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Class project
" A
m Homework 4 out today — Due April 4t (2 weeks)

m Includes 10/100 points for your project proposal —
this part is due March 28t (1 week)

m Project
Up 2 students per team

Objective: define a learning problem, experiment with
real data, write a paper, and present a poster, and learn
something new and have fun!

ldeas Iin class website

Project description due 3/28

Graded milestone due 4/13 (20% of project grade)
Poster due 4/30 (20% project grade)

Paper due 5/03 (60% project grade)



Last lecture
" A
m Bayesian Networks

Compact representation for @
probability distributions

Exponential reduction in @

number of parameters

Key insight: Conditional

Independence
assumptions!
m Showed very fast
Inference with applet
Why?7??



General probabillistic inference
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Marginalization
_ L l
PO" ) A ’lIZ> & _l Wavr)*

>\ / P(F 4,5)= P(AY.PE) PCIE A o ki,

P(F=t, A=t) = 2 P(F=¢, Ast,s)

S
= P(F=t,4=t,5=€) + P(F=t, A=t,S=F)

—_

N stution * Z MmNS ><SWV\ oVey PSJSSML “S%’\wnﬁ
X To



Probabillistic inferenc§ example
T wanT R~ £QCA °\S'§l3?\"\eli7l HqHF

@ want: P(F] N= 4) » P(F,N=2)
O(F N=t) =S P(FASH,N=¢)
X
- PO:/ A:f/g:flﬂz-&/ )U:'é)

Headache

x
F A= = H'-”{' N::'LL) 8
PNLD&’-H\ it N b’\'\‘vj /\ P([“/ 2} ’F;S 'é, /
\lo\r'w\b(ls ' :
| ¥
2'\ So\mmdw&s ’P(F/AZF/S:’F/H:"F/M:%)
A Z’\ Ml’“Plfaa’HmS \

Inference seems expon\ential In number of variables!




Inference 1s NP-hard (Actually #P-complete)

Reduction — 3-SAT
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‘Inference unlikely to be efficient in general, but... ‘




Fast probabilistic inference
example — Variable elimination
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(Potential for) Exponential reduction in computation!
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Understanding variable elimination —

Exglomng distributivity
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Understanding variable elimination —

Order can make a HUGE difference
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Understanding variable elimination —

Intermediate results
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‘ Intermediate results are probability distributions \



Understanding variable elimination —
Another example
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Pruning irrelevant variables

‘ Prune all non-ancestors of query variables \



Variable elimination algorithm
" A <5
m Given a BN and a query P(X|e) « P(X,e) PE| v=t)
m Instantiate evidence e ~ €— Phvg in N=t
= Prune non-ancestors of {X,e} MPORTANT!!! |
|
|

Choose an ordering on variables, e.g., X4, ..., X,

Fori=1ton, If X ¢{X,e}
Collect factors f,,...,f, that include X
Generate a new factor by eliminating X; from these factors

g_ZHfJ

X; g=1
Variable X; has been eliminated!

m Normalize P(X,e) to obtain P(X|e)



Complexity of variable elimination —

i SPoIm-tree graphs P(Bekry S | Rt §=)

Variable elimination order:
Start from “leaves” up —

find topological order, eliminate
variables in reverse order
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Linear in number of variables!!! (versus exponential)‘




Complexity of variable elimination —

GraEhs with loops
H
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Exponential in number of variables in largest factor generated




Complexity of variable elimination —
Tree-width o chon S
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Moralize graph:
Connect parents / \ /
into a clique and
remove edge directions

Complexity of VE elimination:
(“Only”) exponential in tree-width
Tree-width is maximum node cut +1




Example: Large tree-width with
_ small number of parents
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Compact representation &> Easy inference ®




Choosing an elimination order
" A
m Choosing best order is NP-complete
Reduction from MAX-Clique
m Many good heuristics (some with guarantees)

m Ultimately, can’t beat NP-hardness of inference

Even optimal order can lead to exponential variable
elimination computation

m In practice
Variable elimination often very effective

Many (many many) approximate inference approaches
available when variable elimination too expensive



Most likely explanation (MLE)

" S @
- argmax P
* Query: argmaxPlar, ... |0

m Using Bayes rule: P(x T, €)
15«5 Lm,

argmax P(xq,...,xn | €) = argmax
1 %) L1,y P(e)

m Normalization irrelevant:

argmax P(x1,...,xn | €) = argmax P(x1,...,Tn,€)
331 ..... Ln .CL']_ ..... In



Max-marginalization



Example of variable elimination for

MLE — Forward pass
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Example of variable elimination for

MLE — Backward pass
" NN
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MLE Variable elimination algorithm

. amonvard pass

m Given a BN and a MLE query max,,
m |[nstantiate evidence e
m Choose an ordering on variables, e.g., Xy, ..., X
m Fori=1ton,If X ¢{e}

Collect factors f,,....f, that include X;

Generate a new factor by eliminating X, from these factors

k
g=max || f;
() j=1
Variable X; has been eliminated!

P(X{,-.,X,€)



MLE Variable elimination algorithm
— Backward pass
" S

m {X,',..., X, } will store maximizing assignment

m Fori=ntol, If X ¢{e}
Take factors f,...,f, used when X, was eliminated

Instantiate f,,...,f,, with {Xi,;",..., X’}
= Now each f, depends only on X;

Generate maximizing assignment for X::
k

x; € argmax || f;
x; =1



Stochastic simulation — Obtaining a

] samgle from the joint distribution
&2




Using stochastic simulation

sampling) to compute P(X)
m Given a BN, a query P(X), and

number of samples m @
m Choose a topological ordering @

on variables, e.g., Xy, ..., X,
m Forj=1tom @

{X/,..., x.J} will be j'" sample
Fori=1ton

= Sample xJ from the distribution
P(X |Pax) where parents are
instantiated to {x,..., X '}

Add {x,,..., X} to “dataset”
m Use counts to compute P(X)




Example of using rejection

] samgling to compute P(X]e)
oY




Using rejection sampling to

. compute P‘X\e)

oo e e 1% e (2
* Chosse 2 opologl gierng o

: JV\?h(i)lej <m
{x/,..., x.J} will be j'" sample

Fori=1ton

= Sample x/ from the distribution P(XilPay),
where parents are instantiated to {x,..., X, I}

If {x,,..., X} consistent with evidence,
add it to “dataset” and j =) +1

m Use counts to compute P(X|e)




Example of using importance

] samgling to compute P(X]e)
oY




Using importance sampling to

. .compute P(X|e) @
mForj=1tom
IX4,..., x.J} will be jih sample

ST : ] =
|nl'[I<':.1|Ize weight of sample wi = 1

Fori=1ton

m If X ¢ {e}

Sample xj from the distribution P(X; |Pax)
where parents are instantiated to {X,..., X, '}

m else
Set xJ to assignment in evidence e

Multiply weight w! by P(xl|PaX) where parents are
instantiated to {x,/,..., X}

Add {x,,..., x)} to “dataset” with weight w!
m Use weighted counts to compute P(X]e)




What you need to know
" J

m Bayesian networks
A useful compact representation for large probability distributions

m Inference to compute
Probability of X given evidence e
Most likely explanation (MLE) given evidence e
Inference is NP-hard

m Variable elimination algorithm

Efficient algorithm (“only” exponential in tree-width, not number of
variables)

Elimination order is important!
Approximate inference necessary when tree-width to large
Only difference between probabilistic inference and MLE is
‘sum” versus “max”

m Sampling — Example of approximate inference
Simulate from model
Likelihood weighting for inference
Can be very slow



Acknowledgements
"
m JavaBayes applet

http://www.pmr.poli.usp.br/ltd/Software/javabayes/Ho
me/index.html
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