
Data Mining Techniques for 
Massive Spatial Databases

Daniel B. Neill
Andrew Moore

Ting Liu



What is data mining?

• Finding relevant patterns in data
• Datasets are often huge and high-

dimensional, e.g. astrophysical sky survey

200 attributes: position (numeric), shape 
(categorical), spectra (complex structure), etc.

500 million 
galaxies and
other objects

Data is typically noisy, 
and some values may 
be missing



Query-based vs. pattern-based

Pattern

Query

(which patterns are we interested in finding?)
G

en
er

al
ity

 o
f q

ue
ry

“Give me the mean intensity of all
galaxies in this part of the sky…”

“Show me any individual objects
with suprising attribute values…”

“What’s interesting in this dataset?”

“How do spiral galaxies differ
from elliptical galaxies?”

“Do spiral or elliptical galaxies 
typically have greater intensities?”

single query

significance
adjusting for covariates

multiple queries
distinguish real/spurious

many possible queries
what makes interesting?

interesting groups



Difficulties in data mining

• Distingushing relevant patterns from those 
due to chance and multiple testing

• Computation on massive data sets
– Each individual query may be very expensive: 

huge number of records, high dimensionality!
– Typical data mining tasks require many queries!



Simple data mining approaches

• Exhaustive search

• Sampling

• Caching queries



Simple data mining approaches

• Exhaustive search

• Sampling

• Caching queries

“How many pairs of galaxies 
within distance d of each other?”

Just count them!

Problem: 
often computationally infeasible

500 million data points 
2.5 x 1017 pairs!



Simple data mining approaches

• Exhaustive search

• Sampling

• Caching queries

“How many pairs of galaxies 
within distance d of each other?”

Sample 1 million pairs of galaxies,
use to estimate…

Problems: 
only approximate answers to queries
may miss rare events
can’t make fine distinctions



Simple data mining approaches

• Exhaustive search

• Sampling

• Caching queries

“How many pairs of galaxies 
within distance d of each other?”

Precompute a histogram of the N2

distances.  Then each query d can be
answered quickly.

Advantages:
can reuse precomputed information, 
amortizing cost over many queries

Problems: 
precomputation may be too expensive
what to precompute?



Advanced data mining techniques
• More complex data structures faster queries.
• Grouped computation: simultaneous computation 

for a group of records rather than for each record 
individually.
– What can be ruled out?
– What can be ruled in?
– Cache and use sufficient statistics (centroids, bounds…)

We focus here on some advanced techniques for mining of spatial 
data: answering queries about points or groups of points in space.

Space-partitioning trees!



Outline

• Introduction to space-partitioning trees
– What are they, and why would we want to use them?
– Quadtrees and kd-trees

• Nearest neighbor with space-partitioning trees
– Ball trees

• Cluster detection with space-partitioning trees
– Overlap trees



Why space-partitioning trees?

• Many machine learning tasks involve searching 
for points or regions in space.
– Clustering, regression, classification, correlation,  

density estimation…

• Space-partitioning trees can make our searches 
tens to thousands of times faster!
– Particularly important for applications where we want 

to obtain information from massive datasets in real 
time: for example, monitoring for disease outbreaks.



Multi-resolution search
• Rather than examining each data point separately, we can 

group the data points according to their position in space, 
then examine each group.

• Typically, some groups are more “interesting” than others:
– We may need to examine each individual point in group G…
– Or we may need only summary information about G…
– Or we might not even need to search G at all!

• How to group the points?  
– A few large groups?  
– A lot of small groups?

Better idea: search different regions at different resolutions!



Multi-resolution search (2)

• Top-down search: start by looking at the “bird’s 
eye view” (coarse resolution) then search at 
progressively finer resolutions as necessary.

Often, we can get enough information about most 
regions from the “bird’s eye view,” and only need to 
search a small subset of regions more closely!



Space partitioning in 1-D
• A binary tree can be thought of 

as partitioning a 1-D space; 
this is the simplest space-
partitioning tree!

• Point search: O(log N)
• Range search (find all pts in 

[a,b]): O(M+log N)

(0, 20)

(0, 10) (10, 20)

(0, 5) (5, 10) (10, 15) (15, 20)How can we extend this 
to multiple dimensions?



Quadtrees

• In a quadtree structure, each 
parent region is split into four 
children (“quadrants”) along 
two iso-oriented lines; these 
can then be further split.

• To search a quadtree:
– start at the root (all of space)
– recursively compare query (x,y) 

to split point (x’,y’), selecting 
one of the four children based 
on these two comparisons.



Quadtrees (2)

• How to split a region into quadrants?
• Method 1: make all four quadrants equal.
• Method 2: split on points inserted into tree.
• Method 3: split on median in each dimension.

Method 1 Method 2 Method 3

What are the advantages and disadvantages of each method?



Extending quadtrees

• Quadtrees can be trivially extended to hold higher 
dimensional data.

• In 3-D, we have an oct-tree
– splits space into eighths

• Problem #1: In d dimensions, we must split each 
parent node into 2d children!

• Problem #2: To search a d-dimensional quadtree, 
we must do d comparisons at each decision node. 

• How can we do better?



kd-trees
• In a kd-tree, each parent is split 

into two regions along a single 
iso-oriented line.

• Typically we cycle through the 
dimensions (1st level splits on x, 
2nd level on y, etc.).

• Again we can split into equal 
halves, on inserted points, or on 
the median point.

• More flexible; can even do 
different splits on different 
children, as shown here.

Note: even in d dimensions, a parent will have only two children.



Searching in kd-trees
• Can do point search in O(log 

N) as in binary tree.
• Region search (i.e. search for 

all points in d-dimensional 
interval): O(M+N(1-1/d))

• If xmin < xsplit, must search left 
child; if xmax > xsplit, must 
search right child.  Slower 
than 1-D region search 
because we might have to 
search both subregions!  



Augmenting kd-trees
• In a standard kd-tree, all 

information is stored in the leaves.
• We can make kd-trees much more 

useful by augmenting them with 
summary information at each non-
leaf node.  For example:
– Number of data points in region
– Bounding hyper-rectangle
– Mean, covariance matrix, etc.

• Deng and Moore call these 
“multiresolution kd-trees.”

5

23

0 1 13



A simple example: 2-point correlation
• How many pairs of points are 

within radius r of each other?
• A statistical measure of the 

“clumpiness” of a set of points.
• Naïve approach O(N2): consider 

all pairs of points.
• Better approach: store points in 

an mrkd-tree!
• This allows computation of the 

2-point correlation in O(N3/2).

5

23

0 1 13



2-point correlation (2)
• For each point in the dataset, find 

how many points are within 
radius r of the query point.

• To do so, we search the mrkd-
tree top-down, looking at the 
bounding rectangle of each node.
– If all within distance r, add number 

of points in node.
– If none within distance r, add 0.
– If some within distance r:

• Recurse on each child.
• Add results together.

5

23

0 1 13



Dual-tree search
• Gray and Moore (2001) show 

that 2-point correlation can be 
computed even faster by using 
two kd-trees, and traversing both 
simultaneously.

• Rather than doing a separate 
search of the grouped data for 
each query point, we also group 
the query points using another 
kd-tree.
– 2x speedup vs. single tree.

5

23

0 1 13



Mo(o)re applications
• Deng and Moore (1995): mrkd-trees for kernel regression.
• Moore et al. (1997): mrkd-trees for locally weighted 

polynomial regression.
• Moore (1999): mrkd-trees for EM-based clustering.
• Gray and Moore (2001-2003): dual-tree search for kernel 

density estimation, N-point correlation, etc.
• STING (Wang et al., 1997): “statistical information grids”

(augmented quadtrees) for approximate clustering.
• Also used in many computational geometry applications 

(e.g. storing geometric objects in “spatial databases”).



Nearest neighbor using space-
partioning trees

(These slides adapted from work by 
Ting Liu and Andrew Moore)



A Set of Points 
in a metric 

space

To do nearest neighbor, we’ll use 
another kind of space-partitioning 
tree: the ball tree or metric tree.



Ball Tree root 
node



A Ball Tree



A Ball Tree



A Ball Tree



A Ball Tree



Ball-trees:  properties

Let Q be any query point and let x be a 
point inside ball B

|x-Q| ≥ |Q - B.center| - B.radius
|x-Q| ≤ |Q - B.center| + B.radius

Q 

B.center

x 



Q

Goal: Find out 
the 2-nearest 
neighbors of Q. 



Q
Start at the root



Q
Recurse down the tree



Q



Q



Q



Q
We’ve hit a leaf 

node, so we 
explicitly look at the 
points in the node



Q
Two nearest 

neighbors found so 
far are in pink

(remember we have 
yet to search the 

blue circles)



Q

Now we don’t have 
to search any circle 
entirely outside the 

white circle



Q



Q



Q



Q



Q



Q



Q



Q



Q



Q
We’ve hit a leaf 

node, so we 
explicitly look at the 
points in the node



Q
We’ve found a new 
nearest neighbor, 
so we can shrink 
the white circle



Q



Q



Q

All done!



The punch line

• This method is much faster than exhaustive search 
for finding the k nearest neighbors of a point.

• But in k-NN classification, we don’t actually need 
to find the neighbors… just determine which class 
is most common among these neighbors!

• So much faster ball-tree algorithms are possible!
– See Liu, Moore, and Gray (NIPS 2003) for one such 

algorithm, using two ball trees (one for positive class, 
one for negative class) 



Cluster detection with space-
partitioning trees

Daniel B. Neill
Andrew W. Moore



What is a cluster?
• A spatial region where some 

quantity (the count) is 
significantly higher than 
expected, given some 
underlying baseline.

• For example:
– count = number of disease 

cases in a region over some 
time period.

– baseline = expected number of 
disease cases in that region 
over that time period.

We found 30 respiratory cases in this region 
when we only expected 20.  Is this significant?



What is a cluster?

We found 30 respiratory cases in this region 
when we only expected 20.  Is this significant?

Significant increase: we believe that the 
increase results from different underlying 
distributions inside and outside the region.

vs.

Non-significant increase: we believe that 
the underlying distributions inside and 
outside the region are the same, and the 

increase resulted from chance fluctuations.



Goals of cluster detection

• Identifying potential clusters
– Are there any clusters?  If so, how many?
– Location, shape, and size of each potential 

cluster.
• Determining whether each potential cluster 

is likely to be a “true” cluster or a chance 
occurrence.
– Statistical significance testing.



Application #1: outbreak detection
• Goal: early, automatic detection of disease epidemics.

– Responding to bioterrorist attacks (ex. anthrax).
– Naturally occurring outbreaks (ex. SARS, hepatitis).

• There is often a significant time lag between exposure to a 
pathogen and a definitive diagnosis.  However, symptom 
onset typically precedes diagnosis by days or even weeks.

• Faster detection using syndromic data: we look for clusters 
of disease symptoms that indicate a potential outbreak.  
– Emergency Dept. visits
– 911 calls
– OTC drug sales

Early detection can save lives!



The National Retail Data Monitor

• The National Retail Data Monitor (NRDM) receives data from 20,000 retail 
stores (grocery stores, pharmacies, etc.) nationwide.

• Data: number of over the counter drugs sold daily, for each store, in each of 18 
categories (e.g. cough and cold, anti-diarrheal, pediatric electrolytes)

• Given this data, we want to determine daily if any disease outbreaks are 
occurring, and if so, identify the type, location, size, and severity of outbreaks.

A screen shot 
from NRDM

For more details 
on NRDM, go to

www.rods.health.pitt.edu



Application #2: brain imaging

• Goal: discover regions of 
brain activity corresponding 
to given cognitive tasks.

• Word recognition task:

Noun!

Verb!



Application #2: brain imaging
• fMRI image:

– 3D picture of brain activity
– Brain discretized into 64 x 64 x 

14 grid of “voxels.”
– Amount of “activation” in each 

voxel corresponds to brain 
activity in that region.

• We compare fMRI images 
corresponding to different 
cognitive tasks, looking for 
clusters of increased brain 
activity. 



Problem overview
• Assume data has been 

aggregated to a d-
dimensional grid of cells.
– d = 2 for epidemiology
– d = 3 for fMRI
– More dimensions can be used 

if we want to take time, 
covariates, etc. into account.

• Each grid cell si has a count
ci and a baseline bi.

B=5000
C=27

B=3500
C=14

B=4500
C=22

B=3000
C=15

B=1000
C=5

B=5000
C=26

B=4000
C=17

B=3000
C=12

B=2000
C=12

B=1000
C=4

B=5000
C=19

B=5000
C=25

B=4000
C=43

B=3000
C=37

B=4000
C=20

B=4800
C=18

B=4800
C=20

B=4000
C=40

B=3000
C=22

B=4000
C=16

B=4700
C=20

B=3000
C=13

B=3000
C=18

B=2000
C=20

B=1000
C=4Baseline of

cell

Count of 
cell

This is a significant 
cluster.



Application domains
• In epidemiology: 

– Counts ci represent number of 
disease cases in a region, or some 
related observable quantity (e.g. 
Emergency Department visits, sales 
of OTC medications).

– Baselines bi can be populations 
obtained from census data, or 
expected counts obtained from 
historical data (e.g. past OTC sales).

• In brain imaging:
– Counts ci represent fMRI activation 

in a given voxel under some 
experimental condition.

– Baselines bi represent fMRI
activation under null condition.



Application domains
• In both domains:

– Goal is to find spatial 
regions where the counts ci
are significantly higher 
than expected, given the 
baselines bi.

– “Higher than expected”
requires an underlying 
model of what we expect!

• If there are no clusters…
• If clusters are present…



Problem overview
• To detect clusters:

– Find the most significant 
spatial regions.

– Calculate statistical 
significance of these regions.

• We focus here on finding 
the single most significant 
region S* (and its p-value).
– If p-value > α, no significant 

clusters exist.
– If p-value < α, then S* is 

significant; we can then 
examine secondary clusters.

B=5000
C=27

B=3500
C=14

B=4500
C=22

B=3000
C=15

B=1000
C=5

B=5000
C=26

B=4000
C=17

B=3000
C=12

B=2000
C=12

B=1000
C=4

B=5000
C=19

B=5000
C=25

B=4000
C=43

B=3000
C=37

B=4000
C=20

B=4800
C=18

B=4800
C=20

B=4000
C=40

B=3000
C=22

B=4000
C=16

B=4700
C=20

B=3000
C=13

B=3000
C=18

B=2000
C=20

B=1000
C=4



Which regions to search?
• We choose to search over the 

space of all rectangular regions.
• We typically expect clusters to 

be convex; thus inner/outer 
bounding boxes are reasonably 
close approximations to shape.

• We can find clusters with high 
aspect ratios.

– Important in epidemiology 
since disease clusters are often 
elongated (e.g. from 
windborne pathogens).

– Important in brain imaging 
because of the brain’s “folded 
sheet” structure.



Which regions to search?
• We choose to search over the 

space of all rectangular regions.
• We typically expect clusters to 

be convex; thus inner/outer 
bounding boxes are reasonably 
close approximations to shape.

• We can find clusters with high 
aspect ratios.

– Important in epidemiology 
since disease clusters are often 
elongated (e.g. from 
windborne pathogens).

– Important in brain imaging 
because of the brain’s “folded 
sheet” structure.

We can find non-
axis-aligned 
rectangles by 

examining multiple 
rotations of the 

data.



Calculating significance

• Define models:
– of the null hypothesis H0: no clusters.
– of the alternative hypotheses H1(S): clustering in 

region S.
• Derive a score function D(S) = D(C, B).

– Likelihood ratio:

– To find the most significant region: 
)| Data(
))(| Data()(

0

1

HL
SHLSD =

)(maxarg*  SDS S=



Example: Kulldorff’s model
• Kulldorff’s spatial scan statistic is

commonly used by epidemiologists to 
detect disease clusters.

• Model: each count ci is generated from 
a Poisson distribution with mean qbi.

– Count ci represents number of cases.
– Baseline bi represents the at-risk 

population.
– q represents the disease rate.

• This statistic is most powerful for 
finding a single region of elevated 
disease rate (qin > qout).

qin = .02

qout = .01



Randomization testing
• Multiple hypothesis testing is a 

major problem: over 1 billion 
regions for a 256 x 256 grid.

• To deal with this problem, we 
must use randomization testing.

– Randomly create a large number 
of replica grids.

– Find the maximum D(S) for 
each replica, compare to the 
original region.

– p-value = proportion of replicas 
beating original.

– The original region is 
significant if very few replicas 
have a higher D(S).



Summary of spatial scan framework

1. Calculate score function D(S) from model 
(H0, H1(S)) using likelihood ratio.

2. Compute D(S) for all spatial regions S.
3. Return the region S* with highest D(S).
4. Compute p-value of S* by randomization 

testing.
5. If S* is significant, find secondary 

clusters.



The catch
Computing D(S) for all spatial regions S is expensive, since 

there are O(N4) rectangular regions for an NxN grid.

Worse, randomization testing requires us to do the same 
O(N4) search for each replica grid, multiplying the runtime 
by the number of replicas.

For a 256 x 256 grid, with 1000 replications: 1.1 trillion
regions to search, which would take 14-45 days.

This is far too slow for real-time cluster detection!

This is our motivation for a fast spatial scan!



How to speed up our search?

• How can we find the best 
rectangular region without 
searching over every single 
rectangle?

• Use a space-partitioning tree?
– Problem: many subregions of a 

region are not contained entirely 
in either “child,” but overlap 
partially with each.

kd-tree



How to speed up our search?

• How can we find the best 
rectangular region without 
searching over every single 
rectangle?

• Use a space-partitioning tree?
– Problem: many subregions of a 

region are not contained entirely 
in either “child,” but overlap 
partially with each.

kd-tree



The solution: 
Overlap-multiresolution partitioning
• We propose a partitioning approach in which 

adjacent regions are allowed to partially overlap.  
• The basic idea is to:

– Divide the grid into overlapping regions.
– Bound the maximum score of subregions contained in 

each region.
– Prune regions which cannot contain the most 

significant region.
– Find the same region and p-value as the exhaustive 

approach… but hundreds or thousands of times faster!



S_3

S_1

S

S_C

some S_i, i = 1..4,

Any subregion of S:

S_2

S_4either a) is contained in

or b) contains S_C.

• Parent region S is divided into four 
overlapping child regions: “left child” S1, 
“right child” S2, “top child” S3, and 
“bottom child” S4.

• Then for any rectangular subregion S’ of 
S, exactly one of the following is true:
– S’ is contained entirely in (at least) one of 

the children S1… S4.
– S’ contains the center region SC, which is 

common to all four children.
• Starting with the entire grid G and 

repeating this partitioning recursively, we 
obtain the overlap-kd tree structure.

Overlap-multires partitioning



The overlap-kd tree 
(first two levels) 



SC

d-dimensional partitioning
• Parent region S is divided into 2d

overlapping children: an “upper child” and 
a “lower child” in each dimension.

• Then for any rectangular subregion S’ of 
S, exactly one of the following is true:

– S’ is contained entirely in (at least) one of 
the children S1… S2d.

– S’ contains the center region SC, which is 
common to all the children.

• Starting with the entire grid G and 
repeating this partitioning recursively, we 
obtain the overlap-kd tree structure.

S5 S1

S2

S3

S4

S6

S



Properties of the overlap-kd tree

• Every rectangular region S’ in G is either:
– a gridded region (i.e. contained in the overlap-kd tree)
– or an outer region of a unique gridded region S (i.e. S’ is 

contained in S and contains its center SC).



Overlap-multires partitioning
• The basic (exhaustive) algorithm: to 

search a region S, recursively search 
S1… S2d, then search over all outer 
regions containing SC.

• We can improve the basic algorithm 
by pruning: since all the outer regions 
of S contain the (large) center region 
SC, we can calculate tight bounds on 
the maximum score, often allowing 
us not to search any of them.

S_3

S_1

S

S_C

some S_i, i = 1..4,

Any subregion of S:

S_2

S_4either a) is contained in

or b) contains S_C.



Region pruning
• In our top-down search, we keep track of the best region 

S* found so far, and its score D(S*).
• When we search a region S, we compute upper bounds on 

the scores:
– Of all subregions S’ of S.
– Of all outer subregions S’ (subregions of S containing SC).

• If the upper bounds for a region are worse than the best 
score so far, we can prune.
– If no subregion can be optimal, prune completely (don’t search any 

subregions).
– If no outer subregion can be optimal, recursively search the child 

regions, but do not search the outer regions.
– If neither case applies, we must recursively search the children and 

also search over the outer regions.



Summary of results
• The fast spatial scan results in 

huge speedups (as compared to 
exhaustive search), making fast 
real-time detection of clusters 
feasible.

• No loss of accuracy: fast spatial 
scan finds the exact same 
regions and p-values as 
exhaustive search.

ED dataset



Results: ED dataset
• Western Pennsylvania Emergency 

Department Data (256 x 256 grid):
– Our method: 21 minutes.
– Exhaustive approach: 14 days!
– ~1000x speedup.

• 10-20x faster than current state of the 
art (Kulldorff’s SaTScan software).

• Using age, gender as covariates (and 
thus searching a 4D grid): 235-325x 
speedups.
– Allows us to detect epidemics which have 

larger impact on specific demographics 
(e.g. elderly males, infants).

ED dataset



Results: OTC, fMRI
• OTC data (256 x 256 grid):

– Our method: 47 minutes.
– Exhaustive approach: 14 days!
– ~400x speedups.

• Spatio-temporal cluster detection on 
OTC (3D grid): 48-1400x speedups.
– Allows us to detect outbreaks that emerge 

more slowly (over multiple days). 

• fMRI data (64 x 64 x 14 grid):
– 7-148x speedups as compared to 

exhaustive search approach.
fMRI data from noun/verb 

word recognition task

OTC data from National 
Retail Data Monitor



Case studies
• Rapidly finding clusters is all well and good… but are we 

finding useful clusters? 
• Best test: put system in practice, see what clusters it detects.
• Our system is currently running daily on OTC data.
• Some success stories:

– From OTC data, picked up an outbreak of cough-and-cold type 
symptoms resulting from the forest fires in California.

– Using fMRI data, we were able to distinguish subjects performing
the word recognition task from a control group (subjects fixating on 
a cursor); subjects doing word recognition had clusters of activity in 
visual cortex, Broca’s area, Wernicke’s area.

More work still needs to be done in order
to consistently detect useful clusters!



What you should know

• What is data mining, and why is it hard?
• Why space-partitioning trees are useful for 

mining massive spatial datasets.
• How and when to use different types of 

space-partitioning trees (quadtrees, kd-trees, 
mrkd-trees, ball trees, overlap trees…)


	Data Mining Techniques for Massive Spatial Databases
	What is data mining?
	Query-based vs. pattern-based
	Difficulties in data mining
	Simple data mining approaches
	Simple data mining approaches
	Simple data mining approaches
	Simple data mining approaches
	Advanced data mining techniques
	Outline
	Why space-partitioning trees?
	Multi-resolution search
	Multi-resolution search (2)
	Space partitioning in 1-D
	Quadtrees
	Quadtrees (2)
	Extending quadtrees
	kd-trees
	Searching in kd-trees
	Augmenting kd-trees
	A simple example: 2-point correlation
	2-point correlation (2)
	Dual-tree search
	Mo(o)re applications
	Nearest neighbor using space-partioning trees
	Ball-trees:  properties
	The punch line
	Cluster detection with space-partitioning trees
	What is a cluster?
	What is a cluster?
	Goals of cluster detection
	Application #1: outbreak detection
	The National Retail Data Monitor
	Application #2: brain imaging
	Application #2: brain imaging
	Problem overview
	Application domains
	Application domains
	Problem overview
	Which regions to search?
	Which regions to search?
	Calculating significance
	Example: Kulldorff’s model
	Randomization  testing
	Summary of spatial scan framework
	The catch
	How to speed up our search?
	How to speed up our search?
	The solution: �Overlap-multiresolution partitioning
	Overlap-multires partitioning
	The overlap-kd tree �(first two levels) 
	d-dimensional partitioning
	Properties of the overlap-kd tree
	Overlap-multires partitioning
	Region pruning
	Summary of results
	Results: ED dataset
	Results: OTC, fMRI
	Case studies
	What you should know

