Bayesian Networks – Inference

Machine Learning – 10701/15781

Carlos Guestrin

Carnegie Mellon University

March 21st, 2005

Class project

- Homework 4 out today Due April 4th (2 weeks)
- Includes 10/100 points for your project proposal this part is due March 28th (1 week)
- Project
 - □ Up 2 students per team
 - Objective: define a learning problem, experiment with real data, write a paper, and present a poster, and learn something new and have fun!
 - □ Ideas in class website
 - □ Project description due 3/28
 - ☐ Graded milestone **due 4/13** (20% of project grade)
 - □ Poster **due 4/30** (20% project grade)
 - □ Paper due 5/03 (60% project grade)

Last lecture

- Bayesian Networks
 - Compact representation for probability distributions
 - Exponential reduction in number of parameters
 - Key insight: Conditional independence assumptions!
- Showed very fast inference with applet
 - □ Why???

General probabilistic inference

Using Bayes rule:

$$P(X \mid e) = \frac{P(X, e)}{P(E)} \frac{P(F=t, H=f, N=t)}{P(H=f, N=t)}$$

Normalization:

$$P(X \mid e) \propto P(X, e)$$

doest depend on X,

$$P(F=t, H=f, N=t)$$

$$P(F=f, H=f, N=t)$$

$$P(F=f, H=f, N=t)$$

$$Normalize to get $P(X|e)$$$

Marginalization

$$P(F=t, A=t) = \sum_{S} P(F=t, A=t, S)$$

= $P(F=t, A=t, S=t) + P(F=t, A=t, S=f)$

Notation: \(\text{\text{X}} \) means sum over possible assignments to \(\text{X} \)

Probabilistic inference example

Inference seems exponential in number of variables!

Inference is NP-hard (Actually #P-complete)

Inference unlikely to be efficient in general, but...

Fast probabilistic inference example – Variable elimination

Flu
$$P(F)$$
 Allergy Want $P(F | N=t)$, or $P(F, N=t)$

Sinus $P(F, N=t) = \sum_{A,S,H} P(F,A,S,H,N=t)$

Headache $P(H|S)$ $P(F) P(A) P(S|FA) P(H|S) P(H|S)$
 $P(F) P(F) P(A) P(S|FA) P(H|S) P(H|S)$
 $P(F) P(A) P(S|FA) P(H|S) P(H|S)$
 $P(F) P(A) P(S|FA) P(H|S)$
 $P(F) P(A) P(S|FA) P(H|S)$
 $P(F) P(A) P(S|FA) P(H|S)$

(Potential for) Exponential reduction in computation!

Variable Elimination

P(F) Z P(A) Z P(S|FA) P(N=+|S) Z P(+|S) = P(F) \(\frac{7}{4}P(A) \(\frac{7}{5}P(S|FA) P(N=t|S) \) fi(F,A) - table of size 2x2 = P(F) = P(A) fi(F,A) f2(F) - table of Size 2x1 $= P(F) f_2(F)$ = P(F, N=t) - table of size ZXI

Understanding variable elimination – Exploiting distributivity

Flu Sinus Nose=t Sun out S:
$$P(F=t) \cdot P(S=t|F=t) \cdot P(N=t|S=t)$$

$$P(F=t) \stackrel{t}{p}(s=f|F=t) \cdot P(N=t|S=t)$$

$$= P(F=t) \cdot \left[P(S=t|F=t) P(N=t|S=t) + P(S=f|F=t) \cdot P(N=t|S=t) \right]$$

Understanding variable elimination – Order can make a HUGE difference

Understanding variable elimination – Intermediate results

Intermediate results are probability distributions

Understanding variable elimination – Another example

Pruning irrelevant variables

Variable elimination algorithm

- Given a BN and a query $P(X|e) \propto P(X,e)$
- Instantiate evidence e
 Plug in N=+
- Prune non-ancestors of {X,e}

- **IMPORTANT!!!**
- Choose an ordering on variables, e.g., X₁, ..., X_n
- For i = 1 to n, If $X_i \notin \{X, e\}$
 - \square Collect factors $f_1, ..., f_k$ that include X_i
 - ☐ Generate a new factor by eliminating X_i from these factors

$$g = \sum_{X_i} \prod_{j=1}^{\kappa} f_j$$

- □ Variable X_i has been eliminated!
- Normalize P(X,e) to obtain P(X|e)

Complexity of variable elimination — (Poly)-tree graphs P(Betty State) R=t, S=f)

Variable elimination order:

Start from "leaves" up – find topological order, eliminate variables in reverse order

topological order

Linear in number of variables!!! (versus exponential)

Complexity of variable elimination – Graphs with loops

Exponential in number of variables in largest factor generated

Complexity of variable elimination –

Complexity of VE elimination:

("Only") exponential in tree-width

Tree-width is maximum node cut +1

Example: Large tree-width with small number of parents

Choosing an elimination order

- Choosing best order is NP-complete
 - □ Reduction from MAX-Clique
- Many good heuristics (some with guarantees)
- Ultimately, can't beat NP-hardness of inference
 - □ Even optimal order can lead to exponential variable elimination computation
- In practice
 - □ Variable elimination often very effective
 - Many (many many) approximate inference approaches available when variable elimination too expensive

Most likely explanation (MLE)

- Query: $\underset{x_1,...,x_n}{\operatorname{argmax}} P(x_1,\ldots,x_n \mid e)$ Sinus Nose
- Using Bayes rule:

$$\underset{x_1,...,x_n}{\operatorname{argmax}} P(x_1,\ldots,x_n \mid e) = \underset{x_1,...,x_n}{\operatorname{argmax}} \frac{P(x_1,\ldots,x_n,e)}{P(e)}$$

Normalization irrelevant:

$$\underset{x_1,...,x_n}{\operatorname{argmax}} P(x_1,\ldots,x_n \mid e) = \underset{x_1,...,x_n}{\operatorname{argmax}} P(x_1,\ldots,x_n,e)$$

Max-marginalization

Example of variable elimination for MLE – Forward pass

Example of variable elimination for MLE – Backward pass

MLE Variable elimination algorithm

- Forward pass
- Given a BN and a MLE query $\max_{x_1,...,x_n} P(x_1,...,x_n,e)$
- Instantiate evidence e
- Choose an ordering on variables, e.g., X₁, ..., X_n
- For i = 1 to n, If $X_i \notin \{e\}$
 - \square Collect factors $f_1, ..., f_k$ that include X_i
 - ☐ Generate a new factor by eliminating X_i from these factors

$$g = \max_{x_i} \prod_{j=1}^k f_j$$

□ Variable X_i has been eliminated!

MLE Variable elimination algorithm

- Backward pass
- {x₁*,..., x_n*} will store maximizing assignment
- For i = n to 1, If $X_i \notin \{e\}$
 - \square Take factors $f_1, ..., f_k$ used when X_i was eliminated
 - \square Instantiate $f_1, ..., f_k$, with $\{x_{i+1}^*, ..., x_n^*\}$
 - Now each f_i depends only on X_i
 - □ Generate maximizing assignment for X_i:

$$x_i^* \in \underset{x_i}{\operatorname{argmax}} \prod_{j=1}^{\kappa} f_j$$

Stochastic simulation – Obtaining a sample from the joint distribution

Using stochastic simulation (sampling) to compute P(X)

- Given a BN, a query P(X), and number of samples m
- Choose a topological ordering on variables, e.g., X₁, ..., X_n
- For j = 1 to m
 - $\square \{x_1^{j},...,x_n^{j}\}$ will be jth sample
 - \square For i = 1 to n
 - Sample x_i^j from the distribution $P(X_i|\mathbf{Pa}_{X_i})$, where parents are instantiated to $\{x_1^j,...,x_{i-1}^j\}$
 - \square Add $\{x_1^j,...,x_n^j\}$ to "dataset"
- Use counts to compute P(X)

Example of using rejection sampling to compute P(X|e)

Using rejection sampling to compute P(X|e)

Flu

Headache

Allergy

Nose =

Sinus

- Given a BN, a query P(X|e), and number of samples *m*
- Choose a topological ordering on variables, e.g., X₁, ..., X_n
- = j = 0
- While j < m</p>
 - $\square \{x_1^{j},...,x_n^{j}\}$ will be jth sample
 - □ For i = 1 to n
 - Sample x_i^j from the distribution $P(X_i|\mathbf{Pa}_{X_i})$, where parents are instantiated to $\{x_1^j,...,x_{i-1}^j\}$
 - □ If $\{x_1^j,...,x_n^j\}$ consistent with evidence, add it to "dataset" and j = j + 1
- Use counts to compute P(X|e)

Example of using importance sampling to compute P(X|e)

Using importance sampling to compute P(X|e)

- For j = 1 to m
 - $\square \{x_1^{j},...,x_n^{j}\}$ will be jth sample
 - \square Initialize weight of sample $w^j = 1$
 - \square For i = 1 to n
 - If X_i ∉ {e}
 - □ Sample x_i^j from the distribution $P(X_i|\mathbf{Pa}_{X_i})$, where parents are instantiated to $\{x_1^j, ..., x_{i-1}^j\}$
 - else
 - □ Set xⁱ to assignment in evidence e
 - □ Multiply weight w^j by $P(x_i^j|\mathbf{Pa}_{X_i})$, where parents are instantiated to $\{x_1^j,...,x_{i-1}^j\}$
 - \square Add $\{x_1^j, ..., x_n^j\}$ to "dataset" with weight w
- Use weighted counts to compute P(X|e)

What you need to know

- Bayesian networks
 - ☐ A useful compact **representation** for large probability distributions
- Inference to compute
 - □ Probability of X given evidence e
 - ☐ Most likely explanation (MLE) given evidence e
 - □ Inference is NP-hard
- Variable elimination algorithm
 - Efficient algorithm ("only" exponential in tree-width, not number of variables)
 - □ Elimination order is important!
 - □ Approximate inference necessary when tree-width to large
 - Only difference between probabilistic inference and MLE is "sum" versus "max"
- Sampling Example of approximate inference
 - Simulate from model
 - □ Likelihood weighting for inference
 - Can be very slow

Acknowledgements

- JavaBayes applet
 - http://www.pmr.poli.usp.br/ltd/Software/javabayes/Home/index.html