orthogonal basis vectors
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PCA: given M<d. Find (ui...ups)
N

that minimizes Ev = ) X" — X

n=1

M
where x" =x 4 Y~ 2y,
i=1

2
"l

Note we get zero error if M=d.

v

Therefore, g, — zd: g: [u? (x" — %)]2
i=M+1n=1
J o
Z uZTZ u;
i=M+1

-This minimized when u;
IS eigenvector of X, i.e.,

when:
Zui — )\Z'U_i

Covariance matrix: ~ = » (x" —Xx)(x" — %)
n



Minimize Eyy = Y u/ X
1=M-+1

— ZU.Z' — )\,,;U.Z'

x_“Eigenvector of X

Eigenvalue

d
1=M+1

v

PCA algorithm 1:

1.

X € Create N x d data matrix, with
one row vector x" per data point

X € subtract mean X from each row
vector x"in X

Y € covariance matrix of X

Find eigenvectors and eigenvalues
of X

PC’s < the M eigenvectors with
largest eigenvalues
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PCA Example
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PCA Example

M
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Reconstructed data using

=1 only first eigenvector (M=1)
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Very Nice When Initial Dimension Not Too Big

What if very large dimensional data?
e e.g., Images (d > 10M4)

Problem:
e Covariance matrix X is size (d x d)
e d=10% - |X| =108

Singular Value Decomposition (SVD) to the rescue!
e pretty efficient algs available, including Matlab SVD

e some implementations find just top N eigenvectors
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components

[from Wall et al., 2003]
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Singular Value Decomposition

To generate principle components:
1 X
> — e
e Subtract mean *= y 2 X
n=—
create zero-centered data

o Create matrix X with one row vector per (zero centered)
data point

e Solve SVD: X =USVT

e Qutput Principle components: columns of V (= rows of VT)
— Eigenvectors in V are sorted from largest to smallest eigenvalues
— Sis diagonal, with s,2 giving eigenvalue for kth eigenvector

from each data point, to



Singular Value Decomposition

To project a point (column vector x) into PC coordinates:
VT x

If x: is it" row of data matrix X, then
o (i row of US) =VTxT
« (US)T=VTXT

To project a column vector x to M dim Principle Components
subspace, take just the first M coordinates of VT x



Independent Components Analysis

 PCA seeks directions <Y, ... Y,,> In feature space X that
minimize reconstruction error

» |CA seeks directions <Y, ... Y,,> that are most statistically
Independent. l.e., that minimize I(Y), the mutual
information between the Y; :

[ J ]
I(Y) = LZ H(Yj)J ~ H(Y)
=1

Which maximizes their departure from Gaussianity!



Independent Components Analysis

e |CA seeks to minimize I(Y), the mutual information
between the Y; :

y1(t)

ym(t)

I(Y) =

x1(t)

xn (1)

[ ] ]
Y H(Y;)| —H()
| j=1

« Example: Blind source separation
— Original features x;(t) are microphones at a cocktail party
— Each receives sounds from multiple people speaking
— ICA outputs directions that correspond to individual speakers ¥« (t)



Supervised Dimensionality Reduction
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1. Fisher Linear Discriminant

* A method for projecting data into lower dimension to
hopefully improve classification

e We'll consider 2-class case

Project data onto vector that connects class means?



Fisher Linear Discriminant

Project data onto one dimension, to help classification

y=w!x

: 1
Define class means: m; = — Y x"
Ni neC;

Could choose w according to: argd max WT(m2 —myq)

| | o | (mg —m1)?
Instead, Fisher Linear Discriminant chooses: arg max 5 5
w s1 + $5
— 2 2

neC}



Fisher Linear Discriminant

Project data onto one dimension, to help classification

Yy = wlx
_ 2
. . o (mo —myq)
Fisher Linear Discriminant . arg max 5 5
w s1 + $5

is solved by : W SW_l(mz —myq)

Where S, is sum of within-class covariances:

Q N (T \ (< TV WA A \ (T \1'
Sw = ) (x7—my)(x"—my)" + ) (x"—m2)(x"'—my)
neCq neCo



Fisher Linear Discriminant

| | . (mo —mq)?
Fisher Linear Discriminant : ard max 5 5
W sT T 85

Is equivalent to minimizing sum of squared error if we assume
target values are not +1 and -1, but instead N/N, and —N/N,,

Where N is total number of examples, N; is number in class i

Also generalized to K classes (and projects data to K-1 dimensions)
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Summary: Fisher Linear Discriminant

Choose n-1 dimension projection for n-class
classification problem

Use within-class covariances to determine the projection
Minimizes a different sum of squared error function




2. Hidden Layers in Neural Networks

When # hidden units < # inputs, hidden layer also
performs dimensionality reduction.

Each synthesized dimension (each hidden unit) is logistic
function of inputs

hi(x) = :

1 + exp(wg + ZgNzl W;T;)

Hidden units defined by gradient descent to (locally)
minimize squared output classification/regression error

N
E= Y > @) —y(=™)?
n=1 k
Also allow networks with multiple hidden layers

—> highly nonlinear components (in contrast with linear
subspace of Fisher LD, PCA)



Learning Hidden Layer Representations

A target function:

Input Output
10000000 — 10000000
01000000 — 01000000
00100000 — 00100000
00010000 — 00010000
00001000 — 00001000
00000100 — 00000100
00000010 — 00000010
00000001 — 00000001

Can this be learned??

Training neural network to
minimize reconstruction error



Learning Hidden Layer Representations

A network:

Learned hidden layer representation:

Input Hidden Output
Values

10000000 — .89 .04 .08 — 10000000
01000000 — .01 .11 .88 — 01000000
00100000 — .01 .97 .27 — 00100000
00010000 — .99 .97 .71 — 00010000
00001000 — .03 .05 .02 — 00001000
00000100 — .22 .99 .99 — 00000100
00000010 — .80 .01 .98 — 00000010
00000001 — .60 .94 .01 — 00000001




Neural Nets for Face Recognition

left strt rght up

Typical input images

90% accurate learning head pose, and recognizing 1-of-20 faces



Learned Hidden Unit Weights

left strt rght up Learned Weights

Typical input images

http://www.cs.cmu.edu/~tom/faces.html



Cognitive Neuroscience Models Based on ANN’s
[McClelland & Rogers, Nature 2003]
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Figure 4 | The process of differentiation of conceptual representations. The representations are those seen in the feedforeard
network model shown in FIG. 3. a | Acquired patterns of activation that represent the eight objects in the training set at three pointsin
the leaming process (epochs 250, 750 and 2,500). Early in leaming, the pattems are undifferentiated; the first difference to appear is
between plants and animals. Later, the patterns show clear differentiation at both the superordinate (plant-animal) and intermediate
{bird-fishvtreeflower) levels. Finally, the individual concepts are differentiated, but the overall hierarchical organization of the: similarity
structure remains. b | A standard hierarchical clustering analysis program has been used to visualize the similarity structure in the



What you should know

* Feature selection
— Single feature scoring criteria

— Search strategies
« Common approaches: Greedy addition of features, or greedy deletion

* Unsupervised dimension reduction using all features
— Principle Components Analysis
« Minimize reconstruction error

— Singular Value Decomposition
« Efficient PCA

— Independent components analysis

* Supervised dimension reduction
— Fisher Linear Discriminant
* Project to n-1 dimensions to discriminate n classes

— Hidden layers of Neural Networks
» Most flexible, local minima issues
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Further Readings

» “Singular value decomposition and principal component analysis,” Wall, M.E,
Rechtsteiner, A., and L. Rocha, in A Practical Approach to Microarray Data Analysis
(D.P. Berrar, W. Dubitzky, M. Granzow, eds.) Kluwer, Norwell, MA, 2003. pp. 91-109.
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