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Abstract

We present an approach for aligning a 3D deformable
model to a single face image. The model consists of a set
of sparse 3D points and the view-based patches associated
with every point. Assuming a weak perspective projection
model, our algorithm iteratively deforms the model and ad-
justs the 3D pose to fit the image. As opposed to previous
approaches, our algorithm starts the fitting without resort-
ing to manual labeling of key facial points. And it makes
no assumptions about global illumination or surface prop-
erties, so it can be applied to a wide range of imaging con-
ditions. Experiments demonstrate that our approach can
effectively handle unseen faces with a variety of pose and
illumination variations.

1. Introduction

Automatically locating detailed facial landmarks across
different subjects and viewpoints, i.e. 3D alignment of face,
is a challenging problem. Previous approaches can be di-
vided into two categories: view based and 3D based. View-
based methods [1, 2, 3] train a set of 2D models, each
of which is designed to cope with shape or texture varia-
tion within a small range of viewpoints. 3D-based meth-
ods [4, 5, 6, 7], in contrast, deal with all views by a sin-
gle 3D model. The early work of Blanz et.al. [4] on 3D
morphable model interprets a face by minimizing intensity
difference between the synthesized image and the given im-
age. Zhang et.al [6] proposed an approach that deforms a
3D mesh model so that the 3D corner points reconstructed
from a stereo pair lie on the surface of the model. Dim-
itrijevic et. al. [7] proposed the use of a 3D morphable
model similar to that of Blanz’s, but discarded the texture
component from the model in order to reduce the sensitiv-
ity to illumination. Both [6] and [7] minimize shape dif-
ference instead of intensity difference, but rely on stereo
correspondence. These 3D-based methods are reported to
require proper initialization, which typically involves man-
ual labeling of certain key points.

Figure 1. A 3D face (upper left) is represented by a sparse set of
3D points (upper right) and the view-based 2D patches associated
with every point (bottom). In this example, we choose 190 points
from the face surface, in which 89 points are located on the con-
tours of facial components. The other points are approximately
uniformly distributed. Patches are sampled from images rendered
under 15 different views: {—90°, —45°,0°,45°,90°} for roll and
{—35°,0°,35°} for pitch. (a ~ e) shows patches that correspond
to left eye center, nose tip, right eye center, mouse center and chin
tip, respectively. Black patches indicate self-occlusion under the
corresponding viewpoint.

Our approach is a 3D patch-based approach. A face, as
shown in Figure 1, is modeled by a set of sparse 3D points
(shape) and the view-based patches (appearance) associated
with every point. Working on the patch level, as opposed to
the holistic face region, offers us two advantages: it is eas-
ier to compensate illumination locally; and the variance of
texture within a patch is considerably smaller than that of
the whole face. However, patch information alone is not
enough to localize a facial point. The point could be oc-
cluded, or a similar patch pattern could present in a neigh-



boring region. It is essential to constrain the spatial arrange-
ment of the facial points by shape priors. We construct a
compact 3D shape prior on the sparse 3D point set, and ap-
ply it to constrain the 2D facial points in different views.

The initial positions of the shape points in a given im-
age are located using a simple gradient feature detector de-
signed for each point. Those independently found positions
are rather noisy and contains localization error. They also
provide only an incomplete observation of the underlying
3D shape because the depth is missing and some points may
be invisible. We formulate the alignment process of the 3D
model as a Bayesian inference problem with missing data,
whose task is to solve 3D shape and 3D pose from the noisy
and incomplete 2D shape observation. To resolve the uncer-
tainties we develop an EM-based algorithm, which decou-
ples the model fitting into three separate steps: shape aug-
mentation, shrinkage regularization, and pose estimation.
The algorithm first produces an “augmented” 3D shape by
a weighted combination of the shape observation and the
current shape estimate; then regularizes the 3D shape by
shrinking it in principal subspace toward the mean shape;
and estimates its pose by solving a constrained optimization
problem. The algorithm iteratively refines the 3D shape and
the 3D pose until convergence.

In training we utilize a gigantic database of over 50, 000
synthetic 3D faces. We have constructed the faces from la-
beled 2D images, so that the correspondences among 2D
faces are automatically conveyed to 3D. Shape priors are
learned from the database, and view-based patch statistics
are collected from the synthesized images. The algorithm
is tested on CMU PIE database [10]. We demonstrate it can
handle unseen faces with a variety of pose and illumination
variations.

2. Problem Formulation

The 3D geometrical structure of a face is described by
a set of 3D points concatenated into a vector Ss,x1 =
(T1,Y1, 21, - - s Ty Yn, 2n )", aligned with a normalized ref-
erence frame. We parameterize S as a linear deformable
model,

S=p+®b+e (1)

where the mean shape p and the principal subspace matrix
® are computed from training shape samples using PCA.
The vector b represents the deformation parameters that de-
scribe the deformation of S along each principal direction.
Assume that b is distributed as a diagonal gaussian
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with zero mean and variance \;’s, which are the eigenvalues
of PCA. The shape noise term € measures the deviation of
S from the principal subspace. We model € as an isotropic

gaussian with its variance set to be the average residual en-
ergy [12] that is not captured in the principal subspace,

1 3n

e~ N(0,0°1), 0® = o Doy N 3)

Given an input image, let gomx1 = (U1,01, ..., Um,

v )t denote the vector of m visible 2D points located in

it. In general, ¢ represents an incomplete and noisy obser-

vation of S. We relate ¢ with S by noised weak perspective
projection,

q=sMPRS +t+( %)

The 3D shape S3,,«1 is first rotated by Rsnx3n = I ®
R3, then projected onto the image plane with Po,x3, =
I, ®[(1,0,0); (0,1, 0)], scaled by s1x1, and translated on
the image plane by t2,,x1 = lmx1 ® t2. Here, ® denotes
“Kronecker Product”. The matrix Mas,, x2, is a 0/1 matrix
that indicates the visibility of points. The variables R3, s, 2
are the 3D pose parameters = {R3, s, t2}, six parameters
in total, to be determined by the alignment algorithm. The
observation noise is modeled by (

(~N(0,3),% = 8,815, 5, = diag {p? ... 0%} (5)

It is an anisotropic diagonal Gaussian, which reflects the
assumption that all points are located independently with
different confidence p; 2. The assignment of the value p;
will be clear as the paper proceeds.

We formulate 3D alignment as a Bayesian inference
problem: given the 2D observation g, estimate the deforma-
tion parameters b and the pose parameters 6 by maximizing
their log posterior,

logp (b, 0]q) = logp(q|b,0) + logp (b) + const  (6)

The shape prior term p (b) is learned from training samples
(2). The likelihood term is a mixture distribution,

logp (qb, 6) = log /S p(glS.0)p(S)ds ()

where p (S]b) is defined by (1), and p(g|S, 0) is defined by
(4). It measures the possibility that ¢ is generated from pa-
rameters {b, 6} with weak perspective projection.

3. The Algorithm

By choosing S as a hidden variable, we rewrite the log
posterior (6) as

(logp (b,0]S,q)) = (logp (4|S,0))

+ (logp (S|b)) + log p(b) 4 const ®)

where the expectation (-) is taken with respect to S. Note
that b and 6 were coupled in (7) which could not be fur-
ther factorized. However, by treating S as the hidden vari-
able and treating the pair of ¢ and .S as the complete data,



the resultant complete log posterior (8) allows us to decom-
pose the optimization of b and 6 into separate steps, each
of which can be solved effectively. The EM algorithm is
designed accordingly. In the E step, we compute the “aver-
aging” distribution used in (-), i.e. p(S]g, b, #), the posterior
of S given the observed shape g and the previous estimate
of the parameters {b(*), #(}; In the M step, we maximize
(logp (g|S,0)) and (logp (S|b))+1log p(b) over 6 and b sep-
arately.

In order to simplify our subsequent expressions, let us
introduce the following notations. I3 = diag{1,1,0}.
p- = (pl_Q, Py 2,0, pg2, .. .)t, an x 1 vector obtained by
elongating the inverse variance vector of the observation
noise (5), where zeros are filled into the entries of p~ that
correspond to the occluded points. ¥~ = diag{p~ }.

3.1. E Step
First we compute the ‘“averaging” distribution
p(Slg,b,6). Given the parameters b,0 and the obser-

vation ¢, the conditional distributions of S and ¢ are as
follows,

Sl ~ N (®b+ p,0°1) 9)
q|S,0 ~ N (sMPRS +t,%) (10)

The distribution of S is a product of (9) and (10),
p(S|g,b,0) o p(q|S, &)p(S|b) (1)

which is still a Gaussian. Its mean and variance are

E[S|q,b, 0] = Var[S|q, b, 0] [(<I>b+ 1))+ -
sR'q'M'S! (g —t)]

Var[S|q, b, 0] = <s2i_ ® (I —rirs) +U_21>_1 (13)

Observe that (13) is 3 x 3 block diagonal, which means that
the points of S are conditionally independent. So we divide
S into two parts in terms of their visibility S = {S,, S, } .

For the i-th occluded point S?, whose shape coordinates
are not changed by the observation ¢, (12) and (13) are
rewritten as,

E[So|q,b,0] = [®b + 1], (14)

Var[S,|q,b,0] = 0213 (15)

Neither the mean nor the variance is changed from (9), be-
cause there is no information collected from the observa-
tion.

For the visible part, let S = (S%1, 542, 5%3) denote the

i-th visible point, where S’ denotes individual coordinate.
We rewrite its conditional mean and variance as,

w1 Syt + wa Si!
w1 Sy% + wy i (16)
Si,B
b

E[S!|q,b,0] = R'

Var[S!|q,b,0] = (stZQ (I — Té’f’g,) + 0_2I)_1 a7

where
Sy = R(Pb+ p) (18)

S, = s 1PtM! (¢ —t) 19)
wy = p3/(s%0% + p?), wo = s%0?/(s0” +p}) (20)

The expected i-th visible point E[S!|q,b,0] is indeed a
weighted average of two 3D points, Sj and S. S, is the
shape vector computed by using the deformation parameters
b; Sy is the constructed shape vector by using the 2D obser-
vation g. The weights w; and wy in (20) are determined by
the variances of noises € and 7: if p; is small, the obser-
vation on the i-th point is reliable so the algorithm assigns
larger weight to S;; otherwise it gives more weight to Sj.
In the subsequent discussions we refer (S) = FE[S|q,b, 0]
as the augmented 3D shape, because it is a 3D shape vector
“augmented” from 2D observation.

3.2. M Step

Given the averaging distribution of .S, the maximization
of (8) is decomposed into two independent problems: 1)
estimate the deformation parameters b by maximizing its
expected log-posterior (logp (S]b)) + log p(b); 2) estimate
the 3D pose 6 by maximizing the first term (log p (¢|S5, 6)).

For the first problem we note that the posterior of b, given
S, is again a Gaussian,

logp (b|S) = logp (S|b) + logp (b) 1)
whose mean and variance are
E[B|S] = A (A+021) ' & (S — p) (22)

Var[b|S] = o A(A + o?1)7* (23)

By taking the conditional expectation (-) over (21), comput-
ing its derivative with respect to b, and setting it to zero, the
optimal b is obtained as

b=A(A+0%T) " ®((S) — ) (24)

Note that b = E[b](S)] by comparing with (22). In other
words, b is nothing but the mean of b given the augmented
3D shape (S). If we rewrite (24) for each element of b, we
have

~

bi = Bi®((S)—n)
Bi = N/(\i+0?) (23)

Eq.(25) can be viewed as a regularization process: the aug-
mented 3D shape (S) is projected onto the principal sub-
space; then the projection coefficient is shrunk toward the
mean shape along each principal direction. The degree of
shrinkage is controlled by the eigenvalue A;.



Next, we proceed to compute the optimal pose 0 =
{R, s,t}. Maximizing (logp (¢q|S,0)) would be obtained
by minimizing the following conditional expectation of a
weighted distance error d,

Ly = (d'>7'd), d=q— sMPRS —t (26)

Minimizing the loss function L; will involve the second or-
der statistics <SST>. Instead, let us consider an alternative
by replacing S with the augmented 3D shape (S

Ly=d'>"'d, d=q—sMPR(S)—t (27

Minimization of L; can be approximated by minimization
of Lo, because given ¢, b, 8 the variance (17) of .S is consis-
tently small. Indeed, the difference between L, and Lo

Ly~ Ly =Y s%0°/(s’0® + p}) (28)
=1

is always considerably smaller than the value of L. By dis-
carding the occluded points from (S} and assigning weights
to the visible points,

¢ =Wgq, " =W(S)

W = diag{p;*,... (29)

NV

Minimizing (27) leads us to the solution of 0 as

t=cy —3PRCs (30)
5= (a. PRS.) /| PRS.? 31)

~

R = argmax (¢,, PRS')? / ||PRS'|)? (32)
R

where ¢, and C's/ are the centroids of ¢’ and S, respec-
tively. Here ¢, and S denote the centralized vectors. See
the appendix for the detailed derivation.

3.3. Iterative EM Shape and Pose Estimation

The E Step and the M step developed in 3.1 and 3.2 are
now put together into an iterative algorithm. Given the 2D
shape observation ¢, the current shape estimate b’, and the
current pose 0%, it performs:

1. Shape augmentation: generate the “augmented” 3D
shape (S) from {gq,b%, 6"} in two steps: 1) For the oc-
cluded points, simply replicate the coordinates of oc-
cluded points from S, (14). 2) For the visible points
of (S), replicate the depth by that of .Sy, (16); compute
their image plane coordinates by a weighted average
of Sy, (18) and S, (19).

2. Shape regularization: smooth (S) by projecting it into
the principle subspace with shrinking the projection
coefficients by (25). That gives the updated deforma-
tion parameters b'*1.

3. Pose estimation: estimate 0! (30 ~ 32) by minimiz-
ing Lo (27).

Steps 1 ~ 3 are repeated until convergence.

3.4. Discussion

Weighting and regularization may merit a few discus-
sions.

Weighting for outlier resistance: Resistance to outliers
is achieved by weighting. Note that in both the shape aug-
mentation step and the pose estimation step, the weight (20)
(29) associated with each observed point is inversely pro-
portional to its observation variance p;. For outliers with
higher variance, smaller weights are assigned to suppress
their influence. The value of p; is adjusted in an iterative
reweighting manner. The initial value of p; is set to be
same for all i. Suppose ¢'~! is the previous 2D observa-
tion, and p is the 2D projection of the current 3D shape
S = ¢b' + p. We measure the fitting error for every point
et = |l¢'~' — pt||, then use it to update p! = ce!~'. Nor-
mally outliers produce larger matching errors. The weights
associated with every point in (20) (29) are adjusted accord-
ingly.

Regularization by shrinkage: In deformable model
matching, regularization is crucial for generating a smooth
model from a noised observation. Our algorithm regularizes
the 3D shape (S) by a shrinkage” process (25). It gives a
greater amount of shrinkage in the directions with smaller
eigenvalues \;, and vice versa. Recall that large shape de-
formations, such as expression change or varying degrees
of fatness, are encoded in the first several principal direc-
tions. Our algorithm therefore encourages to preserve these
“meaningful” deformations, and penalizes minor deforma-
tions that often correspond to random landmark perturba-
tions. It also controls the overall penalty by the variance of
shape noise 2, in other words, by the number of principal
components. It can be shown that bisa Bayes estimator of
the shape deformation in (S).

4. Aligning 3D Model to an Input Image

Given an input image, we construct a three-layered
Gaussian pyramid, and apply the alignment algorithm se-
quentially from the coarsest layer to the finest. The align-
ment algorithm works as shown in Table 1. With the iter-
ative EM estimation process at its core, the algorithm con-
sists of initialization and main loop.

Initialization: The initialization procedure is automatic:
The deformation parameters are initialized as zero; The 3D
pose parameters are initialized by Schneiderman&Kanade
face detector [8]. The initial roll angle is set to be one of
{=90°,—45°,0°,45°,90°}, according to the output chan-
nel of the face detector; the initial pitch and yaw angles are



1. Initialize the deformation parameters p° = 0; initialize
pose parameters 6° by a face detector [8] that gives the
rough location and orientation of the face.

2. Occlusion query: render the 3D face S = p + $b under
pose 6; identify the visible points by querying Z-buffer
to update the “visibility”” matrix M.

3. 2D observation: update the location of visible points ¢
by the feature detectors.

4. Shape and pose inference: estimate shape and pose by
applying the core algorithm described in section 3.3.

5. Re-weighting: evaluate the fitting errors and update the
weights for every point.

6. Outer loop: repeat steps 2 ~ 5 until convergence.

Table 1. Fitting the model to an image.

Figure 2. Local feature point detection. Left: the initial projection
of the 3D mean face; Right: the resultant positions obtained by
individual local searching. Only part of points are shown and
connected for display purpose. Since the feature detectors re-
spond to gradient magnitude, it can be observed that many points
are moved to the positions with strong edge response (as high-
lighted by white circles), but not necessarily the correct positions.
It demonstrates that patch information alone is not enough to lo-
cate these points.

set as zero. The initial scale and translation are computed
from the outputs of the face detector.

Feature descriptor: In our system we use a very simple
descriptor that is constructed from a 9 x 9 patch. The gradi-
ent magnitude is computed for every pixel in the patch, then
stacked into a feature vector. We normalize the {; norm of
the vector to one.

Feature point detector: We sample the patches from all
training faces, and compute their mean and variance for
each point under each view. Given the initial pose estimate,
we find the closest training pose, and the associated feature
detectors. We project the 3D shape onto the image plane,
search over the neighboring region for each 2D point indi-
vidually, and find the best matching. The goodness of matc-

(@) (b)

() (d) (e)
Figure 3. lllustration of the fitting process. (a) initialization (b) 2D
observation (c) augmented shape (d) regularized shape (e) con-
verged

hing is measured by the Mahalanobis distance. Figure 2
gives us an example of the feature detection results. We
highlight several failed points by circles. In general, it is
very difficult to localize their positions using only patch in-
formation.

Lllustration of Fitting Process: Figure 3 visualizes the
whole model fitting process for an example input of a half
profile face. The figure shows the 2D projection of the 3D
shape obtained at each stage. Figure (a) shows the projec-
tion of the mean shape using the initial pose. The position of
visible points is then updated by individual local searching,
and the result is shown in (b). Observe that although many
points are moved toward the correct positions, the others are
affected heavily by the specular light and the image noises
around the face area. Also note that the spatial positions
between the points are often inconsistent, because their po-
sition is updated independently for each point. The algo-
rithm then produces an augmented 3D shape (c) by aver-
aging the observation and the current shape estimate (mean
shape in the first iteration). At this moment the algorithm
has not identified outliers since the weights associated with
all points are equal. Next, the augmented shape is regular-
ized by the shrinkage process, and the resultant regularized
shape is shown in (d). Note now that the protrusion ap-
peared in (c) is smoothed out, and the spatial arrangement
of the whole pattern is more regular. Meanwhile, the major
shape deformations captured by the 2D observation is pre-
served in (d). The (c) and (d) steps are repeated iteratively
until the EM algorithm converges. Then the points are re-
weighted according to their fitting errors, that is, the pair-
wise distance between (b) and (d). Observe that the outlier
points are assigned with lower weights in the subsequent
computations. The image (e) shows the final result.
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Figure 4. Create synthetic 3D faces. (a) 2D reference model with 83 landmarks, (b) 2D frontal face image; (c) 3D reference model with
8895 vertices; (d) 3D laser scan; (e) correspondence between the 2D and 3D reference models; (f) additional points selected from the 3D

face surface

5. Experiments

Our experiments involve three face databases: A) AR
Database [9]: 720 frontal face images, each image is
manually labeled with 83 landmarks. B) USF Human-ID
Database [4]: 100 laser scanners aligned to a 3D reference
model of 8895 points. C) CMU PIE Database[10]: 4488
images of 86 people varied in pose and illumination. There
is no overlap among these databases. We create a synthetic
3D face database from A and B for training. We test the
algorithm on database C.

5.1. Synthetic Training Faces

Collecting and labeling a large number of 3D faces is it-
self a difficult problem. Several techniques have been devel-
oped to establish the correspondence among 3D laser scans
automatically, but no guarantee can be made as to the cor-
rectness. In our work we adopt a different strategy: use
synthetic faces instead of real faces for training.

Recall that the 2D face model uses 83 points (Figure
4(a)), and each image in database A are labeled with those
landmark points (4(b)). In the meantime, each 3D laser
scanned face in database B ( 4(d)) are marked with 8895
reference points (4(c)). Therefore once we establish manu-
ally the correspondences (4(e)) between those 83 points and
8895 points, we know the texture mapping between any pair
of image I in database A and 3D face L in database B. A
new virtual 3D face is generated automatically from I and
L by follows,

1. Estimate pose: Compute the relative 3D pose of I with
respect to L that minimizes their shape difference on the
image plane.

2. Generate shape: Project L onto the image plane accord-
ing to that pose; Warp the projected shape to fit I by RBF
regression; Replicate the image plane coordinates of the vir-
tual face from 7; Replicate the depth from L.

3. Generate texture: Extract texture from the 2D image,
and if holes (missing textures) exist, fill them in by interpo-
lation.

(b)

Figure 5. Synthetic 3D face database. The original 2D images
are shown in the first column; novel views synthesized from the
generated 3D faces are shown in other columns. (a) by replicating
different depth from different laser scans we can create multiple
3D faces from one image; (b) the correspondence across different
faces and difference views.

Repeating this process for every pair of image in databases
A and 3D laser scan in databases B, we produce a gigantic
database of over 50, 000 synthetic 3D faces with established
correspondences. Observed from Figure 5, the synthetic 3D
faces may or may not correspond to any “real” person, but
visually they are all plausible face instances. Although there
exists redundancy among the 3D faces generated from the
same image, the synthesized 2D patches are all different
because the depth is different.
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(e) ®
Figure 6. The mean patches sampled at six key feature points from
[ifteen views. (a) left outer eye corner; (b) left eyebrow corner; (c)
right eyeball center; (d) the lowest point on mouth contour; (e) the
point at the center of left lower cheek; (f) the point on the contour
of right lower cheek.

5.2. Training

The 3D shape priors are learned from the synthetic
training database via PCA. To construct the feature de-
tectors, we render all 3D faces in 15 different views:
{—90°, —45°,0°,45°,90°} for roll, and {—35°,0°,35°}
for pitch. The direction and intensity of the light source are
varied randomly within a certain range. A three-layer Gaus-
sian pyramid is constructed on the synthesized image, and
for each layer, the gradient magnitude is computed for every
pixel. The 9 x 9 patches centered on every visible point are
sampled, and their mean and variance across training sam-
ples are computed. In figure 6, we show the mean patches
of several key facial points sampled from the coarsest layer.

5.3. Testing Results

Figure 7 shows some typical alignment results on im-
ages from PIE database. The rectangles and the bars at the
bottom denote the initial pose. The resultant 3D shape and
pose are shown by projecting the 3D shape into the image
plane with the estimated 3D pose. Our algorithm success-
fully align those key facial parts, such as eyes, noses and
mouthes, as well as the occluding contours under different
viewpoints, for the test images contain substantial pose vari-
ation and illumination changes. It has been observed that
the algorithm has difficulty to align ears, which in turn may
also affect the estimate of the scale. This is due to the miss-
ing texture of ears in the synthetic database.

6. Summary and Future Work

For automatic 3D face alignment, we have proposed a
deformable model consisting of a sparse 3D points and
view-based patch appearance. We have also proposed an
algorithm to estimate 3D shape and pose from a noisy 2D
shape observation. Given a single image, the resultant
alignment provides locations of facial landmarks, as well
as 3D shape and pose. They are useful for many applica-

tions, such as model based tracking and 3D reconstruction,
which currently heavily depends on human intervention for
initialization.

A problem of fitting 3D model to a single image is the
depth ambiguity. Within the same framework, we have ex-
tended the inference algorithm to simultaneously align pairs
of or multiple views of a rigid face [11]. Future work in-
cludes generalizing the prior model or the projection model
for the alignment of other objects.

Appendix: Estimate Rotation

The loss function (32) can be reduced to a simple form
as follows,

. t 12
maximize |a'r|” over r

33
s.t. DrtAr =1 2) |lr |l = [lroll 3)r'trs = 0 (33)
172

We rewrite (32) as (34) by re-arranging the elements of ¢’
and ',

Tr{QF, 2Snx3Rsx3P3x2}
Tr { P o R3St 5SnxaRaxa Pax2 }
The rows of Q,,x2 and S,,«3 correspond to the points in ¢’

and S’. Applying SVD decomposition to S = V DU, and
after a sequence of substitutions R3y3 = [rl, ro, T3], Th =

thqla

(34)

t t
Ulri, rex1 = [7“/177“'2] Qnx2 = [q1,02), ¢

t
apx1 = [q/tp Q’g} , we end up with a simplified form as
(33). It is an over-constrained nonlinear optimization prob-
lem that can be solved effectively by a generalized Newton

method in 10 ~ 30 iterations.
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