Learning BN tutorial:

ftp://ftp.research.microsoft.com/pub/tr/tr-95-06.pdf

TAN paper:

http://www.cs.huji.ac.il/~nir/Abstracts/FrGG1.html

Bayesian Networks – Inference (continued) Learning

Machine Learning – 10701/15781

Carlos Guestrin

Carnegie Mellon University

March 23rd, 2005

Review

- Compact representation for probability distributions
- Exponential reduction in number of parameters
- Fast probabilistic inference using variable elimination
 - □ Compute P(X|e)
 - □ Time exponential in tree-width, not number of variables

Today

- □ Finding most likely explanation
- Using sampling for approximate inference
- Learn BN structure

Most likely explanation (MLE)

- Query: $\underset{x_1,...,x_n}{\operatorname{argmax}} P(x_1,\ldots,x_n \mid e)$ Sinus Nose
- Using Bayes rule:

$$\underset{x_1,\dots,x_n}{\operatorname{argmax}} P(x_1,\dots,x_n \mid e) = \underset{x_1,\dots,x_n}{\operatorname{argmax}} \frac{P(x_1,\dots,x_n,e)}{P(e)}$$

Normalization irrelevant:

$$\underset{x_1,...,x_n}{\operatorname{argmax}} P(x_1,\ldots,x_n \mid e) = \underset{x_1,...,x_n}{\operatorname{argmax}} P(x_1,\ldots,x_n,e)$$

Max-marginalization

Example of variable elimination for MLE – Forward pass

Example of variable elimination for MLE – Backward pass

MLE Variable elimination algorithm

- Forward pass
- Given a BN and a MLE query $\max_{x_1,...,x_n} P(x_1,...,x_n,e)$
- Instantiate evidence e
- Choose an ordering on variables, e.g., X₁, ..., X_n
- For i = 1 to n, If $X_i \notin \{e\}$
 - \square Collect factors $f_1, ..., f_k$ that include X_i
 - ☐ Generate a new factor by eliminating X_i from these factors

$$g = \max_{x_i} \prod_{j=1}^{\kappa} f_j$$

□ Variable X_i has been eliminated!

MLE Variable elimination algorithm

- Backward pass
- {x₁*,..., x_n*} will store maximizing assignment
- For i = n to 1, If $X_i \notin \{e\}$
 - \square Take factors $f_1, ..., f_k$ used when X_i was eliminated
 - \square Instantiate $f_1, ..., f_k$, with $\{x_{i+1}^*, ..., x_n^*\}$
 - Now each f_i depends only on X_i
 - □ Generate maximizing assignment for X_i:

$$x_i^* \in \underset{x_i}{\operatorname{argmax}} \prod_{j=1}^{\kappa} f_j$$

Stochastic simulation – Obtaining a sample from the joint distribution

Using stochastic simulation (sampling) to compute P(X)

- Given a BN, a query P(X), and number of samples m
- Choose a topological ordering on variables, e.g., X₁, ..., X_n
- For j = 1 to m
 - $\square \{x_1^{j},...,x_n^{j}\}$ will be jth sample
 - \square For i = 1 to n
 - Sample x_i^j from the distribution $P(X_i|\mathbf{Pa}_{X_i})$, where parents are instantiated to $\{x_1^j,...,x_{i-1}^j\}$
 - \square Add $\{x_1^j,...,x_n^j\}$ to "dataset"
- Use counts to compute P(X)

Example of using rejection sampling to compute P(X|e)

Using rejection sampling to compute P(X|e)

Flu

Headache

Allergy

Nose =

Sinus

- Given a BN, a query P(X|e), and number of samples *m*
- Choose a topological ordering on variables, e.g., X₁, ..., X_n
- = j = 0
- While j < m</p>
 - $\square \{x_1^{j},...,x_n^{j}\}$ will be jth sample
 - □ For i = 1 to n
 - Sample x_i^j from the distribution $P(X_i|\mathbf{Pa}_{X_i})$, where parents are instantiated to $\{x_1^j,...,x_{i-1}^j\}$
 - □ If $\{x_1^j,...,x_n^j\}$ consistent with evidence, add it to "dataset" and j = j + 1
- Use counts to compute P(X|e)

Example of using importance sampling to compute P(X|e)

Using importance sampling to compute P(X|e)

- For j = 1 to m
 - $\square \{x_1^{j},...,x_n^{j}\}$ will be jth sample
 - \square Initialize weight of sample $w^j = 1$
 - \square For i = 1 to n
 - If X_i ∉ {e}
 - □ Sample x_i^j from the distribution $P(X_i|\mathbf{Pa}_{X_i})$, where parents are instantiated to $\{x_1^j,...,x_{i-1}^j\}$
 - else
 - □ Set xⁱ to assignment in evidence e
 - □ Multiply weight w^j by $P(x_i^j|\mathbf{Pa}_{X_i})$, where parents are instantiated to $\{x_1^j,...,x_{i-1}^j\}$
 - \square Add $\{x_1^j, ..., x_n^j\}$ to "dataset" with weight w
- Use weighted counts to compute P(X|e)

What you need to know about inference

- Bayesian networks
 - ☐ A useful compact **representation** for large probability distributions
- Inference to compute
 - □ Probability of X given evidence e
 - ☐ Most likely explanation (MLE) given evidence e
 - □ Inference is NP-hard
- Variable elimination algorithm
 - □ Efficient algorithm ("only" exponential in tree-width, not number of variables)
 - □ Elimination order is important!
 - □ Approximate inference necessary when tree-width to large
 - □ Only difference between probabilistic inference and MLE is "sum" versus "max"
- Sampling Example of approximate inference
 - □ Simulate from model
 - □ Likelihood weighting for inference
 - □ Can be very slow

Where are we?

- Bayesian networks
 - Represent exponentially-large probability distributions compactly
- Inference in BNs
 - Exact inference very fast for problems with low treewidth
 - Many approximate inference algorithms, e.g., sampling
- Learning BNs
 - ☐ Given structure, estimate parameters
 - Using counts (maximum likelihood), MAP is also possible
 - What about learning structure?

Maximum likelihood (ML) for learning BN structure

Possible structures

Sinus

Nose

Learn parameters using ML

Score structure

How many graphs are there?

How many trees are there?

Scoring a tree

Chow-Liu tree learning algorithm

□ Compute empirical distribution:

$$\widehat{P}(x_i, x_j) = \frac{\mathsf{Count}(x_i, x_j)}{m}$$

Compute mutual information:

$$\widehat{I}(X_i, X_j) = \sum_{x_i, x_j} \widehat{P}(x_i, x_j) \log \frac{\widehat{P}(x_i, x_j)}{\widehat{P}(x_i) \widehat{P}(x_j)}$$

- Define a graph
 - \square Nodes $X_1,...,X_n$
 - \square Edge (i,j) gets weight $\widehat{I}(X_i, X_j)$
- Optimal tree BN
 - Compute maximal spanning tree
 - Directions in BN: pick any node as root, breadth-first-search defines directions

Can we extend Chow-Liu

- Tree augmented naïve Bayes (TAN)
 - □ [Friedman et al. '97]
 - Same as Chow-Liu, but score edges with:

$$\widehat{I}(X_i, X_j \mid C) = \sum_{c, x_i, x_j} \widehat{P}(c, x_i, x_j) \log \frac{\widehat{P}(x_i, x_j \mid c)}{\widehat{P}(x_i \mid c)\widehat{P}(x_j \mid c)}$$

- (Approximate learning) models with tree-width up to k
 - □ [Narasimhan & Bilmes '04]
 - □ But, O(n^{k+1})...

Scoring general graphical models – Model selection problem

What's the best structure?

The more edges, the fewer independence assumptions, the higher the likelihood of the data, but will overfit...

Bayesian score

$$\log P(D \mid S) = \log \int_{\theta_S} P(D \mid S, \theta_S) P(\theta_S \mid S) d\theta_S$$

 Difficult integral, use Bayes information criterion (BIC) approximation

$$\log P(D \mid S) \approx \log P(D \mid S, \theta_S) - \frac{\text{NumberParameters}(S)}{2} \log m$$

- Note: regularize with MDL score
- Best BN under BIC still NP-hard

Learn BN structure using local search

Starting from Chow-Liu tree

Local search, possible moves:

- Add edge
- Delete edge
- Invert edge

Score using BIC

What you need to know about learning BNs

- Bayesian networks
 - A useful compact representation for large probability distributions
- Inference
 - □ Variable elimination algorithm
 - □ Sampling Example of approximate inference
- Learning BNs
 - Maximum likelihood or MAP learns parameters
 - ☐ Best tree (Chow-Liu)
 - □ Best TAN
 - □ Other BNs, usually local search with BIC score

Acknowledgements

- JavaBayes applet
 - http://www.pmr.poli.usp.br/ltd/Software/javabayes/Home/index.html