Reinforcement Learning
(Lecture 2)

Ron Parr
Duke University

RL Highlights

Everybody likes to learn from experience

Use ML techniques to generalize from
relatively small amounts of experience

* Some notable successes:
— Backgammon —
— Flying a helicopter upside down

From Andrew Ng's home page

« Sutton’s seminal RL paper is 40t most cited
paper in computer science (Citeseer 9/04)

Comparison w/Other Kinds of Learning
* Learning often viewed as:
— Classification (supervised), or

— Model learning (unsupervised)

» RL is between these (delayed signal)

» What the last thing that happens before
an accident? <

Overview
* Review of value determination
* Motivation for RL

* Algorithms for RL
— Overview
- TD
— Q-learning
— Approximation

Recall Our Game Show

Start 1 correct 2 correct 2 correct
$100 $1,000 $10,000 $100,000
O J J J O J
$0 $0 $0 $0

$100 $1,100 $11,100

Optimal Policy w/o Cheating

V=$3,747 V=%$4,163 V=$5,550 V=$11.1K

O 9/10 3/4 1/2 m 1/10
1 ?1 ?1 oo
$0 $0 $0 $0

$100 $1,100 $11,100

Cheat until you win policy

V=$3.7K V=$4.1K V=$5.6K V=$11.1K Wéo
cheat
Lo | Lo

V=$82.4K V=$82.6K V=$83.0K V=$84.4K
cheat

OT OT O7 0750w
__

$-1000

Solving for Values

V=#V+R

For moderate numbers of states we can solve this system exacty:

V=(-p,)"R
H_/

Guaranteed invertible because P,
has spectral radius <1

Iteratively Solving for Values

V=yPV+R

For larger numbers of states we can solve this system indirectly:

Vi =P Vi +R

Guaranteed convergent because)P,
has spectral radius <1 for y<1

Convergence not guaranteed for y=1

Iterative Policy Evaluation

O l O l O f’ZO llffll,m
1000

0.00 0.00 0.00 0.00| jterations
-100.00] -25000| -500.00| 10210.00
-335.00] -650.00| 4555.00| 10120.00

-718.50 3082.50 4392.50 9908.50
2602.40 2864.75 4095.00 9563.35
2738.52 3471.85 5582.88 12552.16

Iterations Contd.

i=0 0.00 0.00 0.00 0.00
i=1 -100.00 -250.00 -500.00 10210.00
i=2 -335.00 -650.00 4555.00 10120.00
i=3 -718.50 3082.50 4392.50 9908.50
i=4 2602.40 2864.75 4095.00 9563.35
i=5 2738.52 3471.85 5582.88 12552.16

i=20 15697.49 16688.07 18396.47 23621.43

i=100 56740.99 57190.86 58074.31 60999.20

i=200 74658.96 74872.93 75399.39 77318.76

i=1000 82469.80 82580.93 82951.31 84432.82

i=10000 82470.37 82581.48 82951.85 84433.33

Note: Slow convergence b/c =1

Overview
* Review of value determination
* Motivation for RL

* Algorithms for RL
— Overview
- TD
— Q-learning
— Approximation

Why We Need RL

* Where do we get transition probabilities?

* How do we store them?
+ Big problems have big models
+ Model size is quadratic in state space size

* Where do we get the reward function?

RL Framework

Learn by “trial and error”

* No assumptions about model

* No assumptions about reward function
* Assumes:

- True state is known at all times

- Immediate reward is known

— Discount is known

RL Schema

* Perceive results N N

Update something é-‘ Y

Repeat

RL for Our Game Show

* Problem: We don't prob of answering correctly

* Solution:
— Buy the home version of the game
— Practice on the home game to refine our strategy
— Deploy strategy when we play the real game

Model Learning Approach

* Learn model, solve = Certainty Equivalence
* How to leam a model:

— Take action a in state s, observe s’

— Take action a in state s, n times

— Observe s’ m times

- P(s'|s,a) =mi/n

— Fill in transition matrix for each action

— Compute avg. reward for each state
+ Solve learned model as an MDP

Limitations of Model Learning

« Partitions learning, solution into two phases

* Model may be large (hard to visit every state
lots of times)

- Note: Can’t completely get around this problem...
Model storage is expensive
* Model manipulation is expensive

Overview Temporal Difference Learning

» Review of value determination + One of the first RL algorithms
- * Learn the value of a fixed policy
* Motivation for RL (no optimization; just prediction)

« Algorithms for RL + Recall iterative value determination:

— Overview))
-1 V™(s) = R(s,7(8)) + 7)_P(S|s #(V'(S)
— Q-learning S

— Approximation l

Problem: We don’t know this.

First ldea: Monte Carlo Sampling Next Idea

*« Remember Value Determination:

V'(8) = R(s,7(5) + 7Y P(S| s, Z(S)V'(S)

* Assume that we have a black box:

S —’-< s » Compute an update as if the observed s’ and
r were the only possible outcomes:
¢ Count the number of times we see each s’ V‘e""(s) =r+ ;)\/‘ (s')

- Estimate P(s’|s) for each s’
- Essentially learns a mini-model for state s
- Can think of as numerical integration

* Make a small update in this direction:

V'*(s) = (1-a)V' (s) + V"™ (9)

* Problem: The world doesn’t work this way O<a<1
Idea: Value Function Soup Example: Home Version of Game
Suppose: o = 0.1

O)
° l l l l$111,100

Upon observing s'; pa— $0 $0 $0 $0

-Dispard_ 10% of soup S;Civsa:;gr

*Refill with Viemp(s) $100 $1,100 $11,100

*Stir

*Repeat Suppose we guess: V(s3)=15K

We play and get the question wrong
V' (s) = (L-a)V' (s)+aV *™(s) [
V(s3) = (1-0)15K + a0

Convergence?

* Why doesn’t this oscillate?

—e.g. consider some low probability s’ with a
very high (or low) reward value

— This could still cause a big jump in V(s)

Convergence Intuitions

» Need heavy machinery from stochastic
process theory to prove convergence

* Main ideas:
— lterative value determination converges
— Updates approximate value determination
— Samples approximate expectation

Vi*(s) = R(s, z()) + }/Z P(s|s z(9)V'(s)

Ensuring Convergence

* Rewards have bounded variance
*0<y<1
+ Every state visited infinitely often
* Learning rate decays so that:
EPICACELY
=Y i<

These conditions are jointly sufficientto ensure
convergence in the limit with probability 1.

How Strong is This?

Bounded variance of rewards: easy
Discount: standard

Visiting every state infinitely often: Hmmm...
Learning rate: Often leads to slow learning
Convergence in the limit: Weak

- Hard to say anything stronger w/o knowing the mixing rate

of the process
- Mixing rate can be low; hard to know a priori
Convergence w.p. 1: Not a problem.

Using TD for Control
* Recall value iteration:
V*(s) =max, R(s,a)+y>_P(s|sa)V'(s)
* Why not pick the maximizisﬁg a and then do:
VH(9) = (L-a)V' () +aV™(s)

- s’ is the observed next state after taking action a

Problems

* Pick the best action w/o model?

» Must visit every state infinitely often
— What if a good policy doesn’t do this?

* Learning is done “on policy”
— Taking random actions to make sure that all
states are visited will cause problems

Q-Learning Overview
* Want to maintain good properties of TD

* Learns good policies and optimal value
function, not just the value of a fixed policy

* Simple modification to TD that learns the
optimal policy regardless of how you act!
(mostly)

Q-learning
* Recall value iteration:
V*(s) = max, R(s,a) + yZ P(s|s aV'(s)
+ Can split this into two fusnctions:
Q"(s,a) =R(s,a)+ ;/Z P(s|s aV'(s)

Vi+1(s) — maxa Qt+1(s' a)

Q-learning

« Store Q values instead of a value function
* Makes selection of best action easy
* Update rule:

Q°™(s,a) =r +ymax, Q'(s,a')

Q*"(s,.@)=(1~a)Q (s,a) +oQ™(s,a)

Q-learning Properties

« Converges under same conditions as TD
« Still must visit every state infinitely often

* Separates policy you are currently following
from value function learning:

Q°™(s,a) =r +ymax, Q'(s,a’)

Q*"(s,.@)=(1~a)Q'(s,a) +oQ™(s,a)

Value Function Representation

* Fundamental problem remains unsolved:
- TD/Q learning solves model-learning problem, but
- Large models still have large value functions
- Too expensive to store these functions
- Impossible to visit every state in large models

* Function approximation
- Use machine learning methods to generalize
- Avoid the need to visit every state

Function Approximation

* General problem: Learn function f(s)
- Linear regression
- Perceptron
- Neural networks

* |ldea: Approximate f(s) with g(s,w)
- g is some easily computable function of s and w
- Try to find w that minimizes the errorin g

Linear Regression
+ Define a set of basis functions (vectors)
hi(s).hy(s)..h (s)
+ Approximate f with a weighted combination of these
k
g(s) =2 w;h(s)
=1
+ Example: Space of qujadratic functions:
h(s)=Lh,(s)=s,hy(s) =

+ Orthogonal projection minimizes SSE

Updates with Approximation
* Recall regular TD update:

VIH(s) = L-a)V'(s)+aV "™ (9)
» With function approximation:
V(s) =V (s 6) Vector

‘U pdate: / operations

0" =1-a)8' + N "™ (S)V V(s,0)

For linear value functions

* Gradient is trivial:

V(s 0)= ZK:QJ h;(s)
Vo V(s.6)=h;(s)
+ Update is trivial:

Individual

/ componenty

6, = (1-a)8,' + N ™ (9)h; (s)

Other Approaches

* TD, Q-learning approximate value iteration
Typically use parameterized V

» Can also approximate policy iteration
— Parameterized space of policies
— Estimate values from samples
— Update policy parameters to improve performance

Properties of approximate RL

* Table-updates are a special case
» Can be combined with Q-learning

« Convergence not guaranteed
- Ordinary neural nets converge to local opt

- NN + RL convergence not guaranteed
« Chasing a moving target
« Errors can compound

Success requires very well chosen features

How'd They Do That???

» Backgammon (Tesauro)
— Neural network value function approximation
— TD sufficient (known model)
— Carefully selected inputs to neural network
— About 1 million games played against self
» Helicopter (Ng et al.)
— Approximate policy iteration
— Constrained policy space
— Trained on a simulator

Swept under the rug...

« Difficulty of finding good features
« Partial observability

» Exploration vs. Exploitation

Conclusions
Reinforcement learning solves an MDP
Converges for exact value function representation
Can be combined with approximation methods

Good results require good features

