### Computational Learning Theory

Read Chapter 7 of Machine Learning [Suggested exercises: 7.1, 7.2, 7.5, 7.7]

- Computational learning theory
- Setting 1: learner poses queries to teacher
- Setting 2: teacher chooses examples
- Setting 3: randomly generated instances, labeled by teacher
- Probably approximately correct (PAC) learning
- Vapnik-Chervonenkis Dimension

## **Function Approximation**

#### **Given:**

- Instances X:
  - e.g. x = <0,1,1,0,0,1>
- Hypotheses H: set of functions h: X → Y
  - e.g., H is the set of boolean functions (Y= $\{0,1\}$ ) defined by conjunctions of constraints on the features of x. (such as  $<0,1,?,?,?,1> \rightarrow 1$ )
- Training Examples D: sequence of positive and negative examples of an unknown target function c:  $X \rightarrow \{0,1\}$

$$- < x_1, c(x_1) >, ... < x_m, c(x_m) >$$

#### **Determine:**

A hypothesis h in H such that h(x)=c(x) for all x in X

## **Function Approximation**

#### **Given:**

• Instances X:

- e.g. 
$$x = <0,1,1,0,0,1>$$

- Hypotheses H: set of functions h: X → Y
  - e.g., H is the set of boolean functions (Y= $\{0,1\}$ ) defined by conjunctions of constraints on the features of x. (such as  $<0,1,?,?,?,1> \rightarrow 1$ )
- Training Examples D: sequence of positive and negative examples of an unknown target function c:  $X \rightarrow \{0,1\}$

$$- < x_1, C(x_1) >, ... < x_m, C(x_m) >$$

#### **Determine:**

- A hypothesis h in H such that h(x)=c(x) for all x in X
- A hypothesis h in H such that h(x)=c(x) for all x in D ←

What we want

.What we can observe

## **Function Approximation**

#### **Given:**

Instances X:

- e.g. 
$$x = <0,1,1,0,0,1>$$

- Hypotheses H: set of functions h: X → {0,1}
  - e.g., H is the set of boolean functions (Y= $\{0,1\}$ ) defined by conjunctions of constraints on the features of x. (such as  $<0,1,?,?,?,1> \rightarrow 1$ )
- Training Examples D: sequence of positive and negative examples of an unknown target function c:  $X \rightarrow \{0,1\}$

$$- < x_1, C(x_1) >, ... < x_m, C(x_m) >$$

#### **Determine:**

- A hypothesis h in H such that h(x)=c(x) for all x in X
- A hypothesis h in H such that h(x)=c(x) for all x in D ←
- A hypothesis h in H that minimizes lossfunction<sub>i</sub>(h,D)

-What we want

What we can observe

## Computational Learning Theory

What general laws constrain inductive learning?

We seek theory to relate:

- Probability of successful learning
- Number of training examples
- Complexity of hypothesis space
- Accuracy to which target function is approximated
- Manner in which training examples presented

### Sample Complexity

How many training examples are sufficient to learn the target concept?

- 1. If learner proposes instances, as queries to teacher
  - Learner proposes instance x, teacher provides c(x)
- 2. If teacher (who knows c) provides training examples
  - teacher provides sequence of examples of form  $\langle x, c(x) \rangle$
- 3. If some random process (e.g., nature) proposes instances
  - instance x generated randomly, teacher provides c(x)

#### Sample Complexity: 3

#### Given:

- set of instances X
- $\bullet$  set of hypotheses H
- set of possible target concepts C
- training instances generated by a fixed, unknown probability distribution  $\mathcal{D}$  over X

Learner observes a sequence D of training examples of form  $\langle x, c(x) \rangle$ , for some target concept  $c \in C$ 

- instances x are drawn from distribution  $\mathcal{D}$
- teacher provides target value c(x) for each

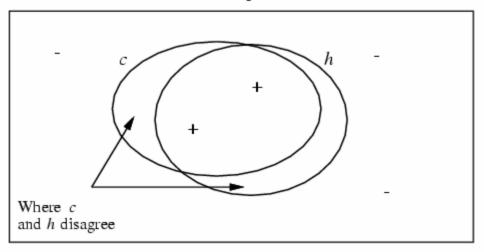
Learner must output a hypothesis h estimating c

• h is evaluated by its performance on subsequent instances drawn according to  $\mathcal{D}$ 

Note: randomly drawn instances, noise-free classifications

### True Error of a Hypothesis

#### Instance space X



**Definition:** The **true error** (denoted  $error_{\mathcal{D}}(h)$ ) of hypothesis h with respect to target concept c and distribution  $\mathcal{D}$  is the probability that h will misclassify an instance drawn at random according to  $\mathcal{D}$ .

$$error_{\mathcal{D}}(h) \equiv \Pr_{x \in \mathcal{D}}[c(x) \neq h(x)]$$

#### Two Notions of Error

Training error of hypothesis h with respect to target concept c

• How often  $h(x) \neq c(x)$  over training instances D

$$error_{\mathbf{D}}(h) \equiv \Pr_{x \in \mathbf{D}} [c(x) \neq h(x)]$$

True error of hypothesis h with respect to c

• How often  $h(x) \neq c(x)$  over future instances drawn at random from  $\mathcal{D}$ 

$$error_{\mathcal{D}}(h) \equiv \Pr_{x \in \mathcal{D}}[c(x) \neq h(x)]$$

Set of training examples

Probability distribution P(x)

#### Two Notions of Error

Training error of hypothesis h with respect to target concept c

• How often  $h(x) \neq c(x)$  over training instances D

Can we bound  $error_{\mathcal{D}}(h)$  in terms of  $error_{\mathcal{D}}(h)$ 

$$error_{\mathbf{D}}(h) \equiv \Pr_{x \in \mathbf{D}} [c(x) \neq h(x)]$$

True error of hypothesis h with respect to c

• How often  $h(x) \neq c(x)$  over future instances drawn at random from  $\mathcal{D}$ 

$$error_{\mathcal{D}}(h) \equiv \Pr_{x \in \mathcal{D}}[c(x) \neq h(x)]$$

Set of training examples

Probability distribution P(x)

### Version Spaces

A hypothesis h is **consistent** with a set of training examples D of target concept c if and only if h(x) = c(x) for each training example  $\langle x, c(x) \rangle$  in D.

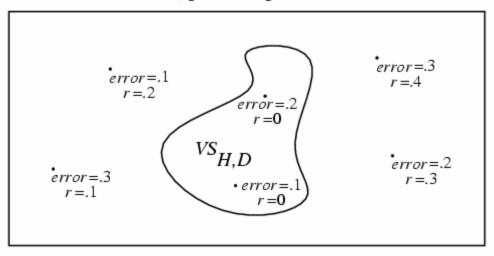
$$Consistent(h, D) \equiv (\forall \langle x, c(x) \rangle \in D) \ h(x) = c(x)$$

The **version space**,  $VS_{H,D}$ , with respect to hypothesis space H and training examples D, is the subset of hypotheses from H consistent with all training examples in D.

$$VS_{H,D} \equiv \{h \in H | Consistent(h, D)\}$$

## Exhausting the Version Space

Hypothesis space H



(r = training error, error = true error)

**Definition:** The version space  $VS_{H,D}$  is said to be  $\epsilon$ -exhausted with respect to c and  $\mathcal{D}$ , if every hypothesis h in  $VS_{H,D}$  has true error less than  $\epsilon$  with respect to c and  $\mathcal{D}$ .

$$(\forall h \in VS_{H,D}) \ error_{\mathcal{D}}(h) < \epsilon$$

How many examples will  $\epsilon$ -exhaust the VS?

Theorem: [Haussler, 1988].

If the hypothesis space H is finite, and D is a sequence of  $m \geq 1$  independent random examples of some target concept c, then for any  $0 \leq \epsilon \leq 1$ , the probability that the version space with respect to H and D is not  $\epsilon$ -exhausted (with respect to c) is less than

$$|H|e^{-\epsilon m}$$

Interesting! This bounds the probability that <u>any</u> consistent learner will output a hypothesis h with  $error(h) \ge \epsilon$ 

If we want to this probability to be below  $\delta$ 

$$|H|e^{-\epsilon m} \leq \delta$$

then

$$m \ge \frac{1}{\epsilon} (\ln|H| + \ln(1/\delta))$$

Any(!) learner that outputs a hypothesis consistent with all training examples (i.e., an h contained in VS<sub>H.D</sub>)

## Learning Conjunctions of Boolean Literals

How many examples are sufficient to assure with probability at least  $(1 - \delta)$  that

every h in  $VS_{H,D}$  satisfies  $error_{\mathcal{D}}(h) \leq \epsilon$ 

Use our theorem:

$$m \ge \frac{1}{\epsilon} (\ln|H| + \ln(1/\delta))$$

Suppose H contains conjunctions of constraints on up to n boolean attributes (i.e., n boolean literals). Then  $|H| = 3^n$ , and

$$m \ge \frac{1}{\epsilon} (\ln 3^n + \ln(1/\delta))$$

or

$$m \ge \frac{1}{\epsilon} (n \ln 3 + \ln(1/\delta))$$

## PAC Learning

Consider a class C of possible target concepts defined over a set of instances X of length n, and a learner L using hypothesis space H.

Definition: C is **PAC-learnable** by L using H if for all  $c \in C$ , distributions  $\mathcal{D}$  over X,  $\epsilon$  such that  $0 < \epsilon < 1/2$ , and  $\delta$  such that  $0 < \delta < 1/2$ ,

learner L will with probability at least  $(1 - \delta)$  output a hypothesis  $h \in H$  such that  $error_{\mathcal{D}}(h) \leq \epsilon$ , in time that is polynomial in  $1/\epsilon$ ,  $1/\delta$ , n and size(c).

### PAC Learning

Consider a class C of possible target concepts defined over a set of instances X of length n, and a learner L using hypothesis space H.

Definition: C is **PAC-learnable** by L using H if for all  $c \in C$ , distributions D over X,  $\epsilon$  such that  $0 < \epsilon < 1/2$ , and  $\delta$  such that  $0 < \delta < 1/2$ ,

learner L will with probability at least  $(1 / \delta)$  output a hypothesis  $h \in H$  such that  $error_{\mathcal{D}}(h) \leq \epsilon$ , in time that is polynomial in  $1/\epsilon$ ,  $1/\delta$ , n and size(c).

Holds if L requires only polynomial number of training examples, and processing per example is polynomial

## Agnostic Learning

So far, assumed  $c \in H$ 

Agnostic learning setting: don't assume  $c \in H$ 

- What do we want then?
  - The hypothesis h that makes fewest errors on training data
- What is sample complexity in this case?

$$m \ge \frac{1}{2\epsilon^2} (\ln|H| + \ln(1/\delta))$$

derived from Hoeffding bounds:

$$Pr[error_{\mathcal{D}}(h) > error_{\mathcal{D}}(h) + \epsilon] \leq e^{-2m\epsilon^2}$$
 true error training error degree of overfitting

## General Hoeffding Bound

• When estimating parameter  $\theta \in [a,b]$  from m examples

$$P(|\widehat{\theta} - E[\widehat{\theta}]| > \epsilon) \le 2e^{\frac{-2m\epsilon^2}{(b-a)^2}}$$

## What if H is not finite?

- Can't use our result for finite H
- Need some other measure of complexity for H
  - Vapnik-Chervonenkis (VC) dimension!

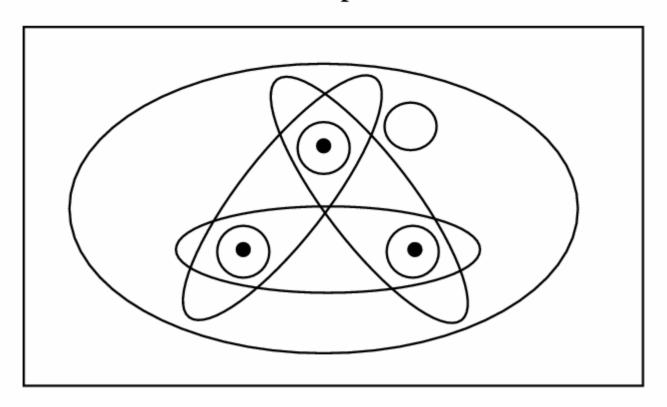
### Shattering a Set of Instances

Definition: a **dichotomy** of a set S is a partition of S into two disjoint subsets.

Definition: a set of instances S is **shattered** by hypothesis space H if and only if for every dichotomy of S there exists some hypothesis in H consistent with this dichotomy.

#### Three Instances Shattered

Instance space X



# The Vapnik-Chervonenkis Dimension

Definition: The Vapnik-Chervonenkis dimension, VC(H), of hypothesis space H defined over instance space X is the size of the largest finite subset of X shattered by H. If arbitrarily large finite sets of X can be shattered by H, then  $VC(H) \equiv \infty$ .

# Sample Complexity from VC Dimension

How many randomly drawn examples suffice to  $\epsilon$ -exhaust  $VS_{H,D}$  with probability at least  $(1 - \delta)$ ?

$$m \ge \frac{1}{\epsilon} (4\log_2(2/\delta) + 8VC(H)\log_2(13/\epsilon))$$

Consider  $X = \Re$ , want to learn c:X $\rightarrow$ {0,1} What is VC dimension of

• H1 = { 
$$(x>a \rightarrow y=1) | a \in \Re$$
}

• 
$$H2 = \{ (x>a \rightarrow y=1) \mid a \in \Re \} + \{ (x$$

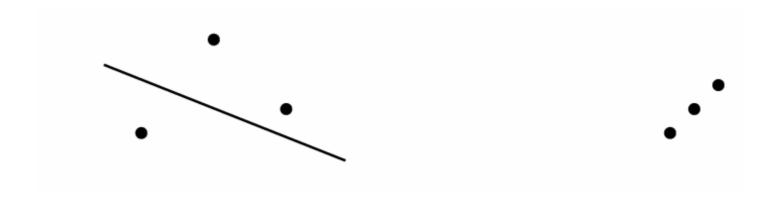
Consider  $X = \Re$ , want to learn c:X $\rightarrow$ {0,1} What is VC dimension of

- H1 = {  $(x>a \rightarrow y=1) | a \in \Re$ } - VC(H1)=1
- $H2 = \{ (x>a \rightarrow y=1) \mid a \in \Re \} + \{ (x<a \rightarrow y=1) \mid a \in \Re \}$ - VC(H2)=2

Consider  $X = \Re^2$ , want to learn c:X $\rightarrow$ {0,1}

What is VC dimension of

• H1 = { 
$$(w \cdot x + b) > 0 \rightarrow y = 1$$
 |  $w \in \mathbb{R}^2, b \in \mathbb{R}$  }



Consider  $X = \Re^2$ , want to learn c:X $\rightarrow$ {0,1}

#### What is VC dimension of

- H1 = {  $(w \cdot x + b) > 0 \rightarrow y = 1$  |  $w \in \mathbb{R}^2, b \in \mathbb{R}$  }
  - VC(H1)=3
  - For linear separating hyperplanes in n dimensions, VC(H)=n+1



## Key Ideas from this lecture

- Sample complexity varies with the learning setting
  - Learner actively queries trainer
  - Examples provided at random
  - **–** ...
- Within the PAC learning setting, we can bound the probability that learner will output hypothesis with given error
  - In terms of complexity of H, number of examples
  - For ANY consistent learner (case where  $c \in H$ )
  - For ANY "best fit" hypothesis (agnostic learning, where  $c \notin H$ )
- VC dimension is useful measure of complexity of H
- More details: see annual Conference on Learning Theory
  - http://www.learningtheory.org/colt2004/