
Read Chapter 7 of Machine Learning
[Suggested exercises: 7.1, 7.2, 7.5, 7.7]



Given:

• Instances X:

- e.g.  x = <0,1,1,0,0,1>

• Hypotheses H:  set of functions h: X Y

- e.g., H is the set of boolean functions (Y={0,1}) defined by conjunctions of 
constraints on the features of x.   (such as <0,1,?,?,?,1> 1)

• Training Examples D: sequence of positive and negative examples of an 
unknown target function c: X {0,1}  

- <x1, c(x1)>, … <xm, c(xm)> 

Determine:
• A hypothesis h in H such that h(x)=c(x) for all x in X

Function Approximation
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Given:

• Instances X:

- e.g.  x = <0,1,1,0,0,1>

• Hypotheses H:  set of functions h: X {0,1}

- e.g., H is the set of boolean functions (Y={0,1}) defined by conjunctions of 
constraints on the features of x.   (such as <0,1,?,?,?,1> 1)

• Training Examples D: sequence of positive and negative examples of an 
unknown target function c: X {0,1}  

- <x1, c(x1)>, … <xm, c(xm)> 

Determine:
• A hypothesis h in H such that h(x)=c(x) for all x in X
• A hypothesis h in H such that h(x)=c(x) for all x in D
• A hypothesis h in H that minimizes lossfunctioni(h,D)
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General Hoeffding Bound

• When estimating parameter  θ ∈ [a,b] from m examples



What if H is not finite?

• Can’t use our result for finite H

• Need some other measure of complexity for H
– Vapnik-Chervonenkis (VC) dimension!











VC dimension: examples
Consider X = <, want to learn c:X {0,1}
What is VC dimension of

• H1 = { (x>a y=1) | a ∈ <}

• H2 = { (x>a y=1) | a ∈ <} + { (x<a y=1) | a ∈ <} 

x



VC dimension: examples
Consider X = <, want to learn c:X {0,1}
What is VC dimension of

• H1 = { (x>a y=1) | a ∈ <}
– VC(H1)=1

• H2 = { (x>a y=1) | a ∈ <} + { (x<a y=1) | a ∈ <} 
– VC(H2)=2

x



VC dimension: examples
Consider X = <2, want to learn c:X {0,1}

What is VC dimension of
• H1 = { (w·x+b)>0  y=1) | w ∈<2, b ∈ <}



VC dimension: examples
Consider X = <2, want to learn c:X {0,1}

What is VC dimension of
• H1 = { (w·x+b)>0  y=1) | w ∈<2, b ∈ <}

– VC(H1)=3
– For linear separating hyperplanes in n dimensions, VC(H)=n+1



Key Ideas from this lecture

• Sample complexity varies with the learning setting
– Learner actively queries trainer
– Examples provided at random
– …

• Within the PAC learning setting, we can bound the probability 
that learner will output hypothesis with given error
– In terms of complexity of H, number of examples
– For ANY consistent learner (case where c ∈ H)
– For ANY “best fit” hypothesis (agnostic learning, where c ∈ H)

• VC dimension is useful measure of complexity of H

• More details: see annual Conference on Learning Theory
– http://www.learningtheory.org/colt2004/
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