Bayesian Networks – Representation

Machine Learning – 10701/15781

Carlos Guestrin

Carnegie Mellon University

March 16th, 2005

Handwriting recognition

Character recognition, e.g., kernel SVMs

Webpage classification

Company home page
vs
Personal home page
vs
Univeristy home page
vs

. . .

Handwriting recognition 2

Webpage classification 2

Today – Bayesian networks

- One of the most exciting advancements in statistical AI in the last 10-15 years
- Generalizes naïve Bayes and logistic regression classifiers
- Compact representation for exponentially-large probability distributions
- Exploit conditional independencies

Causal structure

Possible queries

Car starts BN

58149737003040059690390169 terms

Factored joint distribution - Preview

P(F, A, S, H, N) = $P(F) \times F(A) \times P(S|F, A) \times$ $P(H|S) \times P(N|S)$

Number of parameters

Key: Independence assumptions

Knowing sinus separates the variables from each other

(Marginal) Independence

■ Flu and Allergy are (marginally) independent

$$P(F) = P(F|A)$$

 $P(F,A) = P(F) \cdot P(A)$

Flu = t 0.1Flu = f 0.9

More Generally:

Independence: A,B independent: (ALB)

$$P(A|B) = P(A)$$

$$P(B|A) = P(B)$$

$$P(AB) = P(A) \cdot P(B)$$

Allergy = t	0 - 2
Allergy = f	0

P(F,A)	Flu = t	Flu = f
Allergy = t	0.1×0.2	0.9 x 0.2
Allergy = f	0.1 x0.8	0.9 ×0.8

Conditional independence

- Flu and Headache are not (marginally) independent
 P(F) ≠ P(FIH)
- Flu and Headache are independent given Sinus infection P(F|S,H) = P(F|S) P(F,H|S) = P(F|S) P(H|S)
- More Generally: $(A \perp B \mid S)$ A,B independent given S $P(A \mid S) = P(A \mid SB)$ $P(B \mid S) = P(B \mid SA)$ $P(AB \mid S) = P(A \mid S) = P(A \mid S) \cdot P(B \mid S)$

The independence assumption

Explaining away

Local Markov Assumption:

A variable X is independent of its non-descendants given its parents

Naïve Bayes revisited

Local Markov Assumption:

A variable X is independent of its non-descendants given its parents

What about probabilities? Conditional probability tables (CPTs)

Joint distribution

Why can we decompose? Markov Assumption!

Real Bayesian networks applications

- Diagnosis of lymph node disease
- Speech recognition
- Microsoft office and Windows
 - http://www.research.microsoft.com/research/dtg/
- Study Human genome
- Robot mapping
- Robots to identify meteorites to study
- Modeling fMRI data
- Anomaly detection
- Fault dianosis
- Modeling sensor network data

A general Bayes net

- Set of random variables F, A, S, H, N
- Directed acyclic graph
 - □ Encodes independence assumptions

Product of Iocal tables

CPTs

Joint distribution:

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i \mid \mathbf{Pa}_{X_i})$$

Another example

- Variables:
 - □ B Burglar
 - □ E Earthquake
 - □ A Burglar alarm
 - □ N − Neighbor calls
 - □ R Radio report
- Both burglars and earthquakes can set off the alarm
- If the alarm sounds, a neighbor may call
- An earthquake may be announced on the radio

Another example – Building the BN

- B Burglar
- E Earthquake
- A Burglar alarm
- N Neighbor calls
- R Radio report

Defining a BN

- Given a set of variables and conditional independence assumptions
- Choose an ordering on variables, e.g., X₁, ..., X_n
- For i = 1 to n
 - □ Add X_i to the network
 - □ Define parents of X_i , Pa_{X_i} , in graph as the minimal subset of $\{X_1, ..., X_{i-1}\}$ such that local Markov assumption holds $-X_i$ independent of rest of $\{X_1, ..., X_{i-1}\}$, given parents Pa_{X_i}
 - □ Define/learn CPT P(X_i| **Pa**_{Xi})

How many parameters in a BN?

■ Discrete variables X₁, ..., X_n

Hvels Xi is 1X;

- Graph
 - □ Defines parents of X_i, Pa_{X_i}

Defining a BN 2

We may not know conditional independence assumptions and even variables

- Given a set of variables and conditional independence assumptions
- Choose an ordering on variables, e.g., X₁, ..., X_n
- For i = 1 to n
 - □ Add X_i to the network
 - □ Define parents of X_i , F subset of $\{X_1, ..., X_{i-1}\}$ s

There are good orderings and bad ones – A bad ordering may need more parents per variable → must learn more parameters

- assumption holds X_i independent of rest of $\{X_1, \dots, X_{i-1}\}$, given parents \textbf{Pa}_{X_i}
- □ Define/learn CPT P(X_i| Pa_{Xi})

How???

Learning the CPTs

For each discrete variable X_i

$$P(X_i|X_j,X_k) = P(X_i,X_j,X_k)$$

$$P(X_j,X_k)$$

$$\geq Count(X_i,X_j,X_k)$$

$$Count(X_j,X_k)$$

MLE:
$$P(X_i = x_i \mid X_j = x_j) = \frac{\text{Count}(X_i = x_i, X_j = x_j)}{\text{Count}(X_j = x_j)}$$

Learning Bayes nets

	Known structure	Unknown structure
Fully observable data	counts!	next next lecture
Missing data $\chi_{1}^{(i)} = \chi_{1} \dots , \chi_{n}^{(i)} = ?$	later in course	rext semester

Queries in Bayes nets

- Given BN, find:
 - □ Probability of X given some evidence, P(X|e)

□ Most probable explanation, $\max_{x_1,...,x_n} P(x_1,...,x_n \mid e)$

Most informative query

Learn more about these next class

What you need to know

- Bayesian networks
 - A compact representation for large probability distributions
 - □ Not an algorithm
- Semantics of a BN
 - Conditional independence assumptions
- Representation
 - Variables
 - □ Graph
 - CPTs
- Why BNs are useful
- Learning CPTs from fully observable data
- Play with applet!!! ☺

Acknowledgements

- JavaBayes applet
 - http://www.pmr.poli.usp.br/ltd/Software/javabayes/Home/index.html