

1-Nearest Neighbor

Four things make a memory based learner:

- 1. A distance metric
 - **Euclidian (and many more)**
- 2. How many nearby neighbors to look at?

One

- 3. A weighting function (optional)
 - Unused
- 4. How to fit with the local points?
 - Just predict the same output as the nearest neighbor.

©2005-2007 Carlos Guestrin

Consistency of 1-NN

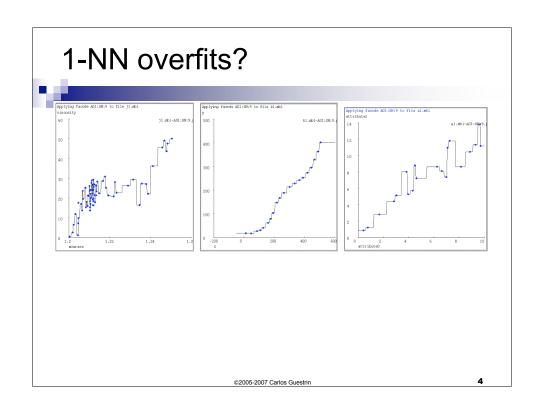
- Consider an estimator f_n trained on n examples
 - □ e.g., 1-NN, neural nets, regression,...
- Estimator is consistent if true error goes to zero as amount of data increases
 - $\hfill \square$ e.g., for no noise data, consistent if:

$$\lim_{n\to\infty} MSE(f_n) = 0$$

- Regression is not consistent!
 - □ Representation bias
- 1-NN is consistent (under some mild fineprint)

What about variance???

©2005-2007 Carlos Guestrin



k-Nearest Neighbor

Four things make a memory based learner:

- 1. A distance metric
 - **Euclidian (and many more)**
- 2. How many nearby neighbors to look at?

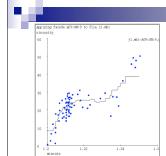
k

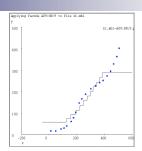
- A weighting function (optional)
 Unused
- 2. How to fit with the local points?
 Just predict the average output among the k nearest neighbors.

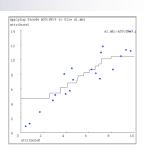
©2005-2007 Carlos Guestrin

5

k-Nearest Neighbor (here k=9)







K-nearest neighbor for function fitting smoothes away noise, but there are clear deficiencies.

What can we do about all the discontinuities that k-NN gives us?

©2005-2007 Carlos Guestrin

Weighted k-NNs

Neighbors are not all the same

©2005-2007 Carlos Guestrin

7

Kernel regression

Four things make a memory based learner:

- A distance metric Euclidian (and many more)
- 2. How many nearby neighbors to look at?

 All of them
- 3. A weighting function (optional) $w_i = \exp(-D(x_i, query)^2 / K_w^2)$

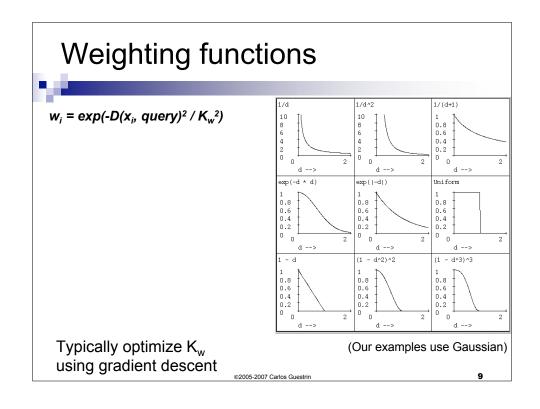
Nearby points to the query are weighted strongly, far points weakly. The $K_{\rm W}$ parameter is the **Kernel Width**. Very important.

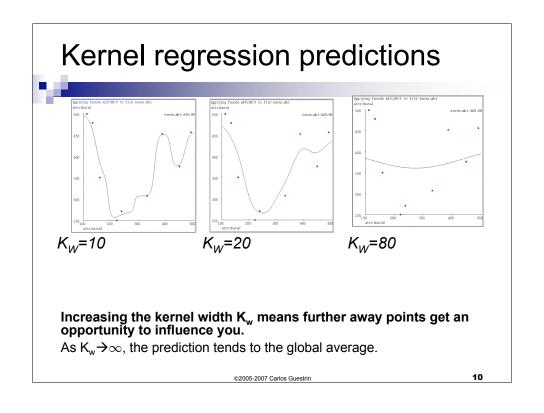
4. How to fit with the local points?

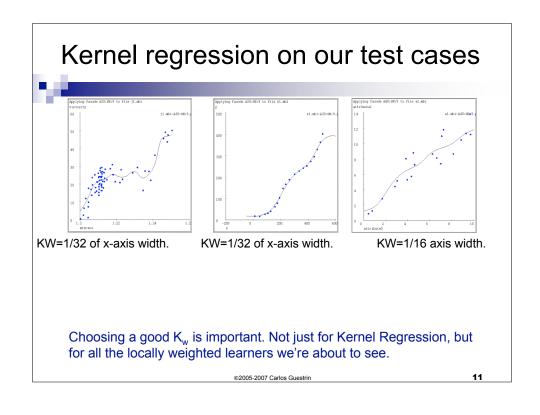
Predict the weighted average of the outputs:

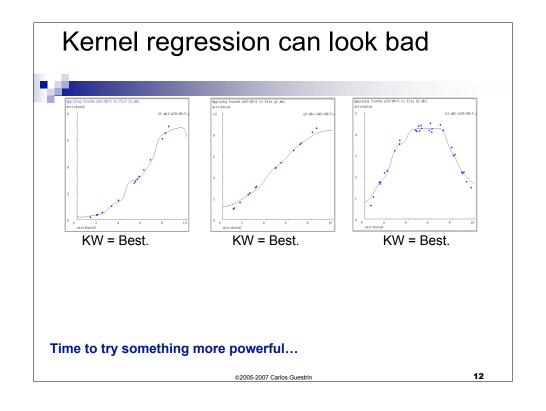
predict = $\Sigma w_i y_i / \Sigma w_i$

©2005-2007 Carlos Guestrin









Locally weighted regression

Kernel regression:

Take a very very conservative function approximator called AVERAGING. Locally weight it.

Locally weighted regression:

Take a conservative function approximator called LINEAR REGRESSION. Locally weight it.

©2005-2007 Carlos Guestrin

13

Locally weighted regression

- Four things make a memory based learner:
- A distance metric

Any

How many nearby neighbors to look at?

All of them

A weighting function (optional)

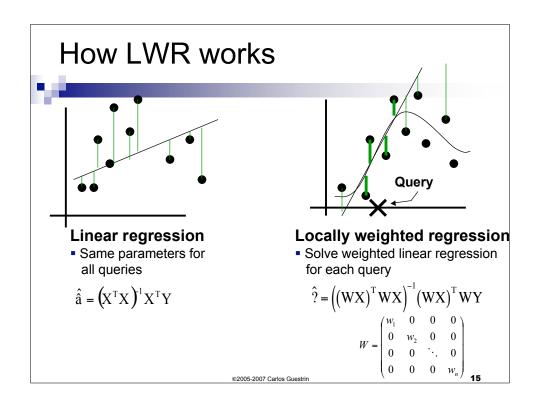
Kernels

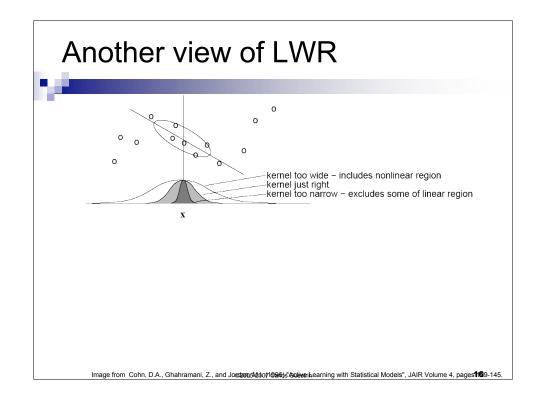
- $wi = \exp(-D(xi, query)^2 / Kw^2)$
- How to fit with the local points?

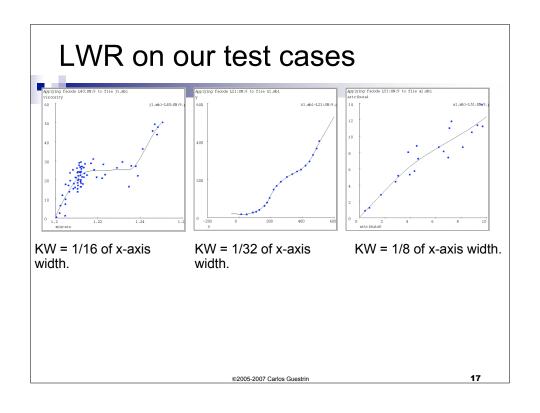
General weighted regression:

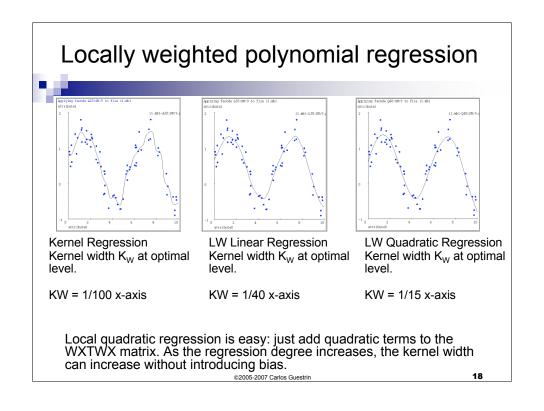
$$\hat{\mathbf{a}} = \underset{\mathbf{a}}{\operatorname{argmin}} \sum_{k=1}^{N} w_k^2 (\mathbf{y}_k - \hat{\mathbf{a}}^T \mathbf{x}_k)^2$$

©2005-2007 Carlos Guestrin









Curse of dimensionality for instance-based learning

- Must store and retreve all data!
 - Most real work done during testing
 - □ For every test sample, must search through all dataset very slow!
 - □ We'll see fast methods for dealing with large datasets
- Instance-based learning often poor with noisy or irrelevant features

©2005-2007 Carlos Guestrin

19

Curse of the irrelevant feature

2005-2007 Carlos Guestrin

What you need to know about instance-based learning

- k-NN
 - ☐ Simplest learning algorithm
 - □ With sufficient data, very hard to beat "strawman" approach
 - ☐ Picking k?
- Kernel regression
 - Set k to n (number of data points) and optimize weights by gradient descent
 - ☐ Smoother than k-NN
- Locally weighted regression
 - ☐ Generalizes kernel regression, not just local average
- Curse of dimensionality
 - □ Must remember (very large) dataset for prediction
 - ☐ Irrelevant features often killers for instance-based approaches

Acknowledgment

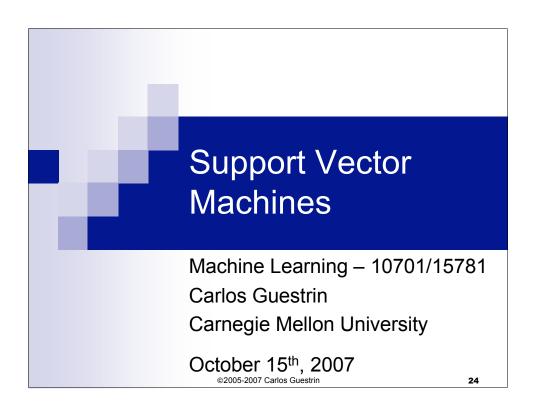
- This lecture contains some material from Andrew Moore's excellent collection of ML tutorials:
 - □ http://www.cs.cmu.edu/~awm/tutorials

©2005-2007 Carlos Guestrin

Announcements

- Recitation this week: Neural networks
- Project proposals due next Wednesday
 - □ Exciting data:
 - Swivel.com user generated graphs
 - Recognizing Captchas
 - Election contributions
 - Activity recognition
 -

©2005-2007 Carlos Guestrin



Linear classifiers — Which line is better?

Data:
$$\left\langle x_1^{(1)}, \dots, x_1^{(m)}, y_1 \right\rangle$$

$$\left\langle x_n^{(1)}, \dots, x_n^{(m)}, y_n \right\rangle$$

$$\left\langle x_n^{(1)}, \dots, x_n^{(m)}, y_n \right\rangle$$

$$\left\langle x_n^{(1)}, \dots, x_n^{(m)}, y_n \right\rangle$$

$$\left\langle x_n^{(1)}, \dots, x_n^{(m)} \right\rangle - m \text{ features}$$

$$\left\langle x_i^{(1)}, \dots, x_i^{(m)} \right\rangle - m \text{ features}$$

$$\left\langle x_i^{(1)}, \dots, x_i^{(m)} \right\rangle - m \text{ features}$$

$$\left\langle x_i^{(1)}, \dots, x_i^{(m)} \right\rangle - m \text{ features}$$

$$\left\langle x_i^{(1)}, \dots, x_i^{(m)} \right\rangle - m \text{ features}$$

$$\left\langle x_i^{(1)}, \dots, x_i^{(m)} \right\rangle - m \text{ features}$$

$$\left\langle x_i^{(1)}, \dots, x_i^{(m)} \right\rangle - m \text{ features}$$

$$\left\langle x_i^{(1)}, \dots, x_i^{(m)} \right\rangle - m \text{ features}$$

$$\left\langle x_i^{(1)}, \dots, x_i^{(m)} \right\rangle - m \text{ features}$$

$$\left\langle x_i^{(1)}, \dots, x_i^{(m)} \right\rangle - m \text{ features}$$

$$\left\langle x_i^{(1)}, \dots, x_i^{(m)} \right\rangle - m \text{ features}$$

$$\left\langle x_i^{(1)}, \dots, x_i^{(m)} \right\rangle - m \text{ features}$$

$$\left\langle x_i^{(1)}, \dots, x_i^{(m)} \right\rangle - m \text{ features}$$

$$\left\langle x_i^{(1)}, \dots, x_i^{(m)} \right\rangle - m \text{ features}$$

$$\left\langle x_i^{(1)}, \dots, x_i^{(m)} \right\rangle - m \text{ features}$$

$$\left\langle x_i^{(1)}, \dots, x_i^{(m)} \right\rangle - m \text{ features}$$

$$\left\langle x_i^{(1)}, \dots, x_i^{(m)} \right\rangle - m \text{ features}$$

$$\left\langle x_i^{(1)}, \dots, x_i^{(m)} \right\rangle - m \text{ features}$$

$$\left\langle x_i^{(1)}, \dots, x_i^{(m)} \right\rangle - m \text{ features}$$

$$\left\langle x_i^{(1)}, \dots, x_i^{(m)} \right\rangle - m \text{ features}$$

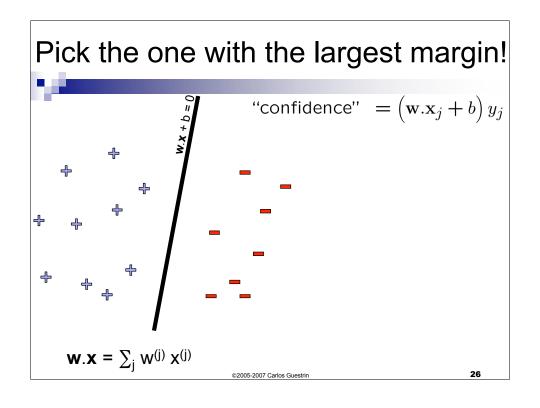
$$\left\langle x_i^{(1)}, \dots, x_i^{(m)} \right\rangle - m \text{ features}$$

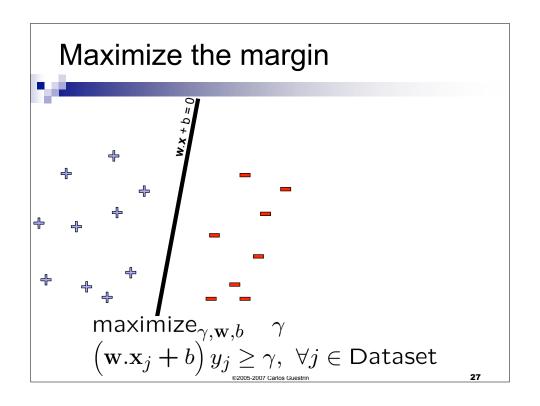
$$\left\langle x_i^{(1)}, \dots, x_i^{(m)} \right\rangle - m \text{ features}$$

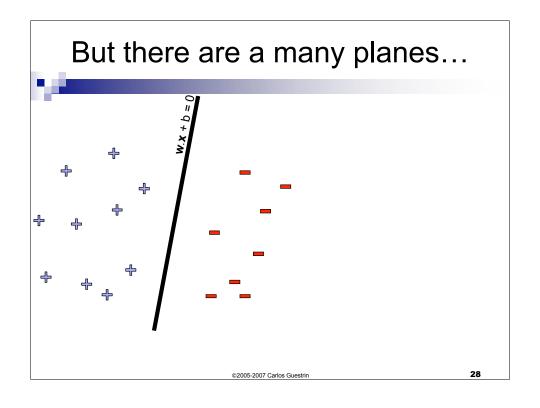
$$\left\langle x_i^{(1)}, \dots, x_i^{(m)} \right\rangle - m \text{ features}$$

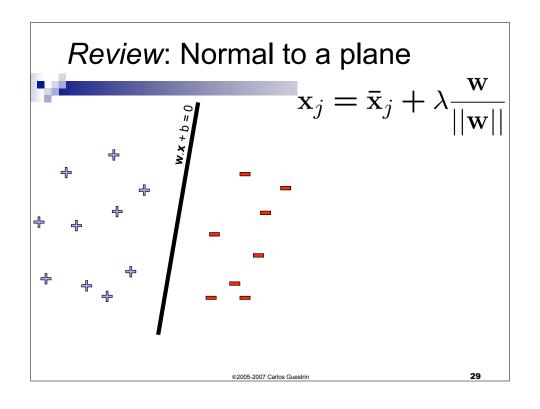
$$\left\langle x_i^{(1)}, \dots, x_i^{(m)} \right\rangle - m \text{ features}$$

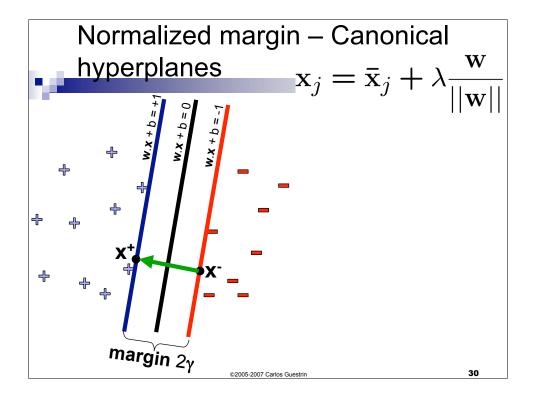
$$\left\langle x_i^{(1)}, \dots, x_i^{(m)} \right\rangle - m \text{ features}$$











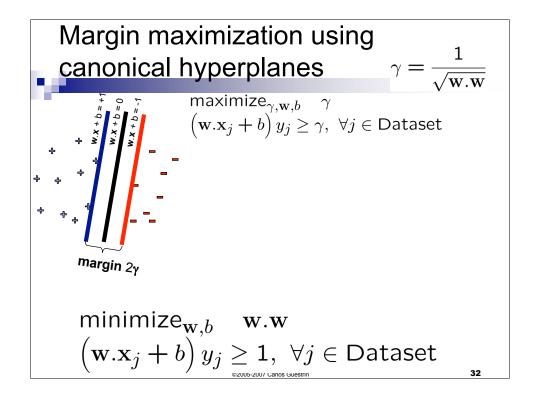
Normalized margin – Canonical hyperplanes
$$\mathbf{x}^+ = \mathbf{x}^- + \lambda \mathbf{w}$$

$$\mathbf{w}.\mathbf{x}^+ + b = 1$$

$$\mathbf{w}.(\mathbf{x}^- + \lambda \frac{\mathbf{w}}{||\mathbf{w}||}) + b = 1$$

$$\lambda = \frac{2}{||\mathbf{w}||}$$

$$\gamma = \frac{1}{\sqrt{\mathbf{w}.\mathbf{w}}}$$

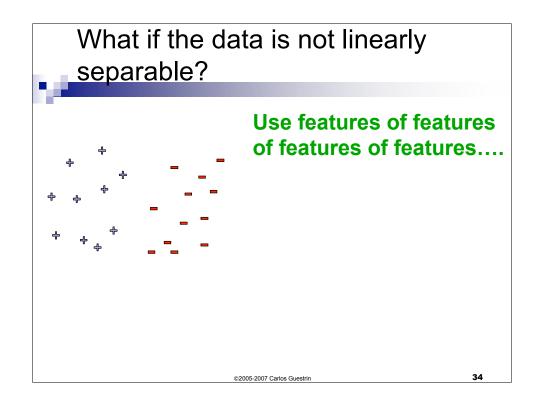


Support vector machines (SVMs)
$$\text{minimize}_{\mathbf{w},b} \quad \mathbf{w}.\mathbf{w} \\ \left(\mathbf{w}.\mathbf{x}_j + b\right)y_j \geq 1, \ \forall j$$

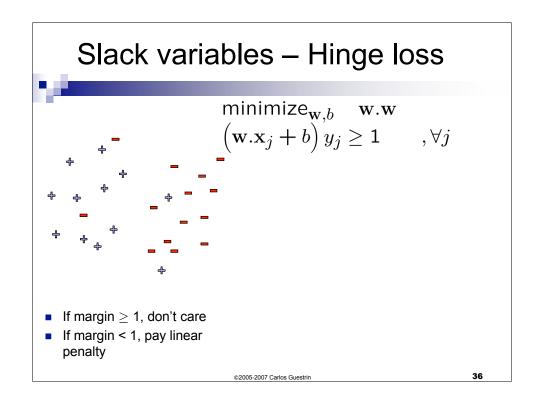
$$\text{Solve efficiently by quadratic programming (QP)}$$

$$\text{Well-studied solution algorithms}$$

$$\text{Hyperplane defined by support vectors}$$



What if the data is still not linearly separable? $\overset{-}{\mathsf{m}}\mathsf{inimize}_{\mathbf{w},b}$ $(\mathbf{w}.\mathbf{x}_j + b) y_j \ge 1$ $, \forall j$ ■ Minimize w.w and number of training mistakes □ Tradeoff two criteria? Tradeoff #(mistakes) and w.w □ 0/1 loss □ Slack penalty C □ Not QP anymore ☐ Also doesn't distinguish near misses and really bad mistakes 35 ©2005-2007 Carlos Guestrin



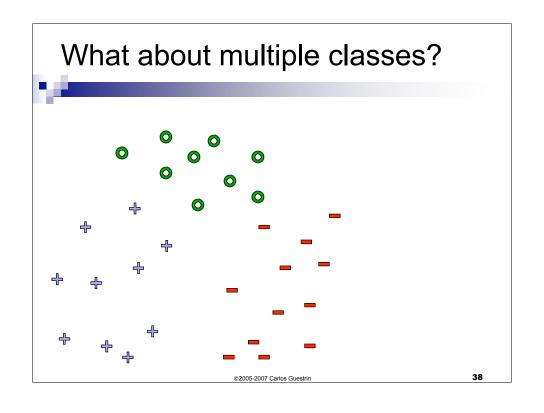
SVMs and logistic regression?

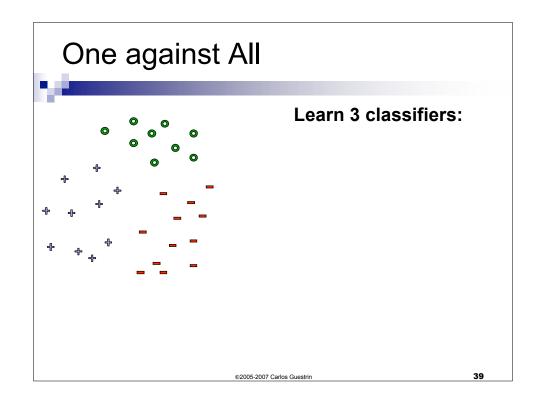
SVM:

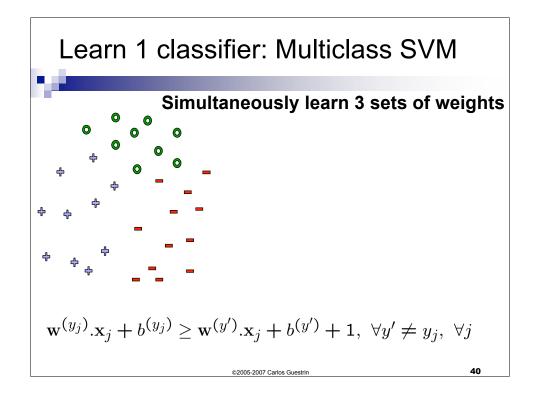
Logistic regression:

$$(w.x_j + b) y_j \ge 1 - \xi_j, \ \forall j$$
 $\xi_j \ge 0, \ \forall j$
Log loss:

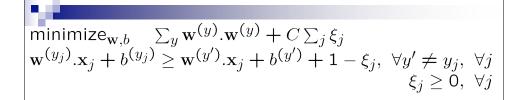
 $-\ln P(Y = 1 \mid x, w) = \ln \left(1 + e^{-(w.x + b)}\right)$

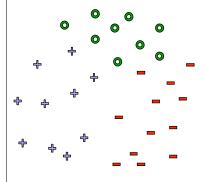






Learn 1 classifier: Multiclass SVM





©2005-2007 Carlos Guestrin

41

What you need to know

- - Maximizing margin
 - Derivation of SVM formulation
 - Slack variables and hinge loss
 - Relationship between SVMs and logistic regression
 - □ 0/1 loss
 - ☐ Hinge loss
 - □ Log loss
 - Tackling multiple class
 - □ One against All
 - Multiclass SVMs

©2005-2007 Carlos Guestrin