Decision Trees, MDL, Boosting

Recommended reading:
» Decision trees: Mitchell Chapter 3

« MDL: Mitchell Chapter 6.6; Bishop Chapter 10.10;

» Boosting: “The Boosting Approach to Machine Learning: An Overview,”
R. Schapire, MSRI Workshop on Nonlinear Estimation and
Classification, 2002. (see class website)

Machine Learning 10-701

Tom M. Mitchell
Carnegie Mellon University

mitchell
Underline

mitchell
Underline

mitchell
Underline

Decision Tree for PlayTennis

Outlook
How would you
Sunny Overcast Rain
e D represent
Humidi - Wind
/\ry : A AR V CD(E)?
;igh, Norf\mf Strong Weak
No Yes No/ \Yes

Each internal node: test one attribute X,
Each branch from a node: selects one value for X;
Each leaf node: predict Y (or P(Y|X € leaf))

A Tree to Predict C-Section Risk

Learned from medical records of 1000 women

Negative examples are C-sections

[833+,167-] .83+ .17-

Fetal_Presentation = 1: [822+,116-] .88+ .12-
Previous_Csection = 0: [767+,81-] .90+ .10-
Primiparous = 0: [399+,13-] .97+ .03-
Primiparous = 1: [368+,68-] .84+ .16-

| Fetal_Distress = 0: [334+,47-] .88+ .12-
| | Birth_Weight < 3349: [201+,10.6-] .95+ .
| | Birth_Weight >= 3349: [133+,36.4-] .78+
| Fetal_Distress = 1: [34+,21-] .62+ .38-

| Previous_Csection = 1: [b56+,35-] .61+ .39-
Fetal_Presentation = 2: [3+,29-] .11+ .89-
Fetal_Presentation = 3: [8+,22-] .27+ .73-

;s

node = Root

Main loop:

1. A + the “best” decision attribute for next node
2. Assign A as decision attribute for node

3. For each value of A, create new descendant of
node

4. Sort training examples to leaf nodes

5. If training examples perfectly classified, Then
STOP, Else iterate over new leaf nodes

Which attribute is best?

[29+, 35—] Al1=" [29+,35-] A2="

t f t f

[21+,5-] [8+,30—] [18+,33-] [11+,2-]

Entropy

Entropy H(X) of a random variable X

H(X) = — fj P(X = i)l0ogs P(X = i)

1=1

H(X) is the expected number of bits needed to encode a
randomly drawn value of X (under most efficient code)

Why? Information theory:

* Most efficient code assigns -log,P(X=1I) bits to encode
the message X=i

e S0, expected number of bits is:

3" P(X = i)(~ logs P(X =))
=1

Sample Entropy

10 T

Entropy(S)

0.0 0.5 10

e S is a sample of training examples
® p., is the proportion of positive examples in S
® p-, is the proportion of negative examples in S

e Entropy measures the impurity of S

Entropy(S) = —pelogy po — pelogy pe

Information Gain

Gain(S, A) = expected reduction in entropy due to
sorting on A

| S,
Gain(S,A) = Entropy(S) — % | lEntmpy(Sv)
vEValues(A) |S|
[29+, 35-] Al1=" [29+4, 35-] A2="7
t f t f

[21+, 5—] [8+, 30—] [18+,33—] [11+, 2—]

Training Examples

Day Outlook Temperature Humidity Wind PlayTen:

D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

Selecting the Next Attribute

Which attribute is the best classifier?

S: [9+.5-]
E=0940
Humidity
High Normal
[3+.4-] [6+,1-]
E=0985 E=0.592

Gain (S, Humidity)

940 - (7/14).985 - (7/14).592
151

S: [9+.5-]
E=0.940
Wind
Weak Strong
[6+,2-] [3+.3-]
E=0.811 E=1.00

Gain (S5, Wind)

940 - (8/14).811 - (6/14)1.0
048

{D1,D2, ... D14}

[9+.5-1]
Outlook
Sunny Overcast Rain
{D1,.D2.D8.D9.D11} {D3,D7.D12,D13} {D4,D5,D6,D10,D 14}
[2+.3-] [4+.,0-] [3+.2-]

/

? @ ?
/

Which attribute should be tested here?

Ssunny = {D1,D2,D8.D9.D11}
Gain (Ssypny » Humidity) = 970 - (3/5)0.0 — (2/5)0.0 = .970
Gain (Sgyppy » Temperature) = 970 — (2/5)0.0 - (2/5) 1.0 — (1/5)0.0 = .570
Gain (Sgyppy, Wind) = 970 - (2/5)1.0 = (3/5).918 = .019

Inductive Bias in I1D3

Note H is the power set of instances X
— Unbiased?

Not really...

e Preference for short trees, and for those with
high information gain attributes near the root

e Bias is a preference for some hypotheses, rather
than a restriction of hypothesis space H

e Occam’s razor: prefer the shortest hypothesis
that fits the data

Occam’s Razor

Why prefer short hypotheses?
Argument in favor:
e Fewer short hyps. than long hyps.

— a short hyp that fits data unlikely to be
coincidence

— a long hyp that fits data might be coincidence

Argument opposed:
e There are many ways to define small sets of hyps

e c.g., all trees with a prime number of nodes that
use attributes beginning with “Z”

e What’s so special about small sets based on size
of hypothesis??

Overfitting in Decision Trees

Consider adding noisy training example #15:

Sunny, Hot, Normal, Strong, PlayTennis = No

What effect on earlier tree?

Outlook
Sunny Overcast Rain
Humidity Yes Wind
High Normal Strong Weak

/ \ / \

No Yes No Yes

Overfitting in Decision Tree Learning

ﬂg 1 1] ! 1 I ! 1 I

0.85

0.3

0.75

0.7

Accuracy

0.65

0.6 On training data ——
On test data ———-

0.55

GS | 1 1 | 1 1 | 1 1

0 10 20 30 40 50 60 70 30 90
Size of tree (number of nodes)

Avoiding Overfitting

How can we avoid overfitting?

e stop growing when data split not statistically
significant

e grow full tree, then post-prune

How to select “best” tree:
e Measure performance over training data

e Measure performance over separate validation
data set

e MDL: minimize
size(tree) + size(misclassifications(tree))

Minimum Description Length Principle

Occam’s razor: prefer the shortest hypothesis

MDVL: prefer the hypothesis i that minimizes

hyrpr = ar}gg}in L¢,(h) + Ley(D|h)
where L¢o(x) is the description length of x under
encoding C

Example: H = decision trees, D = training data
labels

o L (h) is # bits to describe tree h
o Lc,(Dlh) is # bits to describe D given h

— Note L¢,(D|h) = 0 if examples classified
perfectly by h. Need only describe exceptions

e Hence hjrpy trades off tree size for training
errors

Assume X
values known,
labels Y
encoded

Minimum Description Length Principle

hMAp — arg I}{}gaﬁ{ P(Dlh)P(h)
= argmax logs P(D|h) + logy P(h)
= argmin —log, P(D|h) — log, P(k) (1)
Interesting fact from information theory:

The optimal (shortest expected coding
length) code for an event with probability p is
— log, p bits.

So interpret (1):
e —log, P(h) is length of A under optimal code

e —log, P(D|h) is length of D given h under
optimal code

— prefer the hypothesis that minimizes

length(h) + length(misclassi fications)

Reduced-Error Pruning

Split data into training and validation set
Do until further pruning is harmful:

1. Evaluate impact on validation set of pruning
each possible node (plus those below it)

2. Greedily remove the one that most improves
validation set accuracy

e produces smallest version of most accurate
subtree

e What if data 1s limited?

Effect of Reduced-Error Pruning

Accuracy

0.9

0.85

0.8

0.75

On training data —— A
On test data ——--
On test data (during pruning) -----

10

20

30 40 50 60 70 80 90 100

Size of tree (number of nodes)

Rule Post-Pruning

1. Convert tree to equivalent set of rules
2. Prune each rule independently of others

3. Sort final rules into desired sequence for use

Perhaps most frequently used method (e.g., C4.5)

Converting A Tree to Rules

Outlook
Sunny Overcast Rain
Humidity Yes Winel
High Normal Strong Weak
No Yes No Yes

IF (Outlook = Sunny) A (Humadity = High)
THEN PlayTennis = No

IF (Outlook = Sunny) A (Humidity = Normal)
THEN PlayTennis = Yes

Continuous Valued Attributes

Create a discrete attribute to test continuous
o ['emperature = 82.5

o (T'emperature > 72.3) =t, f

Temperature: 40 48 60 72 80 90
PlayTennis: No No Yes Yes Yes No

Attributes with Many Values

Problem:
o If attribute has many values, Gain will select it

e Imagine using Date = Jun_3_1996 as attribute

One approach: use GainRatio instead
Gain(S, A)

ainRatio() SplitInformation(S, A)

c. |Si]

Si
SplitIn formation(S, A) = _f'§1 5] log, Si

|51

where S; is subset of S for which A has value v;

Unknown Attribute Values

What it some examples missing values of A7
Use training example anyway, sort through tree

e If node n tests A, assign most common value of
A among other examples sorted to node n

e assign most common value of A among other
examples with same target value

e assign probability p; to each possible value v; of
A

— assign fraction p; of example to each
descendant in tree

Classify new examples in same fashion

Boosting [Schapire, 1989]

ldea: given a weak learner, run it multiple
times on (reweighted) training data, then let
learned classifiers vote

On each iteration, weight each training
example by how incorrectly it was classified

Practically useful
Theoretically interesting

Given: (21,91),-- -, (Tm,Ym) where z; € X, y; € Y = {—1,+1}
Initialize Dq(z) = 1/m.
Fort=1,...,T:

e Train base learner using distribution Dy.

e Get base classifier h; : X — R.

e Choose a; € R.

e Update:

Dy (1) exp(—auyihi(2i))
4

Dyt (i) =
where Z; is a normalization factor

m
Zy =Y _ Dy(i) exp(—agy;hi(z;))
Output the final classifier: =t

T
H(z) = sign (Z thht(m)) :

=1

Figure 1: The boosting algorithm AdaBoost.

Given: (21,91),-- -, (Tm,Ym) where z; € X, y; € Y = {—1,+1}
Initialize Dq(z) = 1/m.
Fort=1,...,T:

Get base classifier h; : X — R. o =

Train base learner using distribution D;.
In (
Choose oy € R. «

Update:
Dy (1) exp(—auyihi(2i))

Diyq(i) = Z,

where Z; is a normalization factor

Zy = i Dy (i) exp(—ayihi(x;))
i=1

Output the final classifier:

T
H(z) = sign (Z thht(m)) :

=1

Figure 1: The boosting algorithm AdaBoost.

What ¢, to choose for hypothesis h,?

Training error of final classifier is bounded by:

!
=S B(H() #) < Y exp(—yif () = [[Z
i=1 i t

Where f(z) =) arhi(2); H(z) = sign(f(z))
t

We can minimize this bound by choosing ¢; and h, on
each iteration to minimize Z,

Zi= 3" Di(i) exp(—aihi(@:))
1=1

What ¢, to choose for hypothesis h,?

We can minimize this bound by choosing ¢, on each
iteration to mimmize Z.

Zy = > Dy(3) exp(—ouyihe(x;))
i=1

For boolean target function, this is accomplished by:
1 — €t
e ()

1
Z;’? 1Dt()

Z Dy(2)6(hi(x;) 7 yi)

€t —

Boosting: Experimental Results [Freund & schapire, 1996]

Comparison of C4.5, Boosting C4.5, Boosting
decision stumps (depth 1 trees), 27 benchmark
datasets

0 5 10 15 20 25 30 0 5 10 15 20 25 30
boosting stumps boosting C4.5

AdaBoost and AdaBoost.MH on Train (left) and Test (right) data from Irvine repository. [Schapire and Singer, ML 1999]

16 = g 20 -
= ldbor ! labor promoters pramotsrs
14 -5 | 25 - !
12- % \ \) 15 - rI
1 I| I'h,"lll i
= |I 20 | o |I._
. 1A . - i
= |' II |I I|f|| | r,i |II
3 | 15 . 5 iy
) | Vi, B 4
2- A 10 o) A
0 L — - - : . Eabin = o

100

100 1000
sonar
N
W
[a]n] oo 1 10 100 1000
18 -
i II-I onosp hele
1] \
- Illl.."ﬂ'
14 WA
A
12 - N
ﬂﬁ%\
10 Mo
W
a -
FUEENAh AL AR S L8 SR : -.._‘.-'—-'—'-T',-,. sl . H..
19 []n] oo o [an) 1000
17
votesi 18 -'.__ voles |
15=*%
14 -
13
12
! 1" -
! 10
\—\ — e
'“-—4—_. e B -
10 [s]s] o0 1
a -
B 1 breastcancer-wisconsin
3 8 -5, |
A .
N = |
b N - .
", ‘-\"\.__ ._:|II
by, "-_:“—--_""-._“_\-\. 8 k], "_
~ e
. % & -
3 “'“‘t___ﬁh -u-._..hﬂw_w
e o a 4 ol
10 100 1000 1 12 100 1000

Boosting and Logistic Regression

Logistic regression assumes:

P(Y =1|X) = L
Y =1 = T e (7 @)

And tries to maximize data likelihood:
P(data|H) = || — ,1 —
—1 LT exp(—y;f(x;))

7

Equivalent to minimizing log loss

m

> In(1 + exp(—y;f(:)))

1=1

Boosting and Logistic Regression

Logistic regression assumes:

P(Y =1|X) =

1+ exp(f(x))

And tries to maximize conditional data likelihood:

m 1

11

Equivalent to minimizing log loss

m

> In(1 + exp(—y;f(:)))

1=1

Boosting minimizes similar
loss function!!

=Y exo(-uif (2) = [1 %

t

Logistic regression and Boosting

 Minimize loss fn Minimize loss fn
> In(1 + exp(—y;f(x;))) % exp(—y; f(x;))
=1 i=1
e Define e Define
flx) =) wjz; fl@) =) athi(z)
= 7 t
where x; pjredefined where h(x;) defined
dynamically to fit
data

« Weights o, learned
Incrementally

What you should know:

 Decision trees
— 1D3, C4.5
— Rule extraction from trees
— Overfitting and tree/rule post-pruning
— Extensions...

 Minimum description length approach
— And it's Bayesian interpretation

e Boosting
— Practical approach to improving accuracy
— Exponential loss function;
— relationship to logistic regression

	Decision Trees, MDL, Boosting
	Entropy
	Boosting
	What t to choose for hypothesis ht?
	What t to choose for hypothesis ht?
	Boosting: Experimental Results
	Boosting and Logistic Regression
	Boosting and Logistic Regression
	Logistic regression and Boosting
	What you should know:

