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m Bayesian Networks

Compact representation for @
probability distributions

Exponential reduction in number

of parameters @

m Fast probabilistic inference

using variable elimination - -
dach @
Compute P(X|e) P(F“\):{:)

Time exponential in tree-width,
not number of variables

m Today
Finding most likely explanation

Using sampling for approximate
inference

Learn BN structure



Most likely explanation (MLE)
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m Using Bayes rule:

argmax P(xq,...,xn | €) = argmax
L1,y Ty L1,y Ty P(e)

P(x1,...,zn,€)

m Normalization irrelevant:
argmax P(x1,...,xn | €) = argmax P(x1,...,Tn,€)
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Max-marginalization
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Example of variable elimination for

MLE — Forward pass
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Example of variable elimination for

MLE — Backward pass
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MLE Variable elimination algorithm

. amonvard pass

m Given a BN and a MLE query max,,
m |[nstantiate evidence e
m Choose an ordering on variables, e.g., Xy, ..., X
m Fori=1ton,If X ¢{e}

Collect factors f,,....f, that include X;

Generate a new factor by eliminating X, from these factors

k
g=max || f;
() j=1
Variable X; has been eliminated!

P(X{,-.,X,€)



MLE Variable elimination algorithm
— Backward pass
" S

m {X,',..., X, } will store maximizing assignment
m Fori= -
Q,E,Q 1, If X ¢{e} N
Take factors f;,...,f, used when X, was eliminated

Instantiate f,,...,f,, with {Xi,;",..., X’}
= Now each f, depends only on X;

Generate maximizing assignment for X::
k

x; € argmax || f;
x; =1




Stochastic simulation — Obtaining a

] samgle from the joint distribution

@ 1203 |~TS1]
S$>203 5 H
w Sg¢63 F
/ e N P(F4.S, 8 N)= PF). PPl IeA)
P(8IS) PN IS)

Set Semol F a PE)

A, Samly A~PH)
5 sampl T ~ PGIFRF 4=2)

”/ 5’%7)(9 ﬁ/u ?(H‘/S:’g)




Using stochastic simulation

sampling) to compute P(X)
m Given a BN, a query P(X), and

number of samples m @
m Choose a topological ordering @

on variables, e.g., Xy, ..., X,
m Forj=1tom @

{X/,..., x.J} will be j'" sample Cém},]uhy.
Fori=1ton
= Sample xJ from the distribution Mo Cmm
P(X |PaX) where parents are f
instantiated to {x,..., X '} S&uhp(ls

Add {x,,..., X} to “dataset”
m Use counts to compute P(X)



Example of using rejection

] samgling to compute P(X|e)

P(F | v=t)
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Using rejection sampling to

. compute P‘X\e)
m Given a BN, a query P(X|e), and

number of samples m
m Choose a topological ordering on

variables, e.g., X, ..., X,
"i=0

N Whl|ej < m | | K wnni r Finng
{x/,..., X} will be jth sample in exXpectniion
Fori=1ton

= Sample x/ from the distribution P(X; |Pax) L_m.n CMN)
where parents are instantiated to {x,..., x._li} Ple)

If {x,,..., X} consistent with evidence,
add it to “dataset” and j =) +1

m Use counts to compute P(X|e)




Example of using importance

] samgling to compute P(X|e)
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Using importance sampling to

. .compute P(X|e) @
mForj=1tom
IX4,..., x.J} will be jih sample

ST : ] =
|nl'[|<':.1|lze weight of sample wi = 1

Fori=1ton
et avidence — oo
lfX gy & TRV Sevmpk
Sample xj from the distribution P(X; |Pax)
where parents are instantiated to {x,..., X: '}

= else ¢ 1S qvidena ~ Aonit Sample

Set xJ to assignment in evidence e

/ . -
Multiply weight w! by P(x]|Pa, ), where parents are
C oo e s
Add {x,,..., xJ} to "dataset” with weight w!
m Use weighted counts to compute P(X]e)




What you need to know about
Inference

m Bayesian networks
A useful compact representation for large probability distributions

m Inference to compute
Probability of X given evidence e
Most likely explanation (MLE) given evidence e
Inference is NP-hard

m Variable elimination algorithm

Efficient algorithm (“only” exponential in tree-width, not number of
variables)

Elimination order is important!
Approximate inference necessary when tree-width to large

Only difference between probabilistic inference and MLE is
‘sum” versus “max”

m Sampling — Example of approximate inference There Arg_
Simulate from model A Hey, nedsvge
Likelihood weighting for inference
Can be very slow [,}‘\ﬁ‘\ VO iAn (g




Where are we?
" A
m Bayesian networks

Represent exponentially-large probability distributions
compactly

m Inference in BNs

Exact inference very fast for problems with low tree-
width

Many approximate inference algorithms, e.g.,
sampling
m Learning BNs

Given structure, estimate parameters
m Using counts (maximum likelihood), MAP is also possible

What about learning structure?



Maximum likelihood (ML) for

. gearing BN structure

structures
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How many graphs are there?

[}Ko 51({3 EXjDOrw#’.AI \ \

R/ “'



How many trees are there?
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Nonetheless — Efficient optimal algorithm finds best tree
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Chow-LIu tree learning algorithm

" A
. . %(F/'Af)
m For each pair of variables X;, X F—
Compute empirical distribution: ~ \
P(zj,x;) = count(z;, ;) E(F'H\ y
m
Compute mutual information: /_,_,
(X X)) = Y Plag,aj)log i) 3
Vg Y T PPy T S
m Define a graph MST ; Uundirechtd +5p,
Nodes X,,...,X, ¥ ?yls;LK "y Nek =g
Edge (i,j) gets weight T(X;, X;) o ADOpac
m Optimal tree BN A—R—C i‘;/‘fBgc
Compute maximal spanning tree MST AQBQC

%Direotions in BN: pick any node as root, breadth-first-search
defines directions



Can we extend Chow-LIu
" A

m Tree augmented naive Bayes (TAN) @/W#

/5

[Friedman et al. '97] /

Same as Chow-Liu, but score X

edges with: S
P(zj,zj | ¢)

I(X;, X; | 0) = P(c,x;, ;) log —= K
v c,;a:j v P(z; | C)P(xj | ¢)

m (Approximate learning) models
with tree-width up to k

[Narasimhan & Bilmes '04]

But, O(n%*1)...

X,



Scoring general graphical models —
Model selection problem
"

What's the best structure?
q
(sinus )
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Bayesian score
" A
m Given a structure, distribution over parameters
logP(D | S)=1log | P(D]|S,0q)P(0g|S)dOg
— s
m Difficult integral, use Bayes information criterion
(BIC) approximation

NumberParameters(S)

P(D Il S)
Nl
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m Note: regularize with MDL score
m Best BN under BIC still NP-hard




Learn BN structure using local
search

i Local search, Score using BIC
Starting from _ _
Chow-Liu tree possible moves:
» Add edge

* Delete edge \Ofj = FU‘“LB
;2 * Invert edge [1kalibood CMP/,,,(;;?




What you need to know about

. gcamning BNS

m Bayesian networks

A useful compact representation for large probability
distributions

m Inference

Variable elimination algorithm

Sampling — Example of approximate inference
m Learning BNs

Maximum likelihood or MAP learns parameters
Best tree (Chow-Liu)
Best TAN

Other BNs, usually local search with BIC score
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m JavaBayes applet

http://www.pmr.poli.usp.br/ltd/Software/javabayes/Ho
me/index.html
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