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1 Learning Classifiers based on Bayes Rule

Here we consider the relationship between supervised learning, or function ap-
proximation problems, and Bayesian reasoning. We begin by considering how to
design learning algorithms based on Bayes rule.

Consider a supervised learning problem in which we wish to approximate an
unknown target functiorf : X — Y, or equivalentlyP(Y|X). To begin, we will
assumey is a boolean-valued random variable, aXds a vector containing
boolean attributes. In other word¥,= (X3, Xz...,X,), whereX; is the random
variable denoting theattribute ofX.

Applying Bayes rule, we see thBtY = y;|X) can be represented as
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P(X =x|Y =¥i)P(Y =y)
> i PX=x|Y =yj)P(Y =vyj)

whereym, represents theith possible value foy, and where the summation in the
denominator is over all legal values of the random variable

One way to learrP(Y|X) is to use the training data to estim&éX|Y) and
P(Y). We can then use these estimates, together with Bayes rule above, to deter-
mineP(Y|X = xi) for any new instancsg.

P(Y = Vil X =x¢) =

A NOTE ON NOTATION: We will consistently use upper case symbols (e.g.,
X) to refer to random variables, including both vector and non-vector variables.
If X is a vector, then we use subscripts (eXj.to refer to each random variable
in X). We use lower case symbols to refenaluesof random variables (e.g.,
Xi = xij may refer to random variabl¥ taking on itsjth possible value). We
will write E[X] to refer to the expected value ¥f We use superscripts to index
training examples (e.gX;' refers to the value of the random variabtein the jth
training example.). We us&X) to denote an “indicator” function whose value is
1 if its logical argumenk is true, and whose value is O otherwise.

1.1 Unbiased Learning of Bayes Classifiers is Impractical

If we are going to train a Bayes classifier by estimati{e<|Y) andP(Y), then

it is reasonable to ask how much training data will be required to obtain reliable
estimates of these distributions. Let us assume training examples are generated
by drawing instances at random from an unknown underlying distribiR{o%),

then allowing a teacher to label this example withyitgalue.

A hundred independently drawn training examples will usually suffice to ob-
tain a maximum likelihood estimate &f(Y) that is within a few percent of its
correct valué. However, accurately estimati® X|Y) typically requires many
more examples. To see why, consider the number of parameters we must estimate
whenY is boolean anK is a vector ofn boolean attributes. In this case, we need
to estimate a set of parameters

Bij = P(X=x[Y =Yyj)

where the index takes or2" possible values (one for each of the possible vector
values 0fX), andj takes on 2 possible values. Therefore, we will need to estimate
approximately2"t! parameters. To calculate the exact number of required param-
eters, note for any fixegl, the sum over of 6;; must be one. Therefore, for any
particular valugyj, and the2" possible values of;, we need compute onB — 1
independent parameters. Given the two possible value$,fare must estimate

a total of2(2" — 1) such®;; such parameters. Unfortunately, this corresponds to

lWhy? See Chapter 5 of edition 1 bfachine Learning
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two distinct parameters farachof the distinct instances in the instance space for
X! Furthermore, to obtain reliable estimates of each of these parameters, we will
need to observe each of these distinct instances multiple times! This is clearly
unrealistic in most practical learning domains.

2 Naive Bayes Algorithm

Given the intractable sample complexity for learning Bayesian classifiers, we must
look for ways to reduce this complexity. The Naive Bayes classifier does this
by making a conditional independence assumption that dramatically reduces the
number of parameters to be estimated when mod&igY ), from our original
2(2"—1) to just2n.

2.1 Conditional Independence

Definition: Given random variableX,Y and Z, we sayX is con-

ditionally independent of Y given Z, if and only if the probability
distribution governingX is independent of the value of given Z;

that is

(Vi,j,k)P(X:xi]Y:yj,Z:zk) =P(X =x|Z=1%)

As an example, consider three boolean random variables to describe the current
weather:Rain T hunderandLightning We might reasonably assert tAidhunder

is independent oRain given Lightning Because we knoviLightning causes
Thunder once we known whether or not thereligghtning no additional in-
formation aboufTl hunderis provided by the value dRain Of course there is

a clear dependence dthunderon Rainin general, but there is noonditional
dependence once we know the value_gfhtning

2.2 Derivation of Naive Bayes Algorithm

The Naive Bayes algorithm is a classification algorithm based on Bayes rule, that
assumes the attributeg . .. X, are all conditionally independent of one another,
givenY. The value of this assumption is that it dramatically simplifies the rep-
resentation oP(X|Y), and the problem of estimating it from the training data.
Consider, for example, the case wh&re- (X1,X2). In this case

PX[Y) = P(Xg,X[Y)
= P(X1|X2,Y)P(X2|Y)
= P(X|Y)P(X2[Y)

Where the second line follows from a general property of probabilities, and the
third line follows directly from our above definition of conditional independence.
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More generally, wheiX containgn attributes which are conditionally independent
of one another giveM, we have

- XalY) = rlP X[Y) 1)

Notice that wherY and theX; are boolean variables, we need oBlyparameters
to defineP(X = xk|Y = ;) for the necessary j,k. This is a dramatic reduction
compared to th@(2" — 1) parameters needed to characte®Z¥|Y) if we make
no conditional independence assumption.

Let us now derive the Naive Bayes algorithm, assuming in general/tiat
any discrete-valued variable, and the attributes. . X, are any discrete or real-
valued attributes. Our goal is to train a classifier that will output the probability
distribution over possible values ¥f, for each new instanc¥ that we ask it to
classify. The expression for the probability thatwill take on itskth possible
value, according to Bayes rule, is

P(Y = yi)P(X1... %Y = wk)
SiP(Y =y))P(Xi... X0|Y =vyj)

where the sum is taken over all possible valygsf Y. Now, using equation (1)
we can rewrite this as

P(Y = yi[X1... Xn) =

P(Y = yi) [1i P(X[Y = y)
SiP(Y =y MiPXIY =yj)

Equation (2) is the fundamental equation for the Naive Bayes classifier. Given a
new instanceX"®W = (X;...X,), this equation shows how to calculate the prob-
ability thatY will take on any given value, given the observed attribute values
of X"*Wand given the distributionB(Y) andP(X|Y) estimated from the training
data. If we are interested only in the most probable valug, dhen we have

P(Y =yi) i PX|Y = yk)
Y «—
S P = yj) T POSIY = v))

PIY =yilX1... Xn) = (2)

3)

2.3 Naive Bayes for Discrete-Valued Inputs

To summarize, let us precisely define the Naive Bayes learning algorithm by de-
scribing the parameters that must be estimated, and how we may estimate them.
When then input attributesX; each take oM possible discrete values, and
Y is a discrete variable taking dR possible values, then our learning task is to

estimate two sets of parameters. The first is

Bijk = P(Xi = xij[Y = Yk) (4)

for each input attribut&;, each of it's possible valuegj, and each of the possible
valuesyi of Y. Note there will benMR such parameters, and note also that only
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n(M —1)R of these are independent, given that they must salisfyy ; §;j for
each pair of, k values.
In addition, we must estimate parameters that define the prior probability over
Y:
T = P(Y = yk) (5)

Note there ar® of these parameterR— 1) of which are independent.

We can estimate these parameters using either maximum likelihood estimates
(based on calculating the relative frequencies of the different events in the data), or
using Bayesian estimates (augmenting this frequency data with prior distributions
over the values of these parameters).

Maximum likelihood estimates fddjjx given a set of training exampl&sare
given by
#D{X =xj A\Y =y} (©)

#D{Y = yk}
where the#D{x} operator returns the number of elements in thédstitat satisfy
propertyx.

One danger of this maximum likelihood estimate is that it can sometimes result
in B estimates of zero, if the data does not contain any training examples satisfying
the condition. To avoid this, it is common to use the following smoothed estimate

5 #D{X = Xij AY =Yk} +I
Bijk = P(Xi = Xij|[Y = yk) = {#D{szyk}—i-lR}

Bijk = P(X = XY = yi) =

(7)

whereR is the number of distinct valueg can take on, andl determines the
strength of this smoothing (i.e., a number of hallucinated examples). This cor-
responds to a MAP estimate féfjx using a Dirichlet prior with equal-valued
parameters. IFis set to 1, this approach is called Laplace smoothing.

Maximum likelihood estimates fam, are

_ #D{Y = W}

where|D| denotes the number of elements in the trainindset

2.4 Naive Bayes for Continuous Inputs

In the case of continuous inpu¥, we must choose some other representation
for the distributionsP(X;|Y). One common approach is to assume that for each
possible discrete valug of Y, the distribution of each continuoXgis Gaussian,
and is defined by a mean and standard deviation specifiandk. In this case,
we must estimate the mean and standard deviation of each of these Gaussians:

Mk = EDXIY = yi] 9)
0% = E[(X — Hik)?[Y = yi] (10)
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for each attribute$; and each possible valyg of Y. Note there ar@nR of these
parameters, all of which must be estimated independently.
Of course we must also estimate the priorsroas well

T = P(Y = yk) (11)

The above model summarizes a Gaussian Naive Bayes classifier, which as-
sumes that the data is generated by a mixture of class-conditional (i.e., depen-
dent on the value of the class varialleGaussians. Furthermore, the Naive Bayes
assumption introduces the additional constraint that the attribute V&laes in-
dependent of one another within each of these mixture components. In particular
problem settings where we have additional information, we might introduce addi-
tional assumptions to further restrict the number of parameters or the complexity
of estimating them. For example, if we have reason to believe that noise in the
observedX; comes from a common source, then we might further assume that all
of the gjk are identical, regardless of the attribuiter classk (see the homework
exercise on this issue).

Again, we can estimate these parameters using either maximum likelihood or
Bayesian estimates. The maximum likelihood estimatopiois

1

ik = —Z)/k) ;Xijs(Yj = Yk) (12)

> o(Y!

where the superscrigtrefers to thejth training example, and whed8Y = yy) is
1if Y = yx and 0 otherwise. Note the role dhere is to select only those training
examples for whicly = yj.

The maximum likelihood estimator farg, is

O = o > (¢ — W)Y = yi) (13)

This maximum likelihood estimator is biased, so the minimum variance unbi-
ased estimator (MVUE) is sometimes used instead. It is

D ~ 2
=I5 50y 12 — D) 23(Y! = i) (14)

3 Logistic Regression

Logistic Regression is an approach to learning functions of the ford— Y, or
P(Y|X) in the case wher¥ is discrete-valued?(Y) is governed by a multinomial,
andX = (X;...Xn) is any vector containing discrete or continuous variables. In
this section we will primarily consider the case wh#ré a boolean variable, in
order to simplify notation. In the final subsection we extend our treatment to the
case wher& takes on any finite number of discrete values.
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Logistic Regression assumes a parametric form for the distrib&{¥mnx),
then directly estimates its parameters from the training data. The parametric
model assumed by Logistic Regression in the case whé&doolean is:
1

Py =1]X) = 1+expwo+ Y wiXi) (15)

and N
P(Y — 0|x) = - PO+ 5i=g WiX)) (16)
1+exp(wo+ Sl wiXi)

Notice that equation (16) follows directly from equation (15), because the sum of
these two probabilities must equal 1.

One highly convenient property of this form f&(Y|X) is that it leads to a
simple linear expression for classification. To classify any gi¥ene generally
want to assign the valug, that maximizesP(Y = yi|X). Put another way, we

assign the label = 0 if the following condition holds:

P(Y = 0X)
P(Y = 1]X)

1<

substituting from equations (15) and (16), this becomes
n
1 < exp(wo+ ZlWin)
i=

and taking the natural log of both sides we have a linear classification rule that
assigns labeY = 0 if X satisfies

0<wo+ _Zwoq (17)

and assign¥ = 1 otherwise.

Interestingly, the parametric form &f(Y|X) used by Logistic Regression is
precisely the form implied by the assumptions of a Gaussian Naive Bayes classi-
fier. Therefore, we can view Logistic Regression as a closely related alternative to
GNB, though the two can produce different results in many cases.

3.1 Form of P(Y|X) for Gaussian Naive Bayes Classifier

Here we derive the form dP(Y|X) entailed by the assumptions of a Gaussian
Naive Bayes (GNB) classifier, showing that it is precisely the form used by Logis-
tic Regression and summarized in equations (15) and (16). In particular, consider
a GNB based on the following modeling assumptions:

e Y is boolean, governed by a Binomial distribution, with parametes
P(Y =1)

e X = (X1...X%), where eaclX; is a continuous random variable
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e For eachX;, P(X|Y = yy) is a Gaussian distribution of the forN( i, 0;)

e Foralliandj # i, X andX; are conditionally independent givaéh

Note here we are assuming the standard deviatmngry from attribute to at-
tribute, but do not depend on

We now derive the parametric form &{Y|X) that follows from this set of
GNB assumptions. In general, Bayes rule allows us to write

P(Y = 1)P(X]Y = 1)
P(Y =1)P(X]Y =1)+P(Y =0)P(X]Y =0)
Dividing the both the numerator and denominator by the numerator yields:
1

P(Y = 1|X) =

P(Y =1X) = —sv=opmxv=o
1+ —PEY 1) Ex}vzlg
or equivalently
P(YY = 1|X) = !

P(Y=0)P(X|Y=0
1+ explIn By=rjpeav-1)

Because of our conditional independence assumption we can write this

1
P(Y=1X) = XV=0)
1+exp(|n Y iy +z,ln _1))
1
= (18)
1+exp(|n—+z,ln Q{i (l’g)

Note the final step express€$Y = 0) andP(Y = 1) in terms of the binomial
parametert

Now consider just the summation in the denominator of equation (18). Given
our assumption th&(X;|Y = y) is Gaussian, we can expand this term as follows:

1 (X —Hio)2
P(X[Y = 0) J2? X p(- 207 )

2=y e
ka2 (X — 1En)2
_ Z'nexp(m m)zoiz(x m))

_ (X% — W1)® — (% — Wo)?
a Z ( 20?7 )
2X||J|1+H1> (XiZ—ZXiM'O—Uizo))

202

7(*
- z( (2% “*0_“2*224'“104'#111))
(3

MO—Ml H0+H1)) (19)
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Note this expression is a linear weighted sum ofXlig. Substituting expression
(19) back into equation (18), we have

1
oLl 2 2
1+expin £+, (Mooizmxi + Ho+H1)>)

207

P(Y = 1|X) = (20)

Or equivalently,

1
P T et + 5 wX) @

where the weightss . .. w, are given by

_ Mio — Mi1
of

Wi

and where

Lﬂ+z%+%

wo =1In
0 T 207

|
Also we have
exp(Wo + 3Ly WiX)

P(Y =0[X) =1-P(Y =1|X) = 1-+expwo+ il WiXi) -

3.2 Estimating Parameters for Logistic Regression

The above subsection proves tRaY |X) can be expressed in the parametric form
given by equations (15) and (16), under the Gaussian Naive Bayes assumptions
detailed there. It also provides the value of the weights terms of the param-

eters estimated by the GNB classifier. Here we describe an alternative method
for estimating these weights. We are interested in this alternative for two reasons.
First, the form ofP(Y|X) assumed by Logistic Regression holds in many problem
settings beyond the GNB problem detailed in the above section, and we wish to
have a general method for estimating it in a more broad range of cases. Second, in
many cases we may suspect the GNB assumptions are not perfectly satisfied. In
this case we may wish to estimate tligparameters directly from the data, rather
than going through the intermediate step of estimating the GNB parameters which
forces us to adopt its more stringent modeling assumptions.

One reasonable approach to training Logistic Regression is to choose param-
eter values that maximize the conditional data likelihood. The conditional data
likelihood is the probability of the observétivalues in the training data, condi-
tioned on their corresponding values. We choose parametévshat satisfy

Iy!
W «— arg rUva>1|_| P(Y'| X', W)

whereW = (wp,ws ... W,) is the vector of parameters to be estimaiddenotes
the observed value &f in thelth training example, andl' denotes the observed
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value ofX in thelth training example. The expression to the right of éihgmax

is the conditional data likelihood. Here we includéin the conditional, to em-

phasize that the expression is a function of\ttheve are attempting to maximize.
Equivalently, we can work with the log of the conditional likelihood:

W« argmaxy In PIY'|X!, W)

This conditional data log likelihood, which we will dend{&V) can be written
as
= ZY' InP(Y' = 1]X' W)+ (1-Y"InP(Y' = o|X', W)

Note here we are utilizing the fact thétcan take only values 0 or 1, so only one
of the two terms in the expression will be non-zero for any given

To keep our derivation consistent with common usage, we will in this section
flip the assignment of the boolean varial¥lso that we assign

1
1+exp(wo+ 3Ly WiXi)

P(Y =0[X) = (23)

and
exp(Wo + i1 WiX)

1+exp(wo+ 3, wiXi)
In this case, we can reexpress the log of the conditional likelihood as:

P(Y =1|X) = (24)
(W) = ZY'InP(Y':1|X',W)+(1 YHinPY' = ojx',w)

I I
— ZY'mPEYl;éKI’ ;+| PY' = o|X', W)

— ZY W0+Zw, In(1+exqwo+2w.

Wherexi' denotes the value of; for thelth training example. Note the subscript
| is not related to the log likelihood functidw).

Unfortunately, there is no closed form solution to maximizifg/) with re-
spect toW. Therefore, one common approach is to use gradient ascent, in which
we work with the gradient, which is the vector of partial derivatives. Tthe
component of this vector has the form

ZX, vl =1)x',w))

whereP(Y!|X! W) is the Logistic Regression prediction using equations (23) and
(24) and the weight8V/. To accommodate weightp, we assume an illusory

Xo = 1for all I. This expression for the derivative has an intuitive interpretation:
the term inside the parentheses is simply the prediction error; that is, the difference
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between the observat! and its predicted probability! Note¥f' = 1 then we wish
for P(Y' = 1/X!, W) to be 1, whereas i¥' = 0then we prefer tha@(Y' = 1|X', W)
be 0 (which make®(Y' = 0|X!,W) equal to 1). This error term is multiplied by
the value of!, which accounts for the magnitude of tweX| term in making this
prediction.

Given this formula for the derivative of eagh, we can use standard gradient
ascent to optimize the weigh¥¥y. Beginning with initial weights of zero, we
repeatedly update the weights in the direction of the gradient, changinghthe
weight according to

Wi — Wi + N Z)g' Y =Py = 11X w))

wheren is a small constant (e.d),01) which determines the step size. Because
the conditional log likelihoodi(W) is a concave function iw, this gradient ascent
procedure will converge to a global maximum. Gradient ascent is described in
greater detail, for example, in Chapter 4 of Mitchell (1997). In many cases where
computational efficiency is important it is common to use a variant of gradient
ascent called conjugate gradient ascent, which often converges more quickly.

3.3 Regularization in Logistic Regression

Overfitting the training data is a problem that can arise in Logistic Regression,
especially when data is very high dimensional and training data is sparse. One
approach to reducing overfitting isgularization in which we create a modified
“penalized log likelihood function,” which penalizes large value$\bf One ap-
proach is to use the penalized log likelihood function

A
W argmaxy In PY'|X! W) — EHWHZ

which adds a penalty proportional to the magnitudé/oHereA is a constant that
determines the strength of this penalty term. The penalty term can be interpreted
as the result of imposing a Normal prior W, with zero mean, and whose vari-
ance is related t@/A. Note whenP(W) is normal with mean zero, thdnP(W)
can yield a term proportional tiw||2.

Given this penalized log likelihood function, it is easy to rederive the gradient
descent rule. The derivative of this penalized log likelihood function is similar to

our earlier derivative, with one additional penalty term
W) i Bevl — 11yl .
ow ZX, (Y'—=P(Y' =1|X',W)) — Awj

which gives us the modified gradient descent rule
Wi — Wi + N Z)g' Y' =Py = 1)X' W) — nAw; (25)

In cases where we have prior knowledge about likely values for spegijfit
is possible to derive a similar penalty term by using a Normal priovowith a
non-zero mean.
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3.4 Logistic Regression for Non-Boolean Functions

Above we considered using Logistic Regression to |€4}1X) only for the case
whereY is a boolean variable. More generallyyifcan take on any of the discrete
values{yi,...yk }, then the form oP(Y = y|X) forY =y1,Y =vyo,...Y =yk_1
is:
exp(Wig + 51 WiiXi
PLY = yiX) = — Mo 213 WiX) (26)
1+ 3557 expwjo+ 3ty WjiXi)

WhenY =y, itis

1
P(Y = yk|X) = 27
=) 1+ 3 expwio+ Sy wjiX) @0

Herew;; denotes the weight associated with fitle classY = y; and with input

X;. Itis easy to see that our earlier expressions for the case whesréoolean
(equations (15) and (16)) are a special case of the above expressions. Note also
that the form of the expression fB(Y = yk|X) assures thd K ; P(Y = yi|X)] =

1.

The primary difference between these expressions and those for bdoisan
that when takes orK possible values, we constru€t- 1 different linear expres-
sions to capture the distributions for the different value¥.ot he distribution for
the final,Kth, value ofY is simply one minus the probabilities of the fikst— 1
values.

In this case, the gradient descent rule with regularization becomes:

Wii < W;ji +n inl B(Y' =yj) —P(Y' = yj X", W)) —nAw; (28)

whered(Y!' =yj) = 1if thelth training valueY', is equal toyj, andd(Y' =y;) =0
otherwise. Note our earlier learning rule, equation (25), is a special case of this
new learning rule, wheK = 2. As in the case foK = 2, the quantity inside the
parentheses can be viewed as an error term which goes to zero if the estimated
contljitional probabilityP(Y' = y;|X',W)) perfectly matches the observed value
of Y'.

4 Relationship Between Naive Bayes Classifiers and
Logistic Regression

To summarize, Logistic Regression directly estimates the parametB(¥ pf),

whereas Naive Bayes directly estimates paramete(foy andP(X|Y). We of-

ten call the former a discriminative classifier, and the latter a generative classifier.
We showed above that the assumptions of one variant of a Gaussian Naive

Bayes classifier imply the parametric form BfY|X) used in Logistic Regres-

sion. Furthermore, we showed that the parametgra Logistic Regression can

be expressed in terms of the Gaussian Naive Bayes parameters. In fact, if the GNB
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assumptions hold, then asymptotically (as the number of training examples grows
toward infinity) the GNB and Logistic Regression converge toward identical clas-
sifiers.

The two algorithms also differ in interesting ways:

e When the GNB modeling assumptions do not hold, Logistic Regression and
GNB typically learn different classifier functions. In this case, the asymp-
totic (as the number of training examples approach infinity) classification
accuracy for Logistic Regression is often better than the asymptotic accu-
racy of GNB. Although Logistic Regression is consistent with the Naive
Bayes assumption that the input featu¥gsre conditionally independent
givenY, it is not rigidly tied to this assumption as is Naive Bayes. Given
data that disobeys this assumption, the conditional likelihood maximization
algorithm for Logistic Regression will adjust its parameters to maximize the
fit to (the conditional likelihood of) the data, even if the resulting parameters
are inconsistent with the Naive Bayes parameter estimates.

e GNB and Logistic Regression converge toward their asymptotic accuracies
at different rates. As Ng & Jordan (2002) show, GNB parameter estimates
converge toward their asymptotic values in orttgyn examples, where
is the dimension oK. In contrast, Logistic Regression parameter estimates
converge more slowly, requiring orderexamples. The authors also show
that in several data sets Logistic Regression outperforms GNB when many
training examples as available, but GNB outperforms Logistic Regression
when training data is scarce.

5 What You Should Know

The main points of this chapter include:

e We can use Bayes rule as the basis for designing learning algorithms (func-
tion approximators), as follows: Given that we wish to learn some target
function f : X — Y, or equivalently,P(Y|X), we use the training data to
learn estimates dP(X|Y) andP(Y). New X examples can then be classi-
fied using these estimated probability distributions, plus Bayes rule. This
type of classifier is called generativeclassifier, because we can view the
distributionP(X|Y) as describing how to generate random instacxcesn-
ditioned on the target attribue

e Learning Bayes classifiers typically requires an unrealistic number of train-
ing examples (i.e., more thaK | training examples wher¥ is the instance
space) unless some form of prior assumption is made. Ndiee Bayes
classifier assumes all attributes describihgre conditionally independent
givenY. This assumption dramatically reduces the number of parameters
that must be estimated to learn the classifier. Naive Bayes is a widely used
learning algorithm, for both discrete and continudus
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e WhenX is a vector of discrete-valued attributes, Naive Bayes learning al-

gorithms can be viewed as linear classifiers; that is, every such Naive Bayes
classifier corresponds to a hyperplane decision surfae ihe same state-
ment holds for Gaussian Naive Bayes classifiers if variance of each feature
is modeled independent of the class (i.eqjif= o).

Logistic Regression is a function approximation algorithm that uses training
data to directly estimatB(Y|X), in contrast to Naive Bayes. In this sense,
Logistic regression is often referred to adiscriminativeclassifier because
we can view the distributioR(Y|X) as directly discriminating the value of
the target valu®’ for any given instanci.

Logistic Regression is a linear classifier over The linear classifiers pro-
duced by Logistic Regression and Gaussian Naive Bayes are identical in the
limit as the number of training examples approaches infipityyidedthe

Naive Bayes assumptions hold. However, if these assumptions do not hold,
the Naive Bayes bias will cause it to perform less accurately than Logistic
Regression, in the limit. Put another way, Naive Bayes is learning algorithm
with greater bias, but lower variance, compared to Logistic Regression. If
this bias is appropriate given the actual data, Naive Bayes will be preferred.
Otherwise, Logistic Regression will be preferred.

We can view function approximation learning algorithms as statistical esti-
mators of functions, or of conditional distributioR$Y |X). They estimate
P(Y|X) from a sample of training data. As with other statistical estima-
tors, it can be useful to characterize learning algorithms by their bias and
expected variance, taken over different samples of training data.

Further Reading

Wasserman (2004) describes a Reweighted Least Squares method for Logistic
Regression. Ng and Jordan (2002 ) provide a theoretical and experimental com-
parison of the Naive Bayes classifier and Logistic Regression.

EXERCISES

1. At the beginning of the chapter we remarked that “A hundred training ex-

amples will usually suffice to obtain an estimateRilY) that is within a
few percent of the correct value.” Describe conditions under which the 95%
confidence interval for our estimate BfY) will be +0.02.

. Consider learning a functiod — Y whereY is boolean, wher¥ = (X1, X2),

and whereX; is a boolean variable ang, a continuous variable. State the
parameters that must be estimated to define a Naive Bayes classifier in this
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case. Give the formula for computifRfY |X), in terms of these parameters
and the feature value§ andXo.
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