
Bias and Variance in Learning

Instance-Based Learning

Recommended reading: 

• Bias-Variance : Bishop chapter 9.1, 9.2

• Instance-based learning: Mitchell chapter 8.1 – 8.4
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Previous lecture:
(see new lecture notes on class website)
• Logistic regression
• Generative and discriminative classifiers

– E.g, Naïve Bayes and Logistic regression

This lecture:
• Training for logistic regression
• Bias-Variance decomposition of error
• Instance-based learning



Logistic regression

Form of P(Y|X):

Training: choose weights wi to maximize 
• conditional data likelihood:

• or classification accuracy



Log likelihood

• Note: this likelihood is a concave in w



Maximizing conditional log likelihood

Gradient ascent rule:

Learning rate



Regularization
The issue: fear of overfitting training data at the 

expense of poorly fitting future data

The approach: choose weights that maximize a 
new, penalized likelihood function

Penalty term,

Regularization term



Regularization
The ||W||2 penalty corresponds to adding a Gaussian 

prior to our weight estimator!

Maximum likelihood estimate:

MAP estimate:



Regularization
The ||W||2 penalty corresponds to adding a Gaussian 

prior to our weight estimator!

Maximum likelihood:

MAP estimate:

Gaussian N(0,σ)

c ||W||2



Regularization in Logistic Regression

New gradient ascent rule:



Generative vs. Discriminative Classifiers

Training classifiers involves estimating f: X Y, or P(Y|X)

Generative classifiers:

• Assume some functional form for P(X|Y), P(X)

• Estimate parameters of P(X|Y), P(X) directly from training data

• Use Bayes rule to calculate P(Y|X= xi)

Discriminative classifiers:

• Assume some functional form for P(Y|X)

• Estimate parameters of P(Y|X) directly from training data



G.Naïve Bayes vs. Logistic Regression
• Generative and Discriminative classifiers

• Asymptotic comparison (# training examples infinity)

• when model correct

• GNB, LR produce identical classifiers

• when model incorrect

• LR is less biased – does not assume cond indep.

• therefore expected to outperform GNB

[Ng & Jordan, 2002]



Naïve Bayes vs. Logistic Regression
• Generative and Discriminative classifiers

• Non-asymptotic analysis

• convergence rate of parameter estimates

• GNB order log n  (# of attributes in X)

• LR order n

GNB converges more quickly to its (perhaps less helpful) 
asymptotic estimates

[Ng & Jordan, 2002]



Some 
experiments 
from UCI data 
sets



Bias – Variance decomposition of error
• Consider simple regression problem f:X Y

y = f(x) = g(x) + ε

What are sources of prediction error?

noise ~ N(0,σ)

deterministic



Sources of error
• What if we have perfect learner, infinite 

data?
– Our learned h(x) satisfies h(x)=g(x)
– Still have remaining, unavoidable error of            
σ2 due to noise ε



Sources of error
• What if we have imperfect learner, or only 

m training examples?
• What is our expected squared error per example

– Expectation taken over random training sets D of size 
m, drawn from distribution P(X,Y)



Bias-Variance Decomposition of Error

Assume target function: y = f(x) = g(x) + ε

Then expected sq error over fixed size training sets D drawn 
from P(Y,X) can be expressed as sum of three components:

Where:
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