Computational Learning Theory

Read Chapter 7 of Machine Learning
[Suggested exercises: 7.1, 7.2, 7.5, 7.7]

e Computational learning theory
e Setting 1: learner poses queries to teacher
e Setting 2: teacher chooses examples

e Setting 3: randomly generated instances, labeled
by teacher

e Probably approximately correct (PAC) learning

e Vapnik-Chervonenkis Dimension



Function Approximation

Given:
e Instances X:
-e.g. x=<0,1,1,0,0,1>
» Hypotheses H: set of functions h: X 2> Y

- e.g., H is the set of boolean functions (Y={0,1}) defined by conjunctions of
constraints on the features of x. (such as <0,1,?,?,?2,1> -2 1)

» Training Examples D: sequence of positive and negative examples of an
unknown target function c: X -{0,1}

- <Xq, C(X1)>, ... <X, C(X,)>

Determine:
* A hypothesis h in H such that h(x)=c(x) for all x in X
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Function Approximation

Given:
* Instances X:
-e.g. x=<0,1,1,0,0,1>
» Hypotheses H: set of functions h: X -{0,1}

- e.g., H is the set of boolean functions (Y={0,1}) defined by conjunctions of
constraints on the features of x. (such as <0,1,?,?,?,1> - 1)

» Training Examples D: sequence of positive and negative examples of an
unknown target function c: X -{0,1}

- <Xy, C(X1)>, ... <X, C(X,)>

Determine: _

* A-hypethesis-hin-H-sueh-thathbg=ecbgferallcir——

* A hypothesis h in H such that h(x)=c(x) for all x in D
* A hypothesis h in H that minimizes Iossfunctioni(h,D)>-




Computational Learning Theory

What general laws constrain inductive learning?

We seek theory to relate:
e Probability of successful learning
e Number of training examples
e Complexity of hypothesis space

e Accuracy to which target function is
approximated

e Manner in which training examples presented



Sample Complexity

How many training examples are sufficient to learn
the target concept?

1. If learner proposes instances, as queries to
teacher

e Learner proposes instance x, teacher provides
c(z)
2. If teacher (who knows ¢) provides training
examples

e teacher provides sequence of examples of form
(z, c(x))
3. If some random process (e.g., nature) proposes
instances

e instance x generated randomly, teacher
provides ¢(x)



Sample Complexity: 3

Given:
e set of instances X
e set of hypotheses H
e set of possible target concepts C

e training instances generated by a fixed, unknown
probability distribution D over X

Learner observes a sequence D of training examples
of form (x,¢(x)), for some target concept ¢ € C

e instances x are drawn from distribution D
e teacher provides target value ¢(z) for each
Learner must output a hypothesis h estimating c

e h is evaluated by its performance on subsequent
instances drawn according to D

Note: randomly drawn instances, noise-free
classifications



True Error of a Hypothesis

Instance space X

Where ¢

and /i disagree

Definition: The true error (denoted
errorp(h)) of hypothesis h with respect to
target concept ¢ and distribution D is the
probability that h will misclassify an instance
drawn at random according to D.

errorp(h) = E%[C(iﬁ) # h(x)]



Two Notions of Error

Training error of hypothesis h with respect to
target concept c

e How often h(z) # ¢(x) over training instances D

errorp(h) = Prlc(z) # h(z)]

xeD < Set of training
examples

True error of hypothesis h with respect to ¢

e How often h(x) # c(x) over future instances
drawn at random from P

errorp(h) = Brle(z) # h(z)] Probability

distribution
P(x)




Two Notions of Error

Can we bound
errorp(h)
Training error of hypothesis h with respect to in terms of
target concept c errorp(h)
e How often h(z) # ¢(x) over training instances D ??
h)=P h
errorp(h) Xe[I; Lc(:.z:) # hz)] Set of training
examples
True error of hypothesis h with respect to ¢
e How often h(x) # c(x) over future instances
drawn at random from D
)= E%LC(’T) ) Probability
distribution
P(x)




Version Spaces

A hypothesis h is consistent with a set of
training examples D of target concept ¢ if and
only if h(z) = ¢(x) for each training example
(z,c(z)) in D.

Consistent(h, D) = (V{x,c(z)) € D) h(z) = ¢(x)

The version space, V Sy p, with respect to
hypothesis space H and training examples D,
is the subset of hypotheses from H consistent
with all training examples in D.

V Sy p={h € H|Consistent(h,D)}



Exhausting the Version Space

Hypothesis space H

L) -
. error=.3
error=.1 red
" :
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(r = training error, error = true error)

Definition: The version space V Sy p is said
to be e-exhausted with respect to ¢ and D. if
every hypothesis A in V. .Sy p has true error less
than € with respect to ¢ and D.

(Vh € V Sy p) errorp(h) < e



How many examples will e-exhaust the VS?

Theorem: [Haussler, 1988|.

If the hypothesis space H is finite, and D is a
sequence of m > 1 independent random
examples of some target concept ¢, then for
any 0 < e < 1, the probability that the
version space with respect to H and D 1s not

e-exhausted (with respect to c¢) is less than Any(!) learner
|H|E—Em that OUTPUTS
a hypothesis
Interesting! This bounds the probability that any  consistent
: \ . : with all
consistent learner will output a hypothesis A with training
error(h) 2 € examples
If we want to this probability to be below § (i,e.,anh
contained in
|H|E—EWL é 6 VSH D)

then
- %(m |H| +n(1/5))



Learning Conjunctions of Boolean
Literals

How many examples are sufficient to assure with
probability at least (1 —¢) that

every h in V Sy p satisfies errorp(h) < e

Use our theorem:
1
m > E(h1|H| -+ ]11(1/5))

Suppose H contains conjunctions of constraints on
up to n boolean attributes (i.e., n boolean literals).
Then |H| = 3", and

s %(‘ﬂ 3" + In(1/6))

m> (nln3+(1/d))



PAC Learning

Consider a class C' of possible target concepts
defined over a set of instances X of length n, and a

learner L using hypothesis space H.

Definition: C is PAC-learnable by L using
H if for all ¢ € C, distributions D over X, €
such that 0 < € < 1/2, and § such that
0<d<1/2,

learner L will with probability at least (1 — )
output a hypothesis A € H such that
errorp(h) < €, in time that is polynomial in
1/€e, 1/, n and size(c).




PAC Learning

Consider a class C' of possible target concepts

defined over a set of instances X of length n, and a

learner L using hypothesis space H.

Definition: C is PAC-learnable by L using
H if for all ¢ € C, distributions D over X, €
such that 0 < € < 1/2, and § such that
0<d<1/2,

learner L will with probability at least (1 4 )
output a hypothesis A € H such that
errorp(h) < €, in time that is polynomial in
1/€e, 1/, n and size(c).

Holds if L requires
only polynomial
number of fraining
examples, and
processing per
example is polynomial



Agnostic Learning

So far, assumed ¢ € H

Agnostic learning setting: don’t assume ¢ € H

e What do we want then?

— The hypothesis h that makes fewest errors on
training data

e What is sample complexity in this case?
1
m > ﬁ(]ﬂ |H| 4+ 1In(1/6))
derived from Hoeffding bounds:

Prlerrorp(h) > errorp(h) +¢€] < o—2mé

/ /

true error  training error degree of overfitting



General Hoeffding Bound

 When estimating parameter 0 € [a,b] from m examples

—2m.€2

P(|60 — E[0]]| > €) < 2e(—a)?



What if H 1s not finite?

e (Can’t use our result for finite H

* Need some other measure of complexity for H
— Vapnik-Chervonenkis (VC) dimension!



Shattering a Set of Instances

Definition: a dichotomy of a set S is a
partition of S into two disjoint subsets.

Definition: a set of instances S is shattered
by hypothesis space H if and only if for every
dichotomy of S there exists some hypothesis
in H consistent with this dichotomy.



Three Instances Shattered

Instance space X




The Vapnik-Chervonenkis Dimen-
sion

Definition: The Vapnik-Chervonenkis
dimension, VC(H), of hypothesis space H
defined over instance space X is the size of
the largest finite subset of X shattered by H.
If arbitrarily large finite sets of X can be
shattered by H, then VC(H) = oo.



Sample Complexity from VC Dimen-
sion

How many randomly drawn examples suffice to
e-exhaust V Sy p with probability at least (1 —4)7

S %(4 log,(2/6) + 8VC(H)log,(13/€))



VC dimension: examples

Consider X = R, want to learn ¢c:X-2>{0,1}

O

O

What is VC dimension of ~

e Hil={(x>a—2>y=1)|ae R}

e H2={(x>a—2y=1l)|aeR} +{(x<a—=2>y=1)|aec R}



VC dimension: examples

Consider X = R, want to learn ¢c:X-2>{0,1}

O

O

What is VC dimension of ~

e Hl={(xra=2y=1l)|ae R}
~ VCH1)=1

e H2={(x>a2 y=1)]|aeR}+{(x<a—2>y=1l)|ae R}
~ VC(H2)=2



VC dimension: examples
Consider X = 2, want to learn ¢c:X->{0,1}

What is VC dimension of
e H1={(wxtb)>0 2 y=1)|weR?becR}



VC dimension: examples
Consider X = 2, want to learn ¢c:X->{0,1}

What is VC dimension of
e H1={(wxtb)>0 2 y=1)|weR?becR}
— VC(H1)=3
— For linear separating hyperplanes in n dimensions, VC(H)=n+1



Key Ideas from this lecture

Sample complexity varies with the learning setting
— Learner actively queries trainer
— Examples provided at random

Within the PAC learning setting, we can bound the probability
that learner will output hypothesis with given error

— In terms of complexity of H, number of examples

— For ANY consistent learner (case where ¢ € H)

— For ANY “best fit” hypothesis (agnostic learning, where ¢ ¢ H)

VC dimension is useful measure of complexity of H

More details: see annual Conference on Learning Theory
— http://www.learningtheory.org/colt2004/
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