
Introduction to Cryptography 02/13/2018

Lecture 9: Pseudorandomness III

Instructor: Vipul Goyal Scribe: Vy Nguyen

1 Poly-Stretch Pseudorandom Generators

Recall the construction of a poly-stretch PRG GP : {0, 1}n → {0, 1}l(n) from a 1-bit stretch
PRG G : {0, 1}n → {0, 1}n+1. Given a random n-bit seed s, GP (s) = b1b2...bl(n) where

s0 ← s
s1||b1 ← G(s0)

..

..
sl(n)||bl(n) ← G(sn−1)

Theorem 1 If G is a one-bit stretch PRG, then GP is a poly-bit stretch PRG.

Before we proceed with the proof, let’s quickly review the Hybrid Lemma.

Lemma 1 (Hybrid Lemma) Let X1, ..., Xm be distribution ensembles for m = poly(n). Suppose
there exists a non-uniform PPT adversary D that can distinguish X1 and Xm with an advantage
ε. Then there exists i ∈ {1, ...,m− 1} such that D can distinguish Xi and Xi+1 with an advantage
≥ ε

m .

Now let’s prove Theorem 1.

Proof. Suppose that GP is not a poly-bit stretch PRG. Let D be a non-uniform PPT algo-
rithm that can distinguish GP and Ul(n) with a noticeable advantage of at least ε. We will use the
hybrid proof to show that this cannot be the case.

Let s be an n-bit seed selected uniformly random from {0, 1}n and construct the hybrids as follows
-H0: D is given GP (s) = b1b2...bl(n). Output D(b1b2...bl(n)).
-H1: D is given GP (s) = u1b2...bl(n). Output D(u1b2...bl(n)).
-..
-Hi: D is given GP (s) = u1u2...uibi+1...bl(n). Output D(u1u2...uibi+1...bl(n)).

Specifically,

s1||u1 ← {0, 1}n+1

..
si||ui ← {0, 1}n+1

si+1||bi+1 ← G(si)
..

sl(n)||bl(n) ← G(sn−1)

-Hn: D is given GP (s) = u1u2...ul(n). Output D(u1u2...ul(n)).

Now, let’s construct another adversary A which receives an input y that can come from either
a PRG G(s) or a uniform distribution Un+1. A runs as follows

9-1

s1||u1 ← {0, 1}n+1

..

..
si||Z ← y

si+1||bi+1 ← G(si)
..
..

sl(n)||bl(n) ← G(sn−1)

After constructing the string, A then runs D(u1u2...Zbi+1...bl(n)). If the input was sampled from
G(s), the output of D is distributed identically to the output of Hi, whereas if the input was
sampled from Un+1, the output of D is distributed identically to the output of Hi+1. Thus the
advantage of A breaking G is the same as that of D in distinguishing Hi and Hi+1. Since the
advantage of A breaking G is less than some negligible function negl(n) and there are l hybrids,
the advantage is at most l×negl(n). This contradicts our initial assumption that the advantage is
at least ε. Thus, GP is a poly-bit stretch PRG.

2 Random Functions

Definition 1 A function FR is a random function if FR : {0, 1}n → {0, 1}m. For simplicity, we
will assume m = n.

It is useful to think of FR as a table that maps FR(xi)→ ri where ri is some random number.

x FR(x)

000...000 101...110
000...001 111...010
000...010 111...110

. .

. .
111.111 001...011

Note that this table is exponentially large with 2n entries. Since each image of FR takes up n bits,
a bitwise representation of FR would take up n× 2n bits and there is a total of 2|FR| = 2n×2

n
such

functions FR that map n bits to n bits. It is not possible to store the full-table description of FR
because it would take exponential time. We need to come up with another way to define these
random functions.

3 Pseudorandom Functions

An alternative approach is to construct a pseudorandom function (PRF). A PRF looks like a
random function, but only requires a polynomial numbers of bits to describe. In other words, a
PRF and a random function should be computationally indistinguishable. Let’s attempt to provide
a definition for a PRF.

Proposition 1 For any non-uniform PPT distinguisher D, we require that there exists a negligible
function negl(n) such that ∀n ∈ N

9-2

{Pr[D(table generated randomly)] - Pr[D(table generated from PRF)] = 0} ≤ negl(n)

Problem: D is a PPT machine and cannot process a table that is exponentially large. Let’s consider
a different game-based definition of PRF.

Definition 2 A function F : {0, 1}n × {0, 1}n → {0, 1}n is a pseudorandom function if it is

• Easy to Compute: For any input s, x, F (s, x) can be computed in polynomial time.

• Hard to Distinguish: For every non-uniform PPT D, there exists a negligible function negl(n)
such that ∀n ∈ N

Pr[D wins Guessing Game] ≤ 1
2 + negl(n)

where the Guessing Game is defined as follows

1. The game has two players: a challenger Ch and a distinguisher D.

2. The game begins with Ch choosing a random seed s and random bit b. If b = 0, then
Ch will implement a PRF, Otherwise, it will implement a random function. Ch may not
switch the function that it is using once the game has started.

3. D sends queries x1, x2, ... to Ch and can repeat any number of times.

4. Ch applies whichever function it chose and responds with the result F (xi), i.e.

– if b = 0, reply PRF (s, xi).

– if b = 1,

∗ keep a table T for previous answers.

∗ if xi is in T , return T [xi].

∗ else, choose random ri ← {0, 1}n, T [x] = ri, return ri and store it in T .

5. Game ends when D stops and outputs bit b′.

D wins the game if b′ = b.

4 Construction of a PRF

We will construct a PRF using a PRG. We will begin by building a PRF for just 1-bit inputs and
generalize it to n-bit inputs later. The construction for the 1-bit input is as follows

Let G : {0, 1}n → {0, 1}2n be a PRG. Compute G(s) = y0||y1 where |y0| = |y1| = n. For any
input b← {0, 1},

F (b) =

{
y0 if b = 0

y1 else

By constructing F in this way, we guarantee that for any 1-bit input b, F (b) will always be the
same and it will always look random since G always produces random looking output.

We can extend the same idea for n-bit inputs by using a decision tree. Whereas in the 1-bit

9-3

case, the decision tree has depth 1; in the n-bit case, the tree would have depth n and each input x
would take a unique path down the tree, eventually arriving at a leaf node. Note that the adversary
can only see the leaf nodes and nothing else inside the tree.

More formally, for an n-bit input x = x1x2...xn and a PRG G : {0, 1}n → {0, 1}2n, the PRF
F can be constructed as

F (s, x) = Gxn(Gxn−1(...(Gx1(s))..))

Now let’s try to prove the security of this PRF construction.

Theorem 2 (Goldrich-Goldwasser-Micali(GGM)) If pseudorandom generators exist, then
pseudorandom functions exist.

Proof. We will proceed with another hybrid proof. Notice that if we try to create hybrids on each
possible leaf node in the tree, then we will have an exponential number of hybrids and the Hybrid
Lemma will not hold. So we must find a way to construct a polynomial number of hybrids. Observe
that any PPT adversary is only allowed to make polynomial queries. Since each query corresponds
to a unique path, the total number of nodes being visited by all queries is n × poly(n) = poly(n).
So we will construct a hybrid over an arbitrary path taken by some query x.

Suppose that F is not pseudorandom, then by definition, there exists some distinguisher D and
noticeable function ε such that

Pr[D wins Guessing Game] ≥ 1
2 + ε

In other words, D can distinguish between the output of a PRF and a random function. Now let’s
construct the hybrids Hi

Level 1 Hybrids:
- H0: Level 0 is random, level i > 0 is pseudorandom (this represents the actual PRF).
- H1: Level 0,1 are random, level i > 1 is pseudorandom.
- ..
- ..
- Hi: Level ≤ i are random, level > i is pseudorandom.
- ..
- ..
- Hn: all levels are random (this represents a random function).

Since D can distinguish between a PRF and a random function, it can differentiate between H0

and Hn with a noticeable advantage ε. Then, by the Hybrid Lemma, there exists an i ≤ n ∈ N
such that another distinguisher D′i can distinguish between Hi and Hi+1 with an advantage of at
least ε

n . Note that the only difference between Hi and Hi+1 is that
- in Hi, level i+ 1 is pseudorandom.
- in Hi+1, level i+ 1 is random.
So we need to create another set of hybrids for Hi and Hi+1.

9-4

Level 2 Hybrids: (assuming that all nodes are in lexicographic order)
Suppose D makes q queries. Define Hi,q as the same as Hi, except that all nodes at level i+ 1 that
are children of nodes ≤ j are changed to random. Specifically,
- Hi,0: Same as Hi.
- Hi,1: Suppose the query asks for xa. At level i+ 1, change the parent of xa and all its siblings to
random.
- Hi,2: Suppose the query asks for xa and xb. At level i + 1, change the parents of xa and xb and
all their siblings to random.
- ..
- Hi,q: Same as Hi+1.

By the Hybrid Lemma, given D′i, there exists D′′i,j that can distinguish between Hi,j and Hi,j+1

with an advantage of at least ε
qn ≥

1
poly(n) . The only difference between Hi,j and Hi,j+1 is that

- in Hi,j , node j at level i+ 1 is pseudorandom.
- in Hi,j+1, node j at level i+ 1 is random.

Now since D′′i,j can distinguish between Hi,j and Hi,j+1, we can construct another distinguisher
A as follows:

1. A receives an input y as a random string or as G(s) for some PRG G and a random string s.
A interprets as y0||y1.

2. Substitute y0 and y1 for the children of node j and compute the remaining nodes that are
affected by the adversary’s queries by using random values.

3. If D′′i,j says that the distribution of these nodes matches the distribution of Hi,j , then A
decides that the input is pseudorandom. Otherwise, if it matches the distribution of Hi,j+1,
then A decides that the input is random.

According to the above construction, A can distinguish between a random string and the output of
a PRG. Since A violates the pseudorandom property of PRG, A does not exist and consequently,
D′′i,j , D

′
i, and D do not exists. Thus, the construction of PRF is indistinguishable.

9-5

