
Introduction to Cryptography 01 May 2018

Lecture 24: Secure Computation III

Instructor: Vipul Goyal Scribe: Brad Denby

1 Introduction

This lecture focuses on general secure two-party computation for circuits of any polynomial size.
Specifically, it considers Yao’s garbled circuits. At the time of publication, this scheme was con-
sidered largely impractical due to its inefficiency. Today, however, the scheme is usable in practice
for some circuits.

A key prerequisite to constructing Yao’s garbled circuit scheme is the oblivious transfer prim-
itive. Oblivious transfer was covered in a previous lecture. As a reminder, oblivious transfer is
summarized as follows.
Oblivious Transfer Consider two parties S and R. Party S has two values s0 and s1 that are
initially secret. Party R has a single bit b indicating which value sb it would like to receive. After
executing the oblivious transfer protocol, party R learns sb but learns nothing about sb. Party S
learns nothing about b.

Before presenting a formal construction of Yao’s garbled circuit scheme, consider the following
general overview. Let a sender S and a receiver R have inputs xS and xR, respectively. The parties
would like to compute a public function f with these inputs, i.e. f(xS , xR), without revealing the
input to the other party.

To accomplish this secure computation, the sender S first converts the function f into an
equivalent circuit C. The sender S then exercises a KeyGen algorithm from a symmetric encryption
scheme in order to select two random keys for every wire in the circuit C. One of these keys is
associated with a wire value of 0, and the other key is associated with a wire value of 1. The idea
is that the receiver R learns exactly one of the two key values for each wire.

Figure 1: An example of a circuit C

At the time of computation, the receiver R has a key for each input wire to the circuit. Party R
uses these inputs to compute the output at each gate in the circuit. These outputs are determined
by garbled gate tables provided by the sender S. Eventually, R determines the garbled values for
all output wires. These values are then decoded and the evaluation of the function f(xS , xR) is
revealed.

24-1

2 Construction

A more detailed construction is outlined as follows. Consider two parties S and R. These parties
have agreed on a public function f that takes two inputs, xS and xR. An example of such a
function is the millionaires’ problem, in which two millionaires would like to learn who has more
money without revealing their net worths. In this case, the inputs are their net worths and the
output indicates the more wealthy party.

To begin the protocol, party S converts function f into an equivalent circuit C. Here, a circuit
is considered to be a collection of gates connected by wires. A gate may be represented with a logic
table which dictates the values of the output wires for every combination of input wire values. Let
each wire be labeled with an index i, and require that each wire take on a value of either 0 or 1.
An example (ungarbled) AND gate and corresponding logic table is pictured below.

After constructing the circuit C, party S selects two keys ki,0, ki,1 for each wire i ∈ C. Key ki,0
corresponds to wire i with value 0, and key ki,1 corresponds to wire i with value 1. For every gate
g ∈ C, party S prepares a logic table having four encrypted entries. Specifically, these entries are
Encki,0(Enckj,0(·)), Encki,0(Enckj,1(·)), Encki,1(Enckj,0(·)), and Encki,1(Enckj,1(·)) where i and j are
the input wires into gate g.

Example 1 Let gate g be an AND gate with input wires i and j and output wire `. Now input
wire i has keys ki,0, ki,1; input wire j has keys kj,0, kj,1; and output wire ` has keys k`,0, k`,1.

The entries in the garbled logic table include the following values.

Wire i Wire j Encrypted wire ` values

ki,1 kj,0 Encki,1(Enckj,0(k`,0||0m))

ki,0 kj,0 Encki,0(Enckj,0(k`,0||0m))

ki,1 kj,1 Encki,1(Enckj,1(k`,1||0m))

ki,0 kj,1 Encki,0(Enckj,1(k`,0||0m))

Under this construction, party R is able to correctly decrypt exactly one of the table entries.
The decrypted entry provides R with the garbled wire value for the gate output. Specifically, when
party S has keys ki,bi and kj,bj then value k`,g(bi,bj) may be recovered. Here, g(bi, bj) represents the
gate g output with input bits bi and bj .

Of course, if the garbled tables generated by party S are in a predictable order, then party R can
deduce the ungarbled input values based on which table entry it was able to successfully decrypt.
In practice, the garbled table entries are permuted randomly. Party R attempts to decrypt all table
entries, and the entry that successfully decrypts is used as the garbled value for the output wire.

Example 2 Let k`,0 and k`,1 be the garbled outputs for gate g. Before encryption, each key is
appended with m zeros, i.e. k`,0||0m and k`,1||0m. When evaluating a gate, party R attempts to
decrypt all entries of the logic table. The entry that decrypts with m zeros in the least significant
bits is taken to be the output value.

24-2

Finally, party S prepares tables that decode the output wires of the circuit. For an output wire
w, party S provides pairs kw,0 : 0 and kw,1 : 1. After party R evaluates all wires in the circuit, it
collects the values of the output keys and converts them into ungarbled output values.

3 A Secure Two-Party Computation Protocol

Given the previously described construction, a secure two-party computation protocol may be
established. The first version of this protocol involves two parties S and R who are assumed
to be semi-honest, i.e. honest-but-curious. Both parties know the function f and the expected
corresponding circuit C. Let party S have secret input xS , and let party R have secret input xR.
The goal of these parties is to compute f(xS , xR) without revealing additional information about
the inputs to the other parties.

To accomplish this task, party S constructs the garbled circuit (i.e. obfuscated logic gates) and
party R computes with these obfuscated values. Thus, party R must somehow obtain the keys for
all input wires of circuit C. The input keys corresponding the secret value xS of party S may be
sent to party R directly. In order for party R to obtain the keys for its input xR, the oblivious
transfer primitive must be exercised.

This portion of the protocol may be summarized with the following steps.

1. S → R: Party S sends |xS | keys to R, where |xS | represents the number of bits in xS . Each
key represents a single bit of xS , which is input into the circuit over a wire.

2. R↔ S: Parties S and R execute a 1-out-of-2 oblivious transfer interactive protocol for each
bit of xR. Specifically, for each bit of xR party R receives the corresponding key ki,b. Party
S does not know the value of the bit b, and party R cannot determined the value of the other
key ki,b.

3. S → R: Party S sends the garbled gate tables along with the output decoding tables to party
R, i.e. party S sends the garbled circuit C.

After executing this portion of the protocol, party R has one key for each input wire in addition
to the gate tables. As a result, party R can determine the output for each gate. Once the outputs
for the final gates have been determined, party R can utilize the output decoding tables in order
to find the function result.

4 Security Questions

At a high level, why should this scheme be secure for honest-but-curious adversaries? First, note
the following fact:

• Given key ki,b, party R cannot determined the corresponding bit value b (unless, of course, i
is an input wire for a bit of xR).

This fact informs the notion of security for party S. Since party R only ever learns one key for the
input wires of xS , then party R cannot determine the bits of xS . The notion of security for party
R follows directly from the receiver security of oblivious transfer.

24-3

Also note that security is defined in terms of how much more a party may learn due to the
scheme. If the circuit is simply the XOR of the two party’s inputs, then a trivially secure scheme
is defined to be one in which party S sends xS to party R. No matter the scheme, party R is able
to recover xS .

What happens to the security of this scheme when the parties are more malicious than under
the honest-but-curious adversary model? If party S is malicious, it could construct a circuit C that
does not properly reflect the reference function f . Are there ways to modify the protocol in order
to avoid this vulnerability?

Multiple solutions to this problem have been considered. Some of these solutions are presented
as follows.

• One solution is to convert the circuit C into a graph three-coloring problem and perform a
zero knowledge proof that the circuit has been constructed properly. However, in practice this
approach is not efficient (despite being polynomial time). Thus, this solution is not currently
practical.

• In practice, this attack is mitigated by requiring party S to prepare n independently con-
structed garbled circuits. All of these garbled circuits are sent to party R, and party R
selects one of the n choices. After party R selects one of the garbled circuits, party S re-
veals the remaining garbled circuits. Party R verifies that the revealed circuits were properly
constructed. Thus, the chosen circuit is incorrect with probability no greater than 1/n.

• An alternative to this approach is for half, i.e. n/2, of the garbled circuits to be revealed.
Party S executes the remaining garbled circuits in parallel. If all of the evaluated circuits give
the same result, then party R can be confident that party S did not cheat when constructing
the circuits. Specifically, it is unlikely that all of the unopened circuits were incorrect and all
of the opened circuits were correct.

Many variations of these techniques exist. In the above schemes, party R terminates when an
invalid circuit construction is detected. However, terminating execution could reveal information
about xR. As a result, it can be more secure to avoid early termination even if an incorrectly con-
structed circuit is detected. Other variations, such as accepting the majority vote when evaluating
n/2 circuits, have also been proposed.

5 Secret Sharing Schemes

Broadly speaking, secret sharing schemes are used to split a secret s into n shares s1, s2, . . . , sn. In
general, a certain number of these shares are required in order to reconstruct the secret s. Various
kinds of secret sharing schemes exist.

n-out-of-n secret sharing scheme properties

• Given any n−1 or fewer shares, a party can learn no additional information about the original
secret s.

• Given all n shares s1, s2, . . . , sn, a party can fully recover the original secret s.

24-4

Shamir Secret Sharing: a t-out-of-n secret sharing scheme

• Given any t−1 or fewer shares, a party can learn no additional information about the original
secret s.

• Given any t out of n shares, a party can fully recover the original secret s.

Construction 1 (Shamir secret sharing scheme) Let the secret s be an element of a finite
field F. Let the total number of shares be n, and let the threshold number of shares be t. In order
to generate shares s1, s2, . . . , sn, select t− 1 elements from field F uniformly at random. Use these
elements to construct a polynomial of the form p(x) = s + a1x + a2x

2 + . . . + at−1x
t−1, where the

coefficients are the selected elements. Share s1 is defined to be p(1), share s2 is defined to be p(2),
and so on. Formally, share si = (i, p(i)).

The two properties of a secret sharing scheme may be verified as follows. First, consider the first
property. Given any t − 1 or fewer shares, a party cannot recover secret s. To see why, note that
with t− 1 shares an adversary has t− 1 points of a degree t− 1 polynomial. For every additional
point, there exists a unique, valid polynomial through all t points. Thus, an adversary cannot
recover the secret s with less than t points.

Next, consider the second property. Given t points, there exists a unique polynomial of degree
t− 1 through all t points. Such a polynomial may be determined through various schemes, such as
Lagrange interpolation. Once the polynomial has been constructed from the points, its evaluation
at zero gives the original secret s.

Secret sharing schemes serve as the building blocks for threshold cryptography. Threshold
cryptography consists of a broad collection of schemes that require some threshold of participants
in order to recover a secret. These schemes can become quite intricate. For example, there are
applications in which a group consists of a core committee and a general committee. It may be
desireable for any single member of the core committee to recover the secret, or a quorum of
members from the general committee. Different members may be given different weights, which
affect their impact on the threshold for secret recovery. A general approach to this problem defines
a circuit with n inputs, one for each member of the group. If the member is present, then the
corresponding input wire is 1; otherwise, the corresponding input wire is 0. The output of the
circuit is 0 or 1, indicating whether the threshold for secret recovering has been acheived. This
problem statement connects secret sharing schemes to Yao’s garbled circuits.

24-5

