
Introduction to Cryptography April 24, 2018

Lecture 22: Secure Computation I

Instructor: Vipul Goyal Scribe: David Gershuni

1 Introduction

Secure Computation AKA Secure Multi-party Computation is used when multiple parties do not
trust each other, but they wish to compute some function of their collective inputs, and critically,
they do not want to reveal any other information to each other other than the output of the function
on their combined inputs.

We’ll make this definition more formal in a moment, but first, let’s consider an example that will
make this more concrete. This example is one of the original Secure Multi-party Computation
problems, and it is known as Yao’s Millionaire Problem.

1.1 Example: Yao’s Millionaire Problem

We have two millionaires A and B, and they wish to know which of them has more money. But
neither millionaire is willing to reveal how much money he or she has. Secure Multi-party Compu-
tation will enable A and B to exchange messages such that they both will know who has the higher
net worth, but neither will learn the other’s net worth.

2 The Setting for Secure Multi-party Computation

We have n parties who do not trust each other, (P1, P2, ..., Pn), each with a private input, (x1, x2, ..., xn)
and a single trusted, public function f shared by all. These n parties wish to jointly compute
f(x1, x2, ..., xn) without revealing anything to each other other than the output of f .

Now consider Yao’s Millionaire Problem again. Here, n = 2, so our two parties P1 and P2 are
the millionaires, and the inputs (x1, x2) are their respective net worths. The computed output is

f(x1, x2) where f is a function defined by f(x1, x2) =


P1 x1 > x2

P2 x1 < x2

Equal otherwise

2.1 Real-world Applications

Situations that require Secure Multi-party Computation arise often in real-life, for example:

• National security: Airlines wish to cross-reference each passenger’s name and passport
number with the Department of Homeland Security’s terrorist watch list, but the DHS does
not wish to reveal its watch-list and the airlines do not wish to expose innocent passengers’
travel plans to the DHS.

• Privacy-preserving data mining: A groups of several independnt hospitals wish to col-
laboratively compute statistics about the most effective treatments from their patient data

22-1

and the data of fellow hospitals, but they cannot directly exchange patient records due to pri-
vacy laws. Using SMP, they can compute these functions without directly revealing anything
patient records.

Note: Secure Multi-party Computation is also known as Multi-party Computation or MPC. When
n = 2, it’s called Secure 2-Party Computation or 2PC.

2.2 Example: Zero Knowledge Proofs as an instance of MPC

Almost any cryptographic problem can be framed as an instance of MPC. For example, Zero Knowl-
edge Proofs are an instance of MPC. Consider the case of Zero Knowledge 3-coloring on graphs. In
this case, n = 2. Our two parties P1 and P2 are the prover and the verifier, respectively. The input
x1 is the witness of the 3-coloring, and x2 is null (denoted ⊥). The computed output is f(x1, x2)
where f is a function that returns 1 if x1 is a valid witness and 0 otherwise.

Note: for the rest of this lecture, we’ll restrict ourselves to Secure 2-party Computation only. This
will make the discussion simpler to understand.

3 Defining Security in Multi-party Computation

We’ll construct a definition of security for MPC that is similar to the one for ZKP. In ZKP, the
simulator produces a simulated view (i.e. a transcript) that is indistinguishable from a real view
given nothing as input. Since a simulator is able to do this given nothing, we conclude that the
protocol doesn’t leak anything at all.

The natural extension to MPC is that the MPC simulator has to produce a view that is in-
distinguishable from a real MPC view given only the function output. Then we conclude that the
MPC protocol doesn’t leak anything (except the function output).

Definition 1 Security in MPC

Let P1, P2 be our 2 parties as before, and let Pb be the corrupt party. Let V iewPb
real be the distri-

bution of the views of Pb in the real execution of the protocol. And let SPb be a PPT simulator of
the view of Pb. An MPC protocol is secure if

∀(x1, x2), ∃SPb s.t. {V iewPb
real } ≈c {SPb }

where the simulator SPb is given access to the protocol and to an oracle that takes an input x1 and
returns f(x1, x2). SPb is allowed to query the oracle exactly once per execution of the protocol.
The oracle is said to operate with ‘ideal functionality.’

Remark 1 Note that this definition captures the requirement that the dishonest party can only
learn f(x1, x2) (privacy) but it fails to capture the requirement that the honest parties should get
correct output (correctness). We’ll stick to this simpler definition for this lecture.

4 The 2 Types of Adversaries in MPC

There are 2 types of adversaries we’ll try to secure our protocol against, ‘honest but curious’ ad-
versaries and ‘malicious’ adversaries.’

22-2

4.1 Honest but Curious Adversaries (AKA Semi-honest Adversaries)

An ‘honest but curious adversary’ follows all instructions of the protocol faithfully during its exe-
cution. That is, it does not cheat at any step of the protocol’s execution. However, it may later
attempt to perform dishonest tasks, using the transcript of the protocol after the fact.

This weaker adversary model will be used as a stepping stone to build MPC against fully dis-
honest parties later. It can also be used to represent a party that was corrupted or compromised
after the protocol was executed honestly.

4.2 Malicious Adversaries (AKA Fully Dishonest Adversaries)

A malicious adversary operates without any limits on its dishonesty. We can make no assumptions
about whether or not it will faithfully execute any steps of the protocol. Its only restriction is that
is must be PPT.

5 Oblivious Transfer

We’ll now describe a Secure 2-party Computation protocol called Oblivious Transfer that is secure
only against semi-dishonest adversaries. It allows a party to request and receive exactly 1 of 2 bits
from another party without the other party knowing which bit it sent.

5.1 Overview of Oblivious Transfer

1. We have two parties, A and B.

2. A has a private pair of bits (a0, a1).

3. B has a single bit b.

4. A and B exchanges messages such that B learns only ab (ab̄ remains secret) while A learns
nothing.

5. B’s final output is ab.

6. A’s final output is ⊥ (nothing).

In order to construct an oblivious transfer protocol, we’ll use a trapdoor one-way permutation.
Recall the definition of a trapdoor one-way permutation:

Definition 2 Trapdoor Permutation (Trapdoor OWP) A collection of trapdoor permutations is a
family of permutations F = {fi : Di → Ri} for i ∈ I that satisfies the following properties:

• Sampling function: ∃ a PPT Gen s.t. Gen(1n) outputs (i, t) ∈ I

• Sampling from domain: ∃ a PPT algorithm that on input i outputs a uniformly random
element of Di

• Evaluation: ∃ a PPT algorithm that on input i, x ∈ Di outputs fi(x)

22-3

• Hard to invert: ∀ non-uniform PPT adversary A, ∃ a negligible function µ(.) s.t. :

Pr[i← Gen(1n), x← Di, y ← fi(x) : fi(A(1n, i, y)) = y] ≤ µ(n)

• Inversion with trapdoor: ∃ a PPT algorithm that given (i, t, y) outputs f−1
i (y). More

formally,
∀y ∈ Ri, P r[f

−1
i (t, y) = x : fi(x) = y] = 1

That is, if we know t, we can invert every image in the range.

5.2 Oblivious Transfer Protocol Using Trapdoor Permutations

Now we’ll describe how to use trapdoor permutations to implement oblivious transfer.

1. A samples (f, f−1) from F , a family of trapdoor permutations.
A sends only f to B.

2. B samples x from the domain of f ; B samples y from the range f ; B sets yb = f(x) and
yb̄ = y. B sends (y0, y1) to A.

3. Using the trapdoor function f−1 and a hardcore predicate h of f , A computes:
z0 = h(f−1(y0))⊕ a0 and z1 = h(f−1(y1))⊕ a1.
A sends (z0, z1) to B.

4. B outputs zb ⊕ h(x) = ab

5. A outputs ⊥

5.2.1 Example Execution of the Protocol

Say B picks b = 0. Then y0 = f(x). So x = f−1(y0). Thus, when A returns (z0, z1), B will
compute z0 ⊕ h(x) = (h(f−1(y0))⊕ a0)⊕ h(x) = (h(x)⊕ a0)⊕ h(x) = a0.

5.3 Proof of Security

Proof. There are two cases: one in which A is corrupt (semi-honest) and one in which B is corrupt
(semi-honest). Since this protocol is asymmetric, we’ll have to construct a separate simulator for
each case.

5.3.1 Case 1: A is corrupt and B is honest.

For this case, we construct a simulator SA. Our intent is to show that A’s view is essentially zero
knowledge.

We construct the simulator as follows:

1. Sample (f, f−1) honestly from F . Then output f as the first message of the transcript.

2. Sample (y0, y1) randomly from the range of f .

3. Compute (z0, z1) honestly from f−1 as described in the protocol and output (z0, z1).

22-4

Lemma 1 The distribution of {SA} is identical to the distributions of A’s view when the protocol
is executed in the real world.

Proof. The views generated by this simulator are completely identical to the views generated by A
in the actual protocol except for how (y0, y1) are chosen. Namely, B chooses x from the domain
of f instead of y from the range of f . However, this difference does not change the distribution of
(y0, y1) because f is a permutation. Therefore, these views are identical.

5.3.2 Case 2: B is corrupt and A is honest.

In this case, we construct the simulator SB, which only has input b. B does not have (a0, a1).
Instead it queries an oracle, giving b as input and receives ab back. We construct SB so that B does
not learn ab̄.

The simulator is constructed as follows:

1. Sample (f, f−1) from F honestly and output f .

2. Construct (y0, y1) honestly, using b as described in the protocol.

3. The simulator cannot compute the message (z0, z1) honestly because it doesn’t know ab̄, so it
samples a′

b̄
randomly from {0, 1} and uses it instead. Then it computes zb = h(f−1(yb))⊕ ab

and zb̄ = h(f−1(yb̄))⊕ a′b̄ and outputs (z0, z1).

Notice that neither transcript contains f−1.

Lemma 2 The distribution of {SB} is computationally indistinguishable from the distributions of
B’s view when the protocol is executed in the real world.

Proof. In order to distinguish the distribution of SB from the distribution of real views of B, one
must identify that zb̄ is incorrect. But because zb̄ is generated by XOR’ing a′

b̄
with the hardcore bit

h(f−1(yb̄)), no PPT adversary can predict zb̄’s true value with greater than 1/2 probability. Doing
so would contradict the definition of a hardcore bit. Therefore, the distribution of views of SB is
indistinguishable from the distribution of real views. With this lemma proven, the proof is complete.

22-5

