Learning BN tutorial:

ftp://ftp.research.microsoft.com/pub/tr/tr-95-06.pdf

TAN paper:

http://www.cs.huji.ac.il/~nir/Abstracts/FrGG1.html

Bayesian Networks – Inference (continued) Learning

Machine Learning – 10701/15781

Carlos Guestrin

Carnegie Mellon University

March 23rd, 2005

Review

- **Bayesian Networks**
 - Compact representation for probability distributions
 - Exponential reduction in number of parameters
- Fast probabilistic inference using variable elimination
 - \square Compute P(X|e) P(F|N=+)
- - Time exponential in tree-width, not number of variables
- Today
 - Finding most likely explanation
 - Using sampling for approximate inference
 - Learn BN structure

Most likely explanation (MLE)

Using Bayes rule:

$$\underset{x_1,\ldots,x_n}{\operatorname{argmax}} P(x_1,\ldots,x_n \mid e) = \underset{x_1,\ldots,x_n}{\operatorname{argmax}} \frac{P(x_1,\ldots,x_n,e)}{P(e)}$$

Normalization irrelevant:

$$\underset{x_1,...,x_n}{\operatorname{argmax}} P(x_1,\ldots,x_n \mid e) = \underset{x_1,...,x_n}{\operatorname{argmax}} P(x_1,\ldots,x_n,e)$$

$$P(F,S,H,A,V=+)$$

Max-marginalization

Find Allergy=1 max
$$P(F, S, A=t)$$
 $f(F) = \max_{x \in S} P(F) P(A=t) P(S|F, A=t)$
 $f(F) = \max_{x \in S} P(F) P(A=t) P(S|F, A=t)$
 $f(F) = \max_{x \in S} P(F) P(A=t) P(F) P(A=t) P(F) P(A=t)$
 $f(F) = f(F) P(A=t) P(F) P(A=t) P(F, S, A=t)$
 $f(F) = \max_{x \in S} P(F) P(A=t) P(F, S, A=t)$
 $f(F) = \max_{x \in S} P(F) P(A=t) P(A=t) P(F, S, A=t)$
 $f(F) = \max_{x \in S} P(F) P(A=t) P(A=t) P(F) P(A=t) P(F)$
 $f(F) = \max_{x \in S} P(F) P(A=t) P(F) P(A=t) P(F)$

Example of variable elimination for MLE – Forward pass

Example of variable elimination for MLE – Backward pass

MLE Variable elimination algorithm

- Forward pass
- Given a BN and a MLE query $\max_{x_1,...,x_n} P(x_1,...,x_n,e)$
- Instantiate evidence e
- Choose an ordering on variables, e.g., X₁, ..., X_n
- For i = 1 to n, If $X_i \notin \{e\}$
 - \square Collect factors $f_1, ..., f_k$ that include X_i
 - ☐ Generate a new factor by eliminating X_i from these factors

$$g = \max_{x_i} \prod_{j=1}^{\kappa} f_j$$

□ Variable X_i has been eliminated!

MLE Variable elimination algorithm

- Backward pass
- {x₁*,..., x_n*} will store maximizing assignment
- For i = n to 1, If $X_i \notin \{e\}$
 - \square Take factors $f_1, ..., f_k$ used when X_i was eliminated
 - □ Instantiate $f_1, ..., f_k$, with $\{x_{i+1}^*, ..., x_n^*\}$
 - Now each f_i depends only on X_i
 - ☐ Generate maximizing assignment for X_i:

$$x_i^* \in \underset{x_i}{\operatorname{argmax}} \prod_{j=1}^{\kappa} f_j$$

Stochastic simulation – Obtaining a sample from the joint distribution

Using stochastic simulation (sampling) to compute P(X)

- Given a BN, a query P(X), and number of samples m
- Choose a topological ordering on variables, e.g., X₁, ..., X_n
- For j = 1 to m
 - $\square \{x_1^{j},...,x_n^{j}\}$ will be jth sample
 - \square For i = 1 to n
 - Sample x_i^j from the distribution $P(X_i|\mathbf{Pa}_{X_i})$, where parents are instantiated to $\{x_1^j,...,x_{i-1}^j\}$
 - \square Add $\{x_1^j,...,x_n^j\}$ to "dataset"
- Use counts to compute P(X)

Example of using rejection sampling to compute P(X|e)

Using rejection sampling to compute P(X|e)

- Given a BN, a query P(X|e), and number of samples *m*
- Choose a topological ordering on variables, e.g., X₁, ..., X_n
- = j = 0
- While j < m</p>
 - $\square \{x_1^{j},...,x_n^{j}\}$ will be jth sample
 - □ For i = 1 to n
 - Sample x_i^j from the distribution $P(X_i|\mathbf{Pa}_{X_i})$, where parents are instantiated to $\{x_1^j,...,x_{i-1}^j\}$
 - □ If $\{x_1^j,...,x_n^j\}$ consistent with evidence, add it to "dataset" and j = j + 1
- Use counts to compute P(X|e)

Example of using importance sampling to compute P(X|e)

Using importance sampling to compute P(X|e)

Allergy

Nose = t

Sinus

Headache

- For j = 1 to m
 - $\square \{x_1^{j},...,x_n^{j}\}$ will be jth sample
 - □ Initialize weight of sample w^j = 1
 - \square For i = 1 to n
 - If Xi ∉ {e}

 Let not evidence Sample
 - □ Sample x_i^j from the distribution $P(X_i|\mathbf{Pa}_{X_i})$, where parents are instantiated to $\{x_1^j, ..., x_{i-1}^j\}$
 - else & 15 evidence don't sample
 - □ Set x^j to assignment in evidence e
 - Multiply weight w^j by $P(x_i^j | \mathbf{Pa}_{X_i})$, where parents are instantiated to $\{x_1^j, ..., x_{i-1}^j\}$
 - \square Add $\{x_1^j, \ldots, x_n^j\}$ to "dataset" with weight w
- Use weighted counts to compute P(X|e)

What you need to know about inference

- Bayesian networks
 - □ A useful compact **representation** for large probability distributions
- Inference to compute
 - □ Probability of X given evidence e
 - ☐ Most likely explanation (MLE) given evidence e
 - □ Inference is NP-hard
- Variable elimination algorithm
 - Efficient algorithm ("only" exponential in tree-width, not number of variables)
 - Elimination order is important!
 - □ Approximate inference necessary when tree-width to large
 - Only difference between probabilistic inference and MLE is
- "sum" versus "max"

 Sampling Example of approximate inference There are a Hernature
 - □ Simulate from model
 - □ Likelihood weighting for inference
 - Can be very slow / / inh

Where are we?

- Bayesian networks
 - Represent exponentially-large probability distributions compactly
- Inference in BNs
 - Exact inference very fast for problems with low treewidth
 - Many approximate inference algorithms, e.g., sampling
- Learning BNs
 - ☐ Given structure, estimate parameters
 - Using counts (maximum likelihood), MAP is also possible
 - What about learning structure?

Maximum likelihood (ML) for learning BN structure

How many graphs are there?

doblety exponential!)

How many trees are there?

(doubty) exponential no = may be

Scoring a tree

Chow-Liu tree learning algorithm

- For each pair of variables X_i,X_i
 - □ Compute empirical distribution:

$$\widehat{P}(x_i, x_j) = \frac{\mathsf{Count}(x_i, x_j)}{m}$$

Compute mutual information:

$$\widehat{I}(X_i, X_j) = \sum_{x_i, x_j} \widehat{P}(x_i, x_j) \log \frac{\widehat{P}(x_i, x_j)}{\widehat{P}(x_i) \widehat{P}(x_j)}$$

- Define a graph
 - \square Nodes $X_1,...,X_n$
 - \square Edge (i,j) gets weight $\widehat{I}(X_i, X_j)$
- Optimal tree BN
 - □ Compute maximal spanning tree MST

Directions in BN: pick any node as root, breadth-first-search defines directions

Can we extend Chow-Liu

- Tree augmented naïve Bayes (TAN)
 - □ [Friedman et al. '97]
 - Same as Chow-Liu, but score edges with:

$$\widehat{I}(X_i, X_j \mid C) = \sum_{c, x_i, x_j} \widehat{P}(c, x_i, x_j) \log \frac{\widehat{P}(x_i, x_j \mid c)}{\widehat{P}(x_i \mid c)\widehat{P}(x_j \mid c)}$$

- (Approximate learning) models with tree-width up to k
 - □ [Narasimhan & Bilmes '04]
 - □ But, O(n^{k+1})..

Scoring general graphical models – Model selection problem

What's the best structure?

The more edges, the fewer independence assumptions, the higher the likelihood of the data, but will overfit...

Bayesian score

Given a structure, distribution over parameters

$$\log P(D \mid S) = \log \int_{\theta_S} P(D \mid S, \theta_S) P(\theta_S \mid S) d\theta_S$$

 Difficult integral, use Bayes information criterion (BIC) approximation

$$\log P(D \mid S) \approx \log P(D \mid S, \theta_S) - \frac{\text{NumberParameters}(S)}{2} \log m$$
 for score in the likelihood

- Note: regularize with MDL score
- Best BN under BIC still NP-hard

Learn BN structure using local search

What you need to know about learning BNs

- Bayesian networks
 - A useful compact representation for large probability distributions
- Inference
 - Variable elimination algorithm
 - □ Sampling Example of approximate inference
- Learning BNs
 - Maximum likelihood or MAP learns parameters
 - ☐ Best tree (Chow-Liu)
 - □ Best TAN
 - □ Other BNs, usually local search with BIC score

Acknowledgements

- JavaBayes applet
 - http://www.pmr.poli.usp.br/ltd/Software/javabayes/Home/index.html