
Expectation Maximization, and
Learning from Partly Unobserved Data

(part 2)

Machine Learning 10-701
April 2005

Tom M. Mitchell
Carnegie Mellon University



Outline

• Clustering
– K means
– EM: Mixture of Gaussians

• Training classifiers with partially unlabeled data
– Naïve Bayes and EM
– Reweighting the labeled examples using P(X)
– Co-training
– Regularization based on 



1. Unsupervised Clustering: 
K-means and Mixtures of Gaussians



Clustering

• Given set of data points, group them
• Unsupervised learning
• Which patients are similar? (or which 

earthquakes, customers, faces, …)



K-means Clustering
Given data <x1 … xn>, and K, assign each xi to one of K clusters,   

C1 … CK , minimizing

Where       is mean over all points in cluster Cj

K-Means Algorithm:

Initialize                    randomly

Repeat until convergence:

1. Assign each point xi to the cluster with the closest mean μj

2. Calculate the new mean for each cluster



K Means applet

• Run applet
• Try 3 clusters, 15 pts



Mixtures of Gaussians
K-means is EM’ish, but makes ‘hard’ assignments of xi to clusters.  
Let’s derive a real EM algorithm for clustering.
What object function shall we optimize?
• Maximize data likelihood!
What form of P(X) should we assume?
• Mixture of Gaussians

Mixture distribution:
• Assume P(x) is a mixture of K different Gaussians
• Assume each data point, x, is generated by 2-step process

1. z choose one of the K Gaussians, according to π1 … πK

2. Generate x according to the Gaussian N(μz, Σz)



EM for Mixture of Gaussians
Simplify to make this easier   
1. assume Xi are conditionally independent given Z.  

2. assume only 2 classes, and assume

3. Assume σ known, π1 … πK, μ1i …μKi unknown

Observed: X
Unobserved: Z

Z

X1 X4X3X2



EM

Given  observed variables X, unobserved Z  

Define

where 

Iterate until convergence:

• E Step: Calculate P(Z(n)|X(n),θ) for each example X(n). 
Use this to construct 

• M Step: Replace current θ by 

Z

X1 X4X3X2



EM – E Step

Calculate P(Z(n)|X(n),θ) for each observed example X(n)

X(n)=<x1(n), x2(n), … xT(n)>.

Z

X1 X4X3X2



EM – M Step Z

X1 X4X3X2

First consider update for π

π’ has no influence

Count 
z(n)=1



EM – M Step Z

X1 X4X3X2

Now consider update for μji

μji’ has no influence

…
…

…

Compare above to MLE 
if Z were observable:



Mixture of Gaussians applet

• Run applet
• Try 2 clusters
• See different local minima with different random 

starts



K-Means vs Mixture of Gaussians

• Both are iterative algorithms to assign points to clusters

• Objective function
– K Means: minimize 

– MixGaussians: maximize P(X|θ)

• MixGaussians is the more general formulation
– Equivalent to K Means when Σk = σ I, and σ→ 0



Using Unlabeled Data to Help Train 
Naïve Bayes Classifier

Y

X1 X4X3X2

Y X1 X2 X3 X4
1 0 0 1 1
0 0 1 0 0
0 0 0 1 0
? 0 1 1 0
? 0 1 0 1

Learn P(Y|X)



From [Nigam et al., 2000]



E Step:

M Step:
wt is t-th word in vocabulary



Elaboration 1: Downweight the influence of 
unlabeled examples by factor λ

New M step:
Chosen by cross 
validation



Using one 
labeled 
example per 
class



Experimental Evaluation

• Newsgroup postings 
– 20 newsgroups, 1000/group

• Web page classification 
– student, faculty, course, project
– 4199 web pages

• Reuters newswire articles 
– 12,902 articles
– 90 topics categories



20 Newsgroups



20 Newsgroups



Combining Labeled and Unlabeled Data

How else can unlabeled data be useful for supervised 
learning/function approximation?



1. Use U to reweight labeled examples

1 if hypothesis 
h disagrees 
with true 
function f, 
else 0



3. If Problem Setting Provides Redundantly Sufficient 
Features, use CoTraining

• In some settings, available data features are redundant 
and we can train two classifiers using different features

• In this case, the two classifiers should at least agree on 
the classification for each unlabeled example

• Therefore, we can use the unlabeled data to constrain 
training of both classifiers, forcing them to agree



Redundantly Sufficient Features
Professor Faloutsos my advisor



Redundantly Sufficient Features
Professor Faloutsos my advisor



Redundantly Sufficient Features



Redundantly Sufficient Features
Professor Faloutsos my advisor



CoTraining Algorithm #1 
[Blum&Mitchell, 1998]

Given: labeled data L,  

unlabeled data U

Loop:

Train g1 (hyperlink classifier) using L

Train g2 (page classifier) using L

Allow g1 to label p positive, n negative examps from U

Allow g2 to label p positive, n negative examps from U 

Add these self-labeled examples to L



CoTraining: Experimental Results
• begin with 12 labeled web pages (academic course)
• provide 1,000 additional unlabeled web pages
• average error: learning from labeled data 11.1%; 
• average error: cotraining 5.0%

Typical run:



CoTraining Setting
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• If
– x1, x2 conditionally independent given y
– f  is PAC learnable from noisy labeled data

• Then
– f  is PAC learnable from weak initial classifier 

plus unlabeled data



Co-Training Rote Learner
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Co-Training Rote Learner
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Expected Rote CoTraining error given m examples
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How many unlabeled examples suffice?

Want to assure that connected components in the underlying 
distribution, GD, are connected components in the observed 
sample, GS

GD GS

O(log(N)/α) examples assure that with high probability, GS has same 
connected components as GD [Karger, 94]

N is size of GD, α is min cut over all connected components of GD



PAC Generalization Bounds on 
CoTraining

[Dasgupta et al., NIPS 2001]



• Idea: Want classifiers that produce a maximally 
consistent labeling of the data

• If learning is an optimization problem, what 
function should we optimize?

What if CoTraining Assumption 
Not Perfectly Satisfied?

-

+

+

+



What Objective Function?
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What Function Approximators?

• Same fn form as Naïve Bayes, Max Entropy

• Use gradient descent to simultaneously learn 
g1 and g2, directly minimizing  E = E1 + E2 + 
E3 + E4

• No word independence assumption, use both 
labeled and unlabeled data
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Classifying Jobs for FlipDog

X1: job title
X2: job 
description



Gradient CoTraining
Classifying FlipDog job descriptions: SysAdmin vs. WebProgrammer

Final Accuracy

Labeled data alone: 86%

CoTraining: 96%



Gradient CoTraining
Classifying Upper Case sequences as Person Names

25 labeled

5000 unlabeled

2300 labeled

5000 unlabeled

Using 
labeled data 
only

Cotraining

Cotraining
without 
fitting class 
priors (E4)

.27

.13.24

* sensitive to weights of error terms E3 and E4

.11 *.15 *

*

Error Rates



CoTraining Summary
• Unlabeled data improves supervised learning when example features 

are redundantly sufficient 
– Family of algorithms that train multiple classifiers

• Theoretical results
– Expected error for rote learning
– If X1,X2 conditionally independent given Y, Then

• PAC learnable from weak initial classifier plus unlabeled data
• error bounds in terms of disagreement between g1(x1) and g2(x2)

• Many real-world problems of this type
– Semantic lexicon generation [Riloff, Jones 99], [Collins, Singer 99]

– Web page classification [Blum, Mitchell 98]

– Word sense disambiguation [Yarowsky 95]

– Speech recognition [de Sa, Ballard 98]



What you should know
• Clustering:

– K-means algorithm : hard labels
– EM for mixtures of Gaussians : probabilistic labels

• Be able to derive your own EM algorithm

• Using unlabeled data to help with supervised classification
– Naïve Bayes augmented by unlabeled data
– Using unlabeled data to reweight labeled examples
– Co-training
– Using unlabeled data for regularization
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