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Outline

e Clustering
— K means
— EM: Mixture of Gaussians

* Training classifiers with partially unlabeled data
— Naive Bayes and EM
— Reweighting the labeled examples using P(X)
— Co-training
— Regularization based on
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1. Unsupervised Clustering:
K-means and Mixtures of Gaussians
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Clustering

* Given set of data points, group them
« Unsupervised learning

* Which patients are similar? (or which
earthquakes, customers, faces, ...)

-
g LT ]
St Ty L
w® T L T
R e ] oy




B =
K-means Clustering

Given data <x; ... x>, and K, a}s{sign each x. to one of K clusters,

C, ... Cx, minimizing ; _ D ||$i_ﬂj||2
j=1 xiECj

Where /5 Is mean over all points in cluster C;

K-Means Algorithm:

Initialize K1 - .- - KK randomly
Repeat until convergence:
1. Assign each point x; to the cluster with the closest mean g,

2. Calculate the new mean for each cluster

1 \
Hj— 7 D T
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K Means applet

 Run applet
* Try 3 clusters, 15 pts



Mixtures of Gaussians

K-means is EM’ish, but makes ‘hard’ assignments of x; to clusters.
Let’s derive a real EM algorithm for clustering.

What object function shall we optimize?

« Maximize data likelihood!

What form of P(X) should we assume?

Mixture of Gaussians

Mixture distribution:

« Assume P(x) is a mixture of K different Gaussians

« Assume each data point, x, is generated by 2-step process
1. z € choose one of the K Gaussians, according to 7z ... 7
2. Generate x according to the Gaussian N(z,, 2.)

K
P(x) = Y P(Z = 2|m) N (x]|pz, =)

z=1




EM for Mixture of Gaussians

Simplify to make this easier

1. assume X, are conditionally independent given Z.
P(X|Z =j) = H N(X;lpji» 04i)

2. assume only 2 classes, and assume Vi, j,04; = o

2
P(X) = ) P(Z=jm) ] N(@ilnji, o)

j=1 i
3. Assume c Known, m, ... m¢ iy ... L Unknown

Observed: X
Unobserved: Z

< X)X



Given observed variables X, unobserved Z

Define Q(6'|0) = EZ|X,9[|Og P(X,Z7|0")]

where 0 = (7, u;;) @

X)X

Iterate until convergence:

» E Step: Calculate P(Z(n)|X(n),#) for each example X(n).
Use this to construct Q(¢’|6)

* M Step: Replace current 8 by
6 — arg max Q(0'19)




EM — E Step

Calculate P(Z(n)|X(n), ) for each observed example X(n)

< Xy

P(a(n)|2(n) = k,6) P(2(n) = k|0)
S1gp(a(m]z(n) = 5,0) P(x(n) = jl0)

X(n)=<x,(n), X5(N), ... X¢(n)>.

P(2(n) = klz(n),0) =
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EM - M Step

First consider update for =

Q(0'10) = Ey x gllog P(X, Z]0')] = E[iogF;(XiZﬁ"HiogP(ZiH"‘)]

" has no influence

Count @
z(n)=1

T« arg max Ez7 x gllog P(Z|x")]

o liAa D ] — N
LJZlX,H Lluy i l J |X70 |_

1 _ T
i it

n

= Eyx [(Z ) log 7’ + <;(1 = Z(n))> log(1 — W’)]
)

Ny, (1=2(n)))]
a8 )]

= (z Eyxolz(n)] ) log x'+ <z By ol(1 - z<n>]>) l0g(1—7")

0Lz x pllog P(Z|m")] [
O — |

SN, Elz(n)] _1 X
(W_V_q Elz(m)]) + (SN_,(1 - EL(m)) N,




Now consider update for y;

Q(0']0)

Hji

P

EM — M Step

= Fz)x 109 P(X, Z|0)] = Bllog P(X|2,0)+10g P(Z10)]
w;" has no influence
«—argmax Ey y gllog P(X|Z, 6] @

,ujz'

N — .
Compare above to MLE fji — Zn=1]\f(z(”) =J) ?z(”)
if Z were observable: > pn=10(2(n) =7)
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Mixture of Gaussians applet

 Run applet

e Try 2 clusters

e See different local minima with different random
starts

P



K-Means vs Mixture of Gaussians

« Both are iterative algorithms to assign points to clusters

* Objective function .

— K Means: minimize j= 5" Y |jz; — |2
J=1z,€C;

— MixGaussians: maximize P(X|0)

 MixGaussians is the more general formulation
— Equivalent to K Means when 2, =c |, and c — 0



Using Unlabeled Data to Help Train
Nailve Bayes Classifier

Learn P(Y|X)

X1 | X2 | X3 | X4

N|lVv|o|lo|lkr|
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Inputs: Collections D' of labeled documents and D* of unlabeled documents.

Build an initial naive Bayes classifier, é, from the labeled documents, D', only. Use maximum
a posteriori parameter estimation to find # = arg maxg P(D|#)P(8) (see Equations 5 and 6).

Loop while classifier parameters improve, as measured by the change in [.(8|D;z) (the com-
plete log probability of the labeled and unlabeled data

e (E-step) Use the current classifier, #, to estimate component membership of each unla-
beled document, i.e., the probability that each mixture component (and class) generated

each document, P[f:j|f£i;§} (see Equation 7).

o

e (M-step) Re-estimate the classifier, #, given the estimated component membership

of each document. Use maximum a posteriori paramefer estimation to find § =
arg maxg P(D|#)P(8) (see Equations 5 and 6).

Output: A classifier, Eg', that takes an unlabeled document and predicts a class label.

From [Nigam et al., 2000]



M Step:

O, |c; = Plwi|cj;0) =

P(c;|0)P(di|c;;6)

P(d;|6)

P(c;16) ITes P(wa, ules;6)
ZF—'1P( |9)Hﬁg |1 P (wa, leT?H)

W, Is t-th word In vocabulary

\ . 1+ E'I_jl N(wy,d;)P(y; = cj|d;)

V| + WS PN (w,, di)P(ys = ¢]ds)

= P(c;|d) = L+ 3000 Plyi = F.?ld)
- ICl + | D]




e
Elaboration 1. Downweight the influence of

unlabeled examples by factor A

c|
1(0|D;z) = log(P(B)) + Y Y zijlog (P(c;|0)P(dilc;;6))
d; €Dt j=1
c|
Y ) zijlog (P(c;|0)P(dic;;6))
\ d;€Dv j=1

Chosen by cross
New M step: validation

1+ 120 AN (we, di)P (yi = cj|di)

Buurje; = Plwelc;;0) = ,
V] + SV SSIPUAG)N (w,, di)P(yi = ¢j|ds)

f.. = P(c;|) = ks Z AG)P(y; = c;|di)

d

m+nm+MDﬂ AG) = A if d; € D
77 1 ifd; € D

-



Table 3. Lists of the words most predictive of the course class in the WebKB data set, as they
change over iterations of EM for a specific trial. By the second iteration of EM, many common

course-related words appear. The symbol D indicates an arbitrary digit.

Iteration 0

Iteration 1

Iteration 2

intelligence
DD
artificial
understanding
DDrw
dist
identical
rus
arrange
games
dartmouth
natural
cognitive
logic
proving
prolog
knowledge
human
representation

field

Using one
labeled

example per

class

Do
D
lecture
cc
Dt
DD:DD
handout
due
prablem
set
tay
D Dam
yurttas
homework
kfoury
ser
postscript
exam
solution
assaf

D
DD
lecture
e
DD:DD
due
Dt
homework
assignment,
handout
set
hw
exam
problem
DDam
postscript
solution
quiz
chapter
ascil



Experimental Evaluation

 Newsgroup postings
— 20 newsgroups, 1000/group
 Web page classification

— student, faculty, course, project
— 4199 web pages

e Reuters newswire articles
— 12,902 articles
— 90 topics categories
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Combining Labeled and Unlabeled Data

How else can unlabeled data be useful for supervised
learning/function approximation?
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1. Use U to reweight labeled examples

Can use U = P(X ) to alter optimization problem
e Wish to find

f — argmin % §(h(2) # f(«))P()

e Often approximate as 1 if hypothesis

he H TeEX

1 h disagrees
f« ﬁr%m ] o U}E o(h(x) # y) with true
function
else O
f + argmin S O(h(z) # f(T))nT |L)

e Can use U for improved approximation:

| iz, L)+ n(z,U)
f+ argmin 3. 6(h(z) # f(x)) L+ (U]
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3. If Problem Setting Provides Redundantly Sufficient
Features, use CoTraining

* In some settings, available data features are redundant
and we can train two classifiers using different features

* In this case, the two classifiers should at least agree on
the classification for each unlabeled example

» Therefore, we can use the unlabeled data to constrain
training of both classifiers, forcing them to agree
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Redundantly Sufficient Features
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Redundantly Sufficient Features
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CoTraining Algorithm #1

[Blumé&Mitchell, 1998]

Given: labeled data L,
unlabeled data U
Loop:
Train g1 (hyperlink classifier) using L
Train g2 (page classifier) using L
Allow g1 to label p positive, n negative examps from U
Allow g2 to label p positive, n negative examps from U

Add these self-labeled examples to L




CoTraining: Experimental Results

begin with 12 labeled web pages (academic course)
provide 1,000 additional unlabeled web pages
average error: learning from labeled data 11.1%;
average error: cotraining 5.0%
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CoTraining Setting

learn f: X oY
where X = X;xX,
where X drawn from unknown distribution

and 309,, 9, (vx)gl(xl) — gz(xz) = f (X)

o If
— X1, X2 conditionally independent given y
—f I1s PAC learnable from noisy labeled data

e Then

—f I1s PAC learnable from weak initial classifier
plus unlabeled data
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Co-Training Rote Learner

hyperlinks pages
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Co-Training Rote Learner

hyperlinks pages

.M
My advisor + +




Expected Rote CoTraining error given m examples

CoTraining setting :

learn f: X Y

where X =X, x X,

where x drawn from unknown distribution

and 39,, 0, (vx)gl(xl) — gz(xz) = f (X)

Elerror]= P(xeg;)L-P(xeg;))" f%

Where g IS the jth connected component of graph e



How many unlabeled examples suffice?

Want to assure that connected components in the underlying
distribution, Gy, are connected components in the observed
sample, Gq¢

s

ANV

Gp Gs

O(log(N)/a) examples assure that with high probability, G¢ has same
connected components as G, [Karger, 94]

N is size of Gy, a Is min cut over all connected components of G,



PACGenerallzatlon Bounds on

CoTrainin
[Dasgupta et al., NIPS2001]

Theorem 1 With probability ut leust 1 — & over the choice of the sample S, we have thuat
for all ha and ha, if yi(h1,h2,0) > 0 for1 < i < k then (a) f is u permutation and (b) for
all1 < i <k,

Plhy#i| fly) =i, #1) < Pl #ilha=t 7 1)+ e, ha, 0)
Yi(h1, ha, 6)

The theorem states, in essence, that if the sample size 1s large, and hy and hs largely agree
on the unlabeled data, then P(hy # i | ho =i, hy # L) is a good estimate of the error rate

P(hy #4 | f(y) =i, hi # L).



What if CoTraining Assumption
Not Perfectly Satisfied?

® -
® @

» |dea: Want classifiers that produce a maximally
consistent labeling of the data

 If learning is an optimization problem, what
function should we optimize?
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What Objective Function?

E=El1+E2+c,E3+C,E4

Error on labeled examples
YRV
S yek Disagreement over unlabeled
E2= > (y-G,(x,))° /

<X,y>elL

E3= Z (Ql (Xl) - QZ (X2 ))2 Misf:}to estimated class priors
xeU

6,(4)+6,06) )
[(luélj (|L|+|U|XELZuU 2 B
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What Function Approximators?

. 1 n 1
gl(x) — W X gZ(X) — > W oX;]

1+e’ 1+e’

« Same fn form as Naive Bayes, Max Entropy

« Use gradient descent to simultaneously learn
gl and g2, directly minimizing E=E1 + E2 +
E3 + E4

 No word independence assumption, use both
labeled and unlabeled data



i e———— g —

Classifying Jobs for FlipDog

= Employers = Support

FllpDog fHomel ! Find Johs W Research Employers

Search Results
Mid-Sr. Sun HW :raﬂ_cmlg?ge Gradwl Wy wark for one
Engineer Pleasantan, it T F:l | Shock  starfup when you can
CA F'E!rsnna_h_’rg.f. Jain aur ./ work for many?
=N SSCNS IT Recruiting Team,
Sort results by [Date Posted x] Search these jobs for: | &5 Search tips
26 - 50 of 159 jobs shown below (_Previous ] (More Resuits
C++/Java Consultants at Elite Placement Services ® Navernber 01, 2000
Job Mumber: C1 Salary Range; $80K Job Description: Functions of this position include the consulting, development HDUStDﬂ_. T
and implementation of EAl solutions supporting e-commerce and B2B initiatives for,., Computing/MIs
software Development
Chief Software architect at Elite Placement Services © Novernber 01, 2000
Job Mumber: C3A1 Salary Range: to $1801 Job Description: Responsible far the end-to-end architecture of all n- HDUS’IDH_. TX
tiered web-based applications and complementary products, Provide design direction for the. . Cornputing/MIS
Software Development
Web Application Developers at MI Systems, Inc. © November 01, 2000
Location: Houston, T Last Updated: 10/04/00 Job Type: Full-Time Contract Length: O Salary: apen Hourly Pay: See HDUStDﬂ_. Tx
hn Synopsis: Permanent Opportunities (2) Application Developers with... Cormputing/MIS
X1: job title . - Internet Development
Sares consulting Engineer at Visual Numerics, Inc. X2 J(_)b_ Movernber 01, 2000
Job Code 00-022-H Back to Top WHAT'S THE JOB? Performs pre-sales tech deSCI’IptIOI’l ducts to HDUS’[DU. T
customers and non-customers, Technical support includes providing verbal a TTETT TE SO Computing/MIS
Technical Support/Help Des
Peoplesoft Software Analyst (Systems Analyst 111 [.T. Staffing, Inc. October 27, 2000

Date Pasted; 10/12/00 Location; Houston, T4 (Some international travel required) Job Description; CLIENT/SERVER  |Houston, TX

APPLICATION ADMINISTRATION, SETTING UP USERS AND SECURITY FOR DATABASE AND APPLICATION. .. |Computing/MIS
software Development

Peoplesoft Software Analyst (Systems Analyst II1) at LT, Staffing, Inc October 27, 2000
Date Posted; 10/12/00 Location; Houston, T¥ (Some international travel required) Job Description; CLIENT/SERYER  Houston, TX
APPLICATION ADMINISTRATION, SETTING UP USERS AND SECURITY FOR DATABASE AND APPLICATION..., CDmF"—'T'”EIfM'S




Gradient CoTraining

Classifying FlipDog job descriptions: SysAdmin vs. WebProgrammer

jobDoc—L13-U1275-WD 5-R2500-Etal 01 —Inith-3I1d0bjFn
1 T T '_I. T - E1
— E2
L ]| — E3
08 testE1
testE2
0a 1| —— &accuracy
07
Final Accuracy
DB
. Labeled data alone: 86%
Sos
® CoTraining: 96%
D4
D3r
02 \
D | | T t
0 500 1000 1500 2000 2500
# iterations
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Gradient CoTraining

Classifying Upper Case sequences as Person Names

Error Rates

25 labeled 2300 labeled
5000 unlabeled 5000 unlabeled
Using
labeled data
only 24 13
Cotraining 15 ° 11
Cotraining x
without 21
fitting class
priors (E4)

* sensitive to weights of error terms E3 and E4



CoTraining Summary

* Unlabeled data improves supervised learning when example features
are redundantly sufficient
— Family of algorithms that train multiple classifiers

* Theoretical results
— Expected error for rote learning

— If X1,X2 conditionally independent given Y, Then
 PAC learnable from weak initial classifier plus unlabeled data
 error bounds in terms of disagreement between g1(x1) and g2(x2)

 Many real-world problems of this type
— Semantic lexicon generation [Riloff, Jones 99], [Collins, Singer 99]
— Web page classification [Blum, Mitchell 98]
— Word sense disambiguation [Yarowsky 95]
— Speech recognition [de Sa, Ballard 98]



What you should know

e Clustering:
— K-means algorithm : hard labels
— EM for mixtures of Gaussians : probabilistic labels

e Be able to derive your own EM algorithm

* Using unlabeled data to help with supervised classification
— Naive Bayes augmented by unlabeled data
— Using unlabeled data to reweight labeled examples
— Co-training
— Using unlabeled data for regularization
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