
Introduction to Cryptography 02/06/2018

Lecture 7: Pseudo Random Generators

Instructor: Vipul Goyal Scribe: Eipe Koshy

1 Introduction

Randomness is very important in modern computational systems. For example, randomness is
needed for encrypting a session key in an SSL connection or for encrypting a hard drive. There are
multiple challenges associated with generating randomness for modern systems:

• True randomness is difficult to get

• Large amounts of randomness are needed in practice

Given these challenges, several different input sources are used for randomness on modern systems.
For example, key strokes or mouse movements can be used as a source of randomness. However,
these sources are limited in the amount of randomness they can generate.

In addition, it is critical that the sources of randomness be truly random or close to being truly
random. Several crypto-systems have been defeated1 because their randomness generators were
broken (i.e. not truly random.)

As a solution to both the challenges detailed above for generating randomness, an approach to
build a kind of randomness generator that creates random strings of a desired length would be to
first, start off with building a short random string (of length, say, n bits), and then, expand it to
a longer random looking string k (of length, say, l(n) bits.) We can represent this ”randomness”
generator as f : {0, 1}n → {0, 1}l(n)

A key question is: Can we can really expand a short string with a few random bits into a longer
string with many random bits? The answer lies in the definition of the term ”random looking”
that we we used in our definition above. The long string that we have generated is not truly
random (since with an input of length n bits, we can only generate 2n outputs, as compared to the
2l(n) outputs needed if the string was truly random.) However, as detailed in the next section, we
can generate a ”pseudo-random” string such that the output appears ”random looking” to a PPT
(probabilistic polynomial time) adversary.

2 Pseudorandomness

Let us suppose there are n uniformly random bits. Pseudorandomness can be defined as finding a
deterministic (polynomial-time) algorithm f : {0, 1}n → {0, 1}l(n) such that:

• the output of f(x) contains l(n) bits

1 https://en.wikipedia.org/wiki/Random_number_generator_attack#Prominent_examples

1-1

https://en.wikipedia.org/wiki/Random_number_generator_attack#Prominent_examples

• {0, 1}l(n) appears to be as ”random looking” as a truly random string

f : {0, 1}n → {0, 1}l(n) is called a pseudorandom generator (PRG) that takes n random bits
with no additional randomness of its own and outputs l(n) random bits.

What do we mean by ”random looking”? The key idea is that the the pseudorandom genera-
tor (PRG) produces output that is indistinguishable from that of a true random number generator
for a PPT adversary. ”Random looking” indicates that the bits should not follow any pattern. The
”random looking” string should also pass all necessary statistical tests like:

• There should be as many 0s as there are 1s

• Each particular bit is roughly unbiased

• Each sequence of bits occur roughly with same probability

The main idea is that no efficient computer should be able to tell apart the output of f(x) (i.e.
the pseudorandom generator) from that of a truly random generator. Before knowing more about
pseudorandomness, let us look at some of the underlying definitions that will help us understand
the concept better.

Definition 1 (Support) The support or sample space can be defined as the set of all possible
values of outcomes of an experiment.

Definition 2 (Distribution) Xn is a distribution over support ξ if it assigns probability ps to
each s ∈ ξ such that

∑
s∈ξ

ps = 1.

Definition 3 (Distribution Ensembles) A sequence {Xn}n∈N is called an ensemble if
for each n ∈ N , Xn is a distribution over {0, 1}∗

Generally, Xn will be a distribution over the sample space {0, 1}l(n)

Definition 4 (Identical Distributions) Xn and X ′n are said to be identical distributions if ∀ s
∈ {supp2(Xn) ∪ supp(X ′n)}:

Pr[x← Xn : x = s] = Pr[x← X ′n : x = s]

=⇒ supp(Xn) = supp(X ′n)
(1)

3 Computational Indistinguishability

The term computationally indistinguishable is used to formalize a way to capture what it means
for two distributions X and Y to look alike to any efficient test.
In short,

Efficient test = Efficient computation = Non-uniform PPT

2Note: supp refers to the support of the distribution

1-2

Intuition: No non-uniform PPT distinguisher algorithm D can tell the two distributions X and Y
apart i.e. behavior of D is same for both of them.

Informally, we say that we have computational indistinguishability when the output of a PRG
is indistinguishable from that of a true random number generator. We will begin by attempting to
define computational indistinguishability.

Definition 5 (Computational Indistinguishability - first attempt) Distribution ensembles
Xn and X ′n are said to be computationally indistinguishable if ∀n ∈ N and s ∈ {supp(Xn) ∪
supp(X ′n)}, ∣∣Pr[x← Xn : x = s]− Pr[x← X ′n : x = s]

∣∣ ≤ ν(n), (2)

where ν(n) represents a negligible function.

Unfortunately, this definition does not work. To see this, let us consider the following distribu-
tion ensembles:

• {Xn} represents all even numbers that can be represented using n bits.

• {X ′n} represents all odd numbers that can be represented using n bits.

It is easy to see that the number of elements in each ensemble above is 2n−1.

Let us consider the case where ”s” in our definition of computational indistinguishability above is
an even element.
The LHS, i.e., |Pr[x← Xn : x = s]− Pr[x← X ′n : x = s]| evaluates to:
2n−1 − 0 = 2n−1 � ν(n)
Given this definition does not work, we will attempt an alternate definition:

Definition 6 (Computational Indistinguishability - second and correct attempt) Consider
distribution ensembles {Xn} and {X ′n} and a PPT adversary A. We define:

• A(x) = 0 if x is sampled from {Xn}

• A(x) = 1 if x is sampled from {X ′n}

{Xn} and {X ′n} are said to be computationally indistinguishable if ∀ PPT adversaries A and n
∈ N , ∣∣Pr[x← Xn : A(x) = 0]− Pr[x← X ′n : A(x) = 0]

∣∣ ≤ ν(n) (3)

, where ν(n) represents a negligible function.

Note: The LHS of this definition, i.e. |Pr[x← Xn : A(x) = 0]− Pr[x← X ′n : A(x) = 0]| is also
referred to as distinguishing advantage.

Definition 7 (Prediction advantage) Denote distribution ensembles Xn and X ′n as X0
n and

X1
n respectively. Then, an alternate representation for computational indistinguishability follows as

below; the LHS of this expression is defined as prediction advantage.
The expression is ∀ PPT adversaries A,:∣∣∣Pr[b $←− {0, 1}, x← Xb

n : A(x) = b]− (1/2)
∣∣∣ ≤ ν(n) (4)

, where ν(n) represents a negligible function.

1-3

An alternate definition of prediction advantage can be stated as below:

Definition 8 (Prediction advantage - alternate definition) A non-uniform PPT A is said
to guess the bit b from the sample x that is picked out of sequence of distribution {Xb

n} (made

with randomness , say $,) with prediction advantage
∣∣∣Pr[b $←− {0, 1}, x← Xb

n : A(x) = b]− (1/2)
∣∣∣

negligibly close to 0.

Lemma 1 (Informal) If distinguishing advantage is negligible, then prediction advantage is also
negligible and vice versa. Alternately, we can restate the same lemma as that computational indis-
tinguishibility implies prediction advantage is negligible and vice versa.

Proof. Let us start by considering prediction advantage, the expression for which is as follows:∣∣∣Pr[b $←− {0, 1}, x← Xb
n : A(x) = b]− (1/2)

∣∣∣
=
∣∣Pr[x← X0

n : A(x) = 0]Pr[b = 0] + Pr[x← X1
n : A(x) = 1]Pr[b = 1]− (1/2)

∣∣
= (1/2)

∣∣Pr[x← X0
n : A(x) = 0] + Pr[x← X1

n : A(x) = 1]− 1
∣∣...(∵ Pr[b = 0] = Pr[b = 1] = (1/2))

= (1/2)
∣∣Pr[x← X0

n : A(x) = 0] + (1− Pr[x← X1
n : A(x) = 0])− 1

∣∣
= (1/2)

∣∣Pr[x← X0
n : A(x) = 0]− Pr[x← X1

n : A(x) = 0])
∣∣

= (1/2) ∗ the expression for distinguishing advantage

= (1/2) ∗ ν(n)

... where, ν(n) , is a negligible function

Lemma 2 (Stronger) Distinguishing advantage and predictive advantage are within a factor of
2 of each other.

3.1 Properties of Computational Indistinguishability

Note: If distribution ensembles {Xn} and {X ′n} are computationally indistinguishable, then we can
represent them as {Xn} ≈

C
{X ′n}

1. Closure: For every PPT machine M , if {Xn} ≈
C
{X ′n}, then M{Xn} ≈

C
M{X ′n}

Note: For proof, we can use contradiction, since if this were not true, we could use M to
distinguish the two ensembles.

2. Transitivity : Suppose (X,Y) are computationally indistinguishable with advantage ε1 and
(Y,Z) are computationally indistinguishable with advantage ε2, then (X,Z) are computa-
tionally indistinguishable with advantage ε ≤ ε1 + ε2.

Note: We can also use the triangle inequality to prove this property.
Proof. Given,

|Pr[x← X : A(x) = 0]− Pr[x← Y : A(x) = 0]| ≤ ε1 =⇒
|Pr[x← X : A(x) = 0]− Pr[x← Z : A(x) = 0])| ≤ |ε1 + Pr[x← Y : A(x) = 0]− Pr[x← Z : A(x) = 0])|
=⇒ |Pr[x← X : A(x) = 0]− Pr[x← Z : A(x) = 0])| ≤ |ε1 + ε2|

1-4

Lemma 3 (Hybrid lemma) Let X1, X2, X3,, Xn be distributional ensembles for m =
poly(n). Suppose ∃ PPT A which distinguishes X1 from Xn with advantage ε. Then when ∃ i
where 1 ≤ i ≤ m-1, a PPT algorithm B can distinguish Xi and Xi+1 with advantage greater or
equal to ε

m

Note: Note, this lemma is used in many proofs that contains hybrid arguments.

Proof.
Let εi denote distinguishing advantage between Xi and Xi+1.
Let us assume that εi ≤ ε

m ∀ i.

Then, ε ≤
∑m−1

i=1 εi =⇒ ε ≤ ε * (m−1)
m

This is, of course, a contradiction. Hence, we can say that there exists i such that εi ≥ ε
m .

4 Return to Pseudorandomness

Intuition: A distribution is pseudorandom if it looks like a uniform distribution for any efficient
test.

Definition 9 (Pseudorandom ensembles) An ensemble {Xn}, where Xn is a distribution over
{0, 1}l(n), is said to be pseudorandom if:

{Xn} = Ul(n)

... where Ul(n) represents a uniform distribution over {0, 1}l(n

5 Pseudorandom Generators (PRG)

Definition 10 (Pseudorandom Generators) A deterministic algorithm G: {0, 1}n → {0, 1}l(n)
is called a pseudorandom generator (PRG) if:

1. G can be computed in polynomial time

2. l(n) > n

3. {x← {0, 1}n : G(x)} ≈
C
{Ul(n)}, where {Ul(n)} = a uniform l(n) bit string

Note: The stretch of G is defined as |G(x)| − |x|

1-5

	Introduction
	Pseudorandomness
	Computational Indistinguishability
	Properties of Computational Indistinguishability

	Return to Pseudorandomness
	Pseudorandom Generators (PRG)

