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1 Learning Classifiers based on Bayes Rule

Here we consider the relationship between supervised learning, or function ap-
proximation problems, and Bayesian reasoning. We begin by considering how to
design learning algorithms based on Bayes rule.

Consider a supervised learning problem in which we wish to approximate an
unknown target functionf : X → Y, or equivalentlyP(Y|X). To begin, we will
assumeY is a boolean-valued random variable, andX is a vector containingn
boolean attributes. In other words,X = 〈X1,X2 . . . ,Xn〉, whereXi is the random
variable denoting thei attribute ofX.

Applying Bayes rule, we see thatP(Y = yi |X) can be represented as

1
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P(Y = yi |X = xk) =
P(X = xk|Y = yi)P(Y = yi)

∑ j P(X = xk|Y = y j)P(Y = y j)

whereym represents themth possible value forY, and where the summation in the
denominator is over all legal values of the random variableY.

One way to learnP(Y|X) is to use the training data to estimateP(X|Y) and
P(Y). We can then use these estimates, together with Bayes rule above, to deter-
mineP(Y|X = xk) for any new instancexk.

A NOTE ON NOTATION: We will consistently use upper case symbols (e.g.,
X) to refer to random variables, including both vector and non-vector variables.
If X is a vector, then we use subscripts (e.g.,Xi to refer to each random variable
in X). We use lower case symbols to refer tovaluesof random variables (e.g.,
Xi = xi j may refer to random variableXi taking on its jth possible value). We
will write E[X] to refer to the expected value ofX. We use superscripts to index
training examples (e.g.,X j

i refers to the value of the random variableXi in the jth
training example.). We useδ(x) to denote an “indicator” function whose value is
1 if its logical argumentx is true, and whose value is 0 otherwise.

1.1 Unbiased Learning of Bayes Classifiers is Impractical

If we are going to train a Bayes classifier by estimatingP(X|Y) andP(Y), then
it is reasonable to ask how much training data will be required to obtain reliable
estimates of these distributions. Let us assume training examples are generated
by drawing instances at random from an unknown underlying distributionP(X),
then allowing a teacher to label this example with itsY value.

A hundred independently drawn training examples will usually suffice to ob-
tain a maximum likelihood estimate ofP(Y) that is within a few percent of its
correct value1. However, accurately estimatingP(X|Y) typically requires many
more examples. To see why, consider the number of parameters we must estimate
whenY is boolean andX is a vector ofn boolean attributes. In this case, we need
to estimate a set of parameters

θi j = P(X = xi |Y = y j)

where the indexi takes on2n possible values (one for each of the possible vector
values ofX), and j takes on 2 possible values. Therefore, we will need to estimate
approximately2n+1 parameters. To calculate the exact number of required param-
eters, note for any fixedj, the sum overi of θi j must be one. Therefore, for any
particular valuey j , and the2n possible values ofxi , we need compute only2n−1
independent parameters. Given the two possible values forY, we must estimate
a total of2(2n−1) suchθi j such parameters. Unfortunately, this corresponds to

1Why? See Chapter 5 of edition 1 ofMachine Learning.
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two distinct parameters foreachof the distinct instances in the instance space for
X! Furthermore, to obtain reliable estimates of each of these parameters, we will
need to observe each of these distinct instances multiple times! This is clearly
unrealistic in most practical learning domains.

2 Naive Bayes Algorithm

Given the intractable sample complexity for learning Bayesian classifiers, we must
look for ways to reduce this complexity. The Naive Bayes classifier does this
by making a conditional independence assumption that dramatically reduces the
number of parameters to be estimated when modelingP(X|Y), from our original
2(2n−1) to just2n.

2.1 Conditional Independence

Definition: Given random variablesX,Y and Z, we sayX is con-
ditionally independent of Y given Z, if and only if the probability
distribution governingX is independent of the value ofY given Z;
that is

(∀i, j,k)P(X = xi |Y = y j ,Z = zk) = P(X = xi |Z = zk)

As an example, consider three boolean random variables to describe the current
weather:Rain, ThunderandLightning. We might reasonably assert thatThunder
is independent ofRain given Lightning. Because we knowLightning causes
Thunder, once we known whether or not there isLightning, no additional in-
formation aboutThunderis provided by the value ofRain. Of course there is
a clear dependence ofThunderon Rain in general, but there is noconditional
dependence once we know the value ofLightning.

2.2 Derivation of Naive Bayes Algorithm

The Naive Bayes algorithm is a classification algorithm based on Bayes rule, that
assumes the attributesX1 . . .Xn are all conditionally independent of one another,
givenY. The value of this assumption is that it dramatically simplifies the rep-
resentation ofP(X|Y), and the problem of estimating it from the training data.
Consider, for example, the case whereX = 〈X1,X2〉. In this case

P(X|Y) = P(X1,X2|Y)
= P(X1|X2,Y)P(X2|Y)
= P(X1|Y)P(X2|Y)

Where the second line follows from a general property of probabilities, and the
third line follows directly from our above definition of conditional independence.
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More generally, whenX containsn attributes which are conditionally independent
of one another givenY, we have

P(X1 . . .Xn|Y) =
n

∏
i=1

P(Xi |Y) (1)

Notice that whenY and theXi are boolean variables, we need only2n parameters
to defineP(Xi = xik|Y = y j) for the necessaryi, j,k. This is a dramatic reduction
compared to the2(2n−1) parameters needed to characterizeP(X|Y) if we make
no conditional independence assumption.

Let us now derive the Naive Bayes algorithm, assuming in general thatY is
any discrete-valued variable, and the attributesX1 . . .Xn are any discrete or real-
valued attributes. Our goal is to train a classifier that will output the probability
distribution over possible values ofY, for each new instanceX that we ask it to
classify. The expression for the probability thatY will take on itskth possible
value, according to Bayes rule, is

P(Y = yk|X1 . . .Xn) =
P(Y = yk)P(X1 . . .Xn|Y = yk)

∑ j P(Y = y j)P(X1 . . .Xn|Y = y j)

where the sum is taken over all possible valuesy j of Y. Now, using equation (1)
we can rewrite this as

P(Y = yk|X1 . . .Xn) =
P(Y = yk)∏i P(Xi |Y = yk)

∑ j P(Y = y j)∏i P(Xi |Y = y j)
(2)

Equation (2) is the fundamental equation for the Naive Bayes classifier. Given a
new instanceXnew = 〈X1 . . .Xn〉, this equation shows how to calculate the prob-
ability that Y will take on any given value, given the observed attribute values
of Xnew and given the distributionsP(Y) andP(Xi |Y) estimated from the training
data. If we are interested only in the most probable value ofY, then we have

Y← argmax
yk

P(Y = yk)∏i P(Xi |Y = yk)
∑ j P(Y = y j)∏i P(Xi |Y = y j)

(3)

2.3 Naive Bayes for Discrete-Valued Inputs

To summarize, let us precisely define the Naive Bayes learning algorithm by de-
scribing the parameters that must be estimated, and how we may estimate them.

When then input attributesXi each take onM possible discrete values, and
Y is a discrete variable taking onR possible values, then our learning task is to
estimate two sets of parameters. The first is

θi jk = P(Xi = xi j |Y = yk) (4)

for each input attributeXi , each of it’s possible valuesxi j , and each of the possible
valuesyk of Y. Note there will benMRsuch parameters, and note also that only
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n(M−1)R of these are independent, given that they must satisfy1 = ∑ j θi jk for
each pair ofi,k values.

In addition, we must estimate parameters that define the prior probability over
Y:

πk = P(Y = yk) (5)

Note there areR of these parameters,(R−1) of which are independent.
We can estimate these parameters using either maximum likelihood estimates

(based on calculating the relative frequencies of the different events in the data), or
using Bayesian estimates (augmenting this frequency data with prior distributions
over the values of these parameters).

Maximum likelihood estimates forθi jk given a set of training examplesD are
given by

θi jk = P̂(Xi = xi j |Y = yk) =
#D{Xi = xi j ∧Y = yk}

#D{Y = yk}
(6)

where the#D{x} operator returns the number of elements in the setD that satisfy
propertyx.

One danger of this maximum likelihood estimate is that it can sometimes result
in θ estimates of zero, if the data does not contain any training examples satisfying
the condition. To avoid this, it is common to use the following smoothed estimate

θi jk = P̂(Xi = xi j |Y = yk) =
#D{Xi = xi j ∧Y = yk}+ l

#D{Y = yk}+ lR
(7)

whereR is the number of distinct valuesY can take on, andl determines the
strength of this smoothing (i.e., a number of hallucinated examples). This cor-
responds to a MAP estimate forθi jk using a Dirichlet prior with equal-valued
parameters. Ifl is set to 1, this approach is called Laplace smoothing.

Maximum likelihood estimates forπk are

πk = P̂(Y = yk) =
#D{Y = yk}

|D| (8)

where|D| denotes the number of elements in the training setD.

2.4 Naive Bayes for Continuous Inputs

In the case of continuous inputsXi , we must choose some other representation
for the distributionsP(Xi |Y). One common approach is to assume that for each
possible discrete valueyk of Y, the distribution of each continuousXi is Gaussian,
and is defined by a mean and standard deviation specific toi andk. In this case,
we must estimate the mean and standard deviation of each of these Gaussians:

µik = E[Xi |Y = yk] (9)

σ2
ik = E[(Xi−µik)2|Y = yk] (10)



Copyright c© 2005, Tom M. Mitchell. 6

for each attributeXi and each possible valueyk of Y. Note there are2nRof these
parameters, all of which must be estimated independently.

Of course we must also estimate the priors onY as well

πk = P(Y = yk) (11)

The above model summarizes a Gaussian Naive Bayes classifier, which as-
sumes that the dataX is generated by a mixture of class-conditional (i.e., depen-
dent on the value of the class variableY) Gaussians. Furthermore, the Naive Bayes
assumption introduces the additional constraint that the attribute valuesXi are in-
dependent of one another within each of these mixture components. In particular
problem settings where we have additional information, we might introduce addi-
tional assumptions to further restrict the number of parameters or the complexity
of estimating them. For example, if we have reason to believe that noise in the
observedXi comes from a common source, then we might further assume that all
of theσik are identical, regardless of the attributei or classk (see the homework
exercise on this issue).

Again, we can estimate these parameters using either maximum likelihood or
Bayesian estimates. The maximum likelihood estimator forµik is

µ̂ik =
1

∑ j δ(Y j = yk)
∑

j
X j

i δ(Y j = yk) (12)

where the superscriptj refers to thejth training example, and whereδ(Y = yk) is
1 if Y = yk and 0 otherwise. Note the role ofδ here is to select only those training
examples for whichY = yk.

The maximum likelihood estimator forσ2
ik is

σ̂2
ik =

1

∑ j δ(Y j = yk)
∑

j
(X j

i − µ̂ik)2δ(Y j = yk) (13)

This maximum likelihood estimator is biased, so the minimum variance unbi-
ased estimator (MVUE) is sometimes used instead. It is

σ̂2
ik =

1
(∑ j δ(Y j = yk))−1∑

j
(X j

i − µ̂ik)2δ(Y j = yk) (14)

3 Logistic Regression

Logistic Regression is an approach to learning functions of the formf : X→Y, or
P(Y|X) in the case whereY is discrete-valued,P(Y) is governed by a multinomial,
andX = 〈X1 . . .Xn〉 is any vector containing discrete or continuous variables. In
this section we will primarily consider the case whereY is a boolean variable, in
order to simplify notation. In the final subsection we extend our treatment to the
case whereY takes on any finite number of discrete values.
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Logistic Regression assumes a parametric form for the distributionP(Y|X),
then directly estimates its parameters from the training data. The parametric
model assumed by Logistic Regression in the case whereY is boolean is:

P(Y = 1|X) =
1

1+exp(w0 +∑n
i=1wiXi)

(15)

and

P(Y = 0|X) =
exp(w0 +∑n

i=1wiXi)
1+exp(w0 +∑n

i=1wiXi)
(16)

Notice that equation (16) follows directly from equation (15), because the sum of
these two probabilities must equal 1.

One highly convenient property of this form forP(Y|X) is that it leads to a
simple linear expression for classification. To classify any givenX we generally
want to assign the valueyk that maximizesP(Y = yk|X). Put another way, we
assign the labelY = 0 if the following condition holds:

1 <
P(Y = 0|X)
P(Y = 1|X)

substituting from equations (15) and (16), this becomes

1 < exp(w0 +
n

∑
i=1

wiXi)

and taking the natural log of both sides we have a linear classification rule that
assigns labelY = 0 if X satisfies

0 < w0 +
n

∑
i=1

wiXi (17)

and assignsY = 1 otherwise.
Interestingly, the parametric form ofP(Y|X) used by Logistic Regression is

precisely the form implied by the assumptions of a Gaussian Naive Bayes classi-
fier. Therefore, we can view Logistic Regression as a closely related alternative to
GNB, though the two can produce different results in many cases.

3.1 Form of P(Y|X) for Gaussian Naive Bayes Classifier

Here we derive the form ofP(Y|X) entailed by the assumptions of a Gaussian
Naive Bayes (GNB) classifier, showing that it is precisely the form used by Logis-
tic Regression and summarized in equations (15) and (16). In particular, consider
a GNB based on the following modeling assumptions:

• Y is boolean, governed by a Binomial distribution, with parameterπ =
P(Y = 1)

• X = 〈X1 . . .Xn〉, where eachXi is a continuous random variable
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• For eachXi , P(Xi |Y = yk) is a Gaussian distribution of the formN(µik,σi)

• For all i and j 6= i, Xi andXj are conditionally independent givenY

Note here we are assuming the standard deviationsσi vary from attribute to at-
tribute, but do not depend onY.

We now derive the parametric form ofP(Y|X) that follows from this set of
GNB assumptions. In general, Bayes rule allows us to write

P(Y = 1|X) =
P(Y = 1)P(X|Y = 1)

P(Y = 1)P(X|Y = 1)+P(Y = 0)P(X|Y = 0)

Dividing the both the numerator and denominator by the numerator yields:

P(Y = 1|X) =
1

1+ P(Y=0)P(X|Y=0)
P(Y=1)P(X|Y=1)

or equivalently

P(Y = 1|X) =
1

1+exp(ln P(Y=0)P(X|Y=0)
P(Y=1)P(X|Y=1))

Because of our conditional independence assumption we can write this

P(Y = 1|X) =
1

1+exp(ln P(Y=0)
P(Y=1) +∑i ln

P(Xi |Y=0)
P(Xi |Y=1))

=
1

1+exp(ln 1−π
π +∑i ln

P(Xi |Y=0)
P(Xi |Y=1))

(18)

Note the final step expressesP(Y = 0) andP(Y = 1) in terms of the binomial
parameterπ.

Now consider just the summation in the denominator of equation (18). Given
our assumption thatP(Xi |Y = yk) is Gaussian, we can expand this term as follows:

∑
i

ln
P(Xi |Y = 0)
P(Xi |Y = 1)

= ∑
i

ln

1√
2πσ2

i

exp
(−(Xi−µi0)2

2σ2
i

)

1√
2πσ2

i

exp
(−(Xi−µi1)2

2σ2
i

)

= ∑
i

lnexp

(
(Xi−µi1)2− (Xi−µi0)2

2σ2
i

)

= ∑
i

(
(Xi−µi1)2− (Xi−µi0)2

2σ2
i

)

= ∑
i

(
(X2

i −2Xiµi1 +µ2
i1)− (X2

i −2Xiµi0−µ2
i0)

2σ2
i

)

= ∑
i

(
(2Xi(µi0−µi1)+µ2

i0 +µ2
i1)

2σ2
i

)

= ∑
i

(
µi0−µi1

σ2
i

Xi +
µ2

i0 +µ2
i1)

2σ2
i

)
(19)
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Note this expression is a linear weighted sum of theXi ’s. Substituting expression
(19) back into equation (18), we have

P(Y = 1|X) =
1

1+exp(ln 1−π
π +∑i

(
µi0−µi1

σ2
i

Xi +
µ2

i0+µ2
i1)

2σ2
i

)
)

(20)

Or equivalently,

P(Y = 1|X) =
1

1+exp(w0 +∑n
i=1wiXi)

(21)

where the weightsw1 . . .wn are given by

wi =
µi0−µi1

σ2
i

and where

w0 = ln
1−π

π
+∑

i

µ2
i0 +µ2

i1

2σ2
i

Also we have

P(Y = 0|X) = 1−P(Y = 1|X) =
exp(w0 +∑n

i=1wiXi)
1+exp(w0 +∑n

i=1wiXi)
(22)

3.2 Estimating Parameters for Logistic Regression

The above subsection proves thatP(Y|X) can be expressed in the parametric form
given by equations (15) and (16), under the Gaussian Naive Bayes assumptions
detailed there. It also provides the value of the weightswi in terms of the param-
eters estimated by the GNB classifier. Here we describe an alternative method
for estimating these weights. We are interested in this alternative for two reasons.
First, the form ofP(Y|X) assumed by Logistic Regression holds in many problem
settings beyond the GNB problem detailed in the above section, and we wish to
have a general method for estimating it in a more broad range of cases. Second, in
many cases we may suspect the GNB assumptions are not perfectly satisfied. In
this case we may wish to estimate thewi parameters directly from the data, rather
than going through the intermediate step of estimating the GNB parameters which
forces us to adopt its more stringent modeling assumptions.

One reasonable approach to training Logistic Regression is to choose param-
eter values that maximize the conditional data likelihood. The conditional data
likelihood is the probability of the observedY values in the training data, condi-
tioned on their correspondingX values. We choose parametersW that satisfy

W← argmax
W

∏
l

P(Yl |Xl ,W)

whereW = 〈w0,w1 . . .wn〉 is the vector of parameters to be estimated,Yl denotes
the observed value ofY in the l th training example, andXl denotes the observed
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value ofX in the l th training example. The expression to the right of theargmax
is the conditional data likelihood. Here we includeW in the conditional, to em-
phasize that the expression is a function of theW we are attempting to maximize.

Equivalently, we can work with the log of the conditional likelihood:

W← argmax
W

∑
l

lnP(Yl |Xl ,W)

This conditional data log likelihood, which we will denotel(W) can be written
as

l(W) = ∑
l

Yl lnP(Yl = 1|Xl ,W)+(1−Yl ) lnP(Yl = 0|Xl ,W)

Note here we are utilizing the fact thatY can take only values 0 or 1, so only one
of the two terms in the expression will be non-zero for any givenYl .

To keep our derivation consistent with common usage, we will in this section
flip the assignment of the boolean variableY so that we assign

P(Y = 0|X) =
1

1+exp(w0 +∑n
i=1wiXi)

(23)

and

P(Y = 1|X) =
exp(w0 +∑n

i=1wiXi)
1+exp(w0 +∑n

i=1wiXi)
(24)

In this case, we can reexpress the log of the conditional likelihood as:

l(W) = ∑
l

Yl lnP(Yl = 1|Xl ,W)+(1−Yl ) lnP(Yl = 0|Xl ,W)

= ∑
l

Yl ln
P(Yl = 1|Xl ,W)
P(Yl = 0|Xl ,W)

+ lnP(Yl = 0|Xl ,W)

= ∑
l

Yl (w0 +
n

∑
i

wiX
l
i )− ln(1+exp(w0 +

n

∑
i

wiX
l
i ))

whereXl
i denotes the value ofXi for the l th training example. Note the subscript

l is not related to the log likelihood functionl(W).
Unfortunately, there is no closed form solution to maximizingl(W) with re-

spect toW. Therefore, one common approach is to use gradient ascent, in which
we work with the gradient, which is the vector of partial derivatives. Theith
component of this vector has the form

∂l(W)
∂wi

= ∑
l

Xl
i (Y

l − P̂(Yl = 1|Xl ,W))

whereP̂(Yl |Xl ,W) is the Logistic Regression prediction using equations (23) and
(24) and the weightsW. To accommodate weightw0, we assume an illusory
X0 = 1 for all l . This expression for the derivative has an intuitive interpretation:
the term inside the parentheses is simply the prediction error; that is, the difference
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between the observedYl and its predicted probability! Note ifYl = 1 then we wish
for P̂(Yl = 1|Xl ,W) to be 1, whereas ifYl = 0 then we prefer that̂P(Yl = 1|Xl ,W)
be 0 (which makeŝP(Yl = 0|Xl ,W) equal to 1). This error term is multiplied by
the value ofXl

i , which accounts for the magnitude of thewiXl
i term in making this

prediction.
Given this formula for the derivative of eachwi , we can use standard gradient

ascent to optimize the weightsW. Beginning with initial weights of zero, we
repeatedly update the weights in the direction of the gradient, changing theith
weight according to

wi ← wi +η∑
l

Xl
i (Y

l − P̂(Yl = 1|Xl ,W))

whereη is a small constant (e.g.,0.01) which determines the step size. Because
the conditional log likelihoodl(W) is a concave function inW, this gradient ascent
procedure will converge to a global maximum. Gradient ascent is described in
greater detail, for example, in Chapter 4 of Mitchell (1997). In many cases where
computational efficiency is important it is common to use a variant of gradient
ascent called conjugate gradient ascent, which often converges more quickly.

3.3 Regularization in Logistic Regression

Overfitting the training data is a problem that can arise in Logistic Regression,
especially when data is very high dimensional and training data is sparse. One
approach to reducing overfitting isregularization, in which we create a modified
“penalized log likelihood function,” which penalizes large values ofW. One ap-
proach is to use the penalized log likelihood function

W← argmax
W

∑
l

lnP(Yl |Xl ,W)− λ
2
||W||2

which adds a penalty proportional to the magnitude ofW. Hereλ is a constant that
determines the strength of this penalty term. The penalty term can be interpreted
as the result of imposing a Normal prior onW, with zero mean, and whose vari-
ance is related to1/λ. Note whenP(W) is normal with mean zero, thenlnP(W)
can yield a term proportional to||W||2.

Given this penalized log likelihood function, it is easy to rederive the gradient
descent rule. The derivative of this penalized log likelihood function is similar to
our earlier derivative, with one additional penalty term

∂l(W)
∂wi

= ∑
l

Xl
i (Y

l − P̂(Yl = 1|Xl ,W))−λwi

which gives us the modified gradient descent rule

wi ← wi +η∑
l

Xl
i (Y

l − P̂(Yl = 1|Xl ,W))−ηλwi (25)

In cases where we have prior knowledge about likely values for specificwi , it
is possible to derive a similar penalty term by using a Normal prior onW with a
non-zero mean.
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3.4 Logistic Regression for Non-Boolean Functions

Above we considered using Logistic Regression to learnP(Y|X) only for the case
whereY is a boolean variable. More generally, ifY can take on any of the discrete
values{y1, . . .yK}, then the form ofP(Y = yk|X) for Y = y1,Y = y2, . . .Y = yK−1

is:

P(Y = yk|X) =
exp(wk0 +∑n

i=1wkiXi)
1+∑K−1

j=1 exp(w j0 +∑n
i=1w ji Xi)

(26)

WhenY = yK, it is

P(Y = yK|X) =
1

1+∑K−1
j=1 exp(w j0 +∑n

i=1w ji Xi)
(27)

Herew ji denotes the weight associated with thejth classY = y j and with input
Xi . It is easy to see that our earlier expressions for the case whereY is boolean
(equations (15) and (16)) are a special case of the above expressions. Note also
that the form of the expression forP(Y = yK|X) assures that[∑K

k=1P(Y = yk|X)] =
1.

The primary difference between these expressions and those for booleanY is
that whenY takes onK possible values, we constructK−1 different linear expres-
sions to capture the distributions for the different values ofY. The distribution for
the final,Kth, value ofY is simply one minus the probabilities of the firstK−1
values.

In this case, the gradient descent rule with regularization becomes:

w ji ← w ji +η∑
l

Xl
i (δ(Yl = y j)− P̂(Yl = y j |Xl ,W))−ηλw ji (28)

whereδ(Yl = y j) = 1 if the l th training value,Yl , is equal toy j , andδ(Yl = y j) = 0
otherwise. Note our earlier learning rule, equation (25), is a special case of this
new learning rule, whenK = 2. As in the case forK = 2, the quantity inside the
parentheses can be viewed as an error term which goes to zero if the estimated
conditional probabilityP̂(Yl = y j |Xl ,W)) perfectly matches the observed value
of Yl .

4 Relationship Between Naive Bayes Classifiers and
Logistic Regression

To summarize, Logistic Regression directly estimates the parameters ofP(Y|X),
whereas Naive Bayes directly estimates parameters forP(Y) andP(X|Y). We of-
ten call the former a discriminative classifier, and the latter a generative classifier.

We showed above that the assumptions of one variant of a Gaussian Naive
Bayes classifier imply the parametric form ofP(Y|X) used in Logistic Regres-
sion. Furthermore, we showed that the parameterswi in Logistic Regression can
be expressed in terms of the Gaussian Naive Bayes parameters. In fact, if the GNB
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assumptions hold, then asymptotically (as the number of training examples grows
toward infinity) the GNB and Logistic Regression converge toward identical clas-
sifiers.

The two algorithms also differ in interesting ways:

• When the GNB modeling assumptions do not hold, Logistic Regression and
GNB typically learn different classifier functions. In this case, the asymp-
totic (as the number of training examples approach infinity) classification
accuracy for Logistic Regression is often better than the asymptotic accu-
racy of GNB. Although Logistic Regression is consistent with the Naive
Bayes assumption that the input featuresXi are conditionally independent
givenY, it is not rigidly tied to this assumption as is Naive Bayes. Given
data that disobeys this assumption, the conditional likelihood maximization
algorithm for Logistic Regression will adjust its parameters to maximize the
fit to (the conditional likelihood of) the data, even if the resulting parameters
are inconsistent with the Naive Bayes parameter estimates.

• GNB and Logistic Regression converge toward their asymptotic accuracies
at different rates. As Ng & Jordan (2002) show, GNB parameter estimates
converge toward their asymptotic values in orderlogn examples, wheren
is the dimension ofX. In contrast, Logistic Regression parameter estimates
converge more slowly, requiring ordern examples. The authors also show
that in several data sets Logistic Regression outperforms GNB when many
training examples as available, but GNB outperforms Logistic Regression
when training data is scarce.

5 What You Should Know

The main points of this chapter include:

• We can use Bayes rule as the basis for designing learning algorithms (func-
tion approximators), as follows: Given that we wish to learn some target
function f : X → Y, or equivalently,P(Y|X), we use the training data to
learn estimates ofP(X|Y) andP(Y). New X examples can then be classi-
fied using these estimated probability distributions, plus Bayes rule. This
type of classifier is called agenerativeclassifier, because we can view the
distributionP(X|Y) as describing how to generate random instancesX con-
ditioned on the target attributeY.

• Learning Bayes classifiers typically requires an unrealistic number of train-
ing examples (i.e., more than|X| training examples whereX is the instance
space) unless some form of prior assumption is made. TheNaive Bayes
classifier assumes all attributes describingX are conditionally independent
givenY. This assumption dramatically reduces the number of parameters
that must be estimated to learn the classifier. Naive Bayes is a widely used
learning algorithm, for both discrete and continuousX.
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• WhenX is a vector of discrete-valued attributes, Naive Bayes learning al-
gorithms can be viewed as linear classifiers; that is, every such Naive Bayes
classifier corresponds to a hyperplane decision surface inX. The same state-
ment holds for Gaussian Naive Bayes classifiers if variance of each feature
is modeled independent of the class (i.e., ifσik = σi).

• Logistic Regression is a function approximation algorithm that uses training
data to directly estimateP(Y|X), in contrast to Naive Bayes. In this sense,
Logistic regression is often referred to as adiscriminativeclassifier because
we can view the distributionP(Y|X) as directly discriminating the value of
the target valueY for any given instanceX.

• Logistic Regression is a linear classifier overX. The linear classifiers pro-
duced by Logistic Regression and Gaussian Naive Bayes are identical in the
limit as the number of training examples approaches infinity,providedthe
Naive Bayes assumptions hold. However, if these assumptions do not hold,
the Naive Bayes bias will cause it to perform less accurately than Logistic
Regression, in the limit. Put another way, Naive Bayes is learning algorithm
with greater bias, but lower variance, compared to Logistic Regression. If
this bias is appropriate given the actual data, Naive Bayes will be preferred.
Otherwise, Logistic Regression will be preferred.

• We can view function approximation learning algorithms as statistical esti-
mators of functions, or of conditional distributionsP(Y|X). They estimate
P(Y|X) from a sample of training data. As with other statistical estima-
tors, it can be useful to characterize learning algorithms by their bias and
expected variance, taken over different samples of training data.

6 Further Reading

Wasserman (2004) describes a Reweighted Least Squares method for Logistic
Regression. Ng and Jordan (2002 ) provide a theoretical and experimental com-
parison of the Naive Bayes classifier and Logistic Regression.

EXERCISES

1. At the beginning of the chapter we remarked that “A hundred training ex-
amples will usually suffice to obtain an estimate ofP(Y) that is within a
few percent of the correct value.” Describe conditions under which the 95%
confidence interval for our estimate ofP(Y) will be ±0.02.

2. Consider learning a functionX→Y whereY is boolean, whereX = 〈X1,X2〉,
and whereX1 is a boolean variable andX2 a continuous variable. State the
parameters that must be estimated to define a Naive Bayes classifier in this
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case. Give the formula for computingP(Y|X), in terms of these parameters
and the feature valuesX1 andX2.
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