Computational Learning Theory: Mistake Bounds

Recommended reading:
Mitchell: Chapter 7.5

Machine Learning 10-701

Tom M. Mitchell
Carnegie Mellon University



Mistake Bounds

So far: how many examples needed to learn?

What about: how many mistakes before
convergence”?

Let’s consider similar setting to PAC learning;

e Instances drawn at random from X according to
distribution D

e Learner must classify each instance before
receiving correct classification from teacher

e Can we bound the number of mistakes learner
makes before converging?

(assume target concept is in H, and noise-free training data)



Mistake Bounds: Find-S

Consider Find-S when H = conjunction of boolean
literals

FIND-S:

e Initialize h to the most specific hypothesis
LA=-L N AN L, N\,

e For each positive training instance x
— Remove from h any literal that is not
satisfied by z

e Qutput hypothesis h.

How many mistakes before converging to correct h?

(assume target concept is in H, noise-free training data)



Mistake Bounds: Halving Algorithm

1. Initialize VS to all hypotheses in H

2. For each new training example,

 remove from VS all hyps. that
misclassify this example

Consider the Halving Algorithm;

e Learn concept using version space
CANDIDATE-ELIMINATION algorithm

e Classify new instances by majority vote of
version space members

How many mistakes before converging to correct h?
e ... in worst case?

e ... in best case?



Optimal Mistake Bounds

Let M 4(C') be the max number of mistakes made
by algorithm A to learn concepts in C. (maximum
over all possible ¢ € C, and all possible training
sequences)

M4(C) = max Ma(c)

Definition: Let C' be an arbitrary non-empty
concept class. The optimal mistake bound for
C, denoted Opt(C), is the minimum over all
possible learning algorithms A of M 4(C').
Opt(C) = min M4(C)

Aglearning algorithms
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Weighted Majority Algorithm

a; denotes the i™" prediction algorithm in the pool A
of algorithms. w; denotes the weight associated with
a;.
— For all 2 mitialize w; + 1
— For each training example (x, ¢(x))
— * Initialize ¢y and ¢; to 0
* For each prediction algorithm a;

Weighted
vote:

If a;(x) = 0 then ¢y + qo + w;
If a;(z) =1 then ¢ < g1 + w;

¥ If ¢1 > qo then predict ¢(z) =1
If gy > q; then predict ¢(x) =0

If g1 = qy then predict 0 or 1 at random for
~_ c(x)
* For each prediction algorithm a; in A do

If a;(x) # c¢(x) then w; < Bw; *

when =0,
equivalent
to the
Halving
algorithm...




Weighted Majority Even algorithms

that learn or
change over time...

[Relative mistake bound for
WEIGHTED-MAJORITY] Let D be-any sequence of
training examples, let A be any set of n prediction
algorithms, and let £ be the minimum number of
mistakes made by any algorithm in A for the
training sequence D. Then the number of mistakes
over D made by the WEIGHTED-MAJORITY

algorithm using ( = % is at most

2.4(k + log, )



Proof: relative mistake bound for Wtd Majority

e Let
— D be any sequence of training examples,
— A be any set of n prediction algorithms,
— B=0.5
— Let a; € A be the prediction algorithm that makes fewest mistakes over D
— Let k be the number of mistakes made by &, over D
— Let M be the number of mistakes made during training by WtdMajority

— LetW = zn: w; be the sum of weights for all n algorithms (initially W=n)
=1

* After training, the final weight w; of a, will be ...
« After training, total weight W of entire collection will be ...



Proof: relative mistake bound for Wtd Majority

Let

D be any sequence of training examples,
A be any set of n prediction algorithms,

=05
Let & € A be the prediction algorithm that makes fewest mistakes over D
Let k be the number of mistakes made by &, over D
Let M be the number of mistakes made during training by WtdMajority

Let W = zn: w; be the sum of weights for all n algorithms (initially W=n)

=1

After training, the final weight w;, of a, will be B* = (1/2)

After training, total weight W of entire collection will be at most n(3/4)M
— Note each mistake reduces current W to at most (3/4)W

But w; must be less than or equal to W
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