Introduction to Cryptography January 18, 2018
Lecture 2: Classical Ciphers and Perfect Secrecy

Instructor: Vipul Goyal Scribe: David Edelstein

1 Symmetric Key Cryptography

G() =k

Enc(m,k) — CT

Dec(CT, k) = m

In other words, the key the generator gives you is used for both encrypting and decrypting messages

Definition 1 A symmetric key cryptographic scheme is said to have the property of correctness if
1t 18 guaranteed that encrypting a message with a key and then decrypting using that same key will
produce the original message. Formally, for key k and message m, that: m = Dec(Enc(m, k), k

2 Caesar Cipher

The |Caesar cipher is one of the most ancient ciphers, named after Julius Caesar, who more
than 2000 years ago is said to have used it to convey secret messages, and it likely even predates him.

In it, letters of the alphabet are rotated some number. For instance, in a Caesar cipher with
shift of 1, the message ATTACK would become BUUBDL, since B is the letter after A, U is the
letter after T, and so on. The alphabet is considered to loop around, so Z would become A with
a shift of one. More formally, the generator G(-) produces a single letter of the alphabet which A
will map to, which defines the shift.

The Caesar cipher is decoded by reversing the shift. For instance, given the cipher text
TJKJSI with shift 5, I may decode the message to DEFEND, because D is five letters before I, E is
five letters before J, and so on.

Try it out! Encode JULIUS with a shift of 9, and decode EYKYWXYW from its shift of four. As
another bit of practice, try this puzzle I wrote that uses Caesar shifts. The answer is ultimately
one word — can you figure it out?

The Caesar cipher is easily broken simply by trying all keys — in English, there’s only

26. It’s not very secure, though that hasn’t stopped it from being used by individuals up to today.
One popular version is ROT13, in which letters are rotated by 13, with A becoming N and so on.

3 Substitution Cipher

In a substitution cipher), each letter is mapped to another, but unlike in the Caesar cipher, the
transformation is not uniform. Instead of producing a single letter giving a shift, the generator
function in a substitution cipher yields a permutation of the alphabet. This serves as
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a lookup table. To encode a message, map each character of the message to its cor-
responding letter in the lookup table. To decode, simply apply the lookup table in
reverse.

Substitution ciphers are much harder to crack than Caesar ciphers, because there’s too many
possible keys (26! ~ 4 % 10?3) to try them all. But with a large enough corpus and a bit of guess-
work, they can be cracked using frequency analysis attacks. In English, for instance, here are the
three most common letters and their frequency:

E — 12.5%
T —9.28%
A — 8.09%

So with a large text encoded using a substitution cipher, it’s reasonable to guess that the most-used
letter is actually E, and that the next two are probably T and A.

Bigrams (sequences of two characters) also have known frequencies. Double letters are a special
case of bigrams that can be particularly useful. Here are some sample bigram frequencies:
TH — 3.56%

IN — 2.43%
EE — 0.38%
00 — 0.21%

Using these, a substitution cipher may be gradually unravelled. For more information about fre-
quency attacks, read this post.

Remark 1 Substitution ciphers may also map to a symbol set other than the alphabet, such as
A — . Caesar ciphers are a special case of substitution ciphers. There are many variations of
substitution ciphers, but all are fundamentally vulnerable to frequency attacks.

4 Vigenere Cipher

A [Vigenere cipher]| involves different Caesar shifts being applied to subsets of the letters of a mes-
sage. It was first described in the mid 1500s by |Giovan Battista Bellaso, but credit went to Blaise
de Vigenere anyhow. It was long considered the gold standard of ciphers.

Key generation produces a short random string. To encode a message, replicate the key
out to the length of the message, then shift each letter an amount corresponding to
the letter of the key. To decode it, again replicate the key and apply the shifts in reverse.

For example, to encrypt CRYPTOGRAPHIC with the key BEZ, replicate the key as follows:
CRY PTO GRA PHI C
BEZ BEZ BEZ BEZ B

Then apply the shifts, producing:
DVX QXN HVZ QLH D

Which curiously avoids having any vowels.

Cracking a Vigenere cipher starts with figuring out the length of the key. There are several
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heuristic methods for this, such as checking factors of the distance between chunks of repeated
cipher text. Once the key length is found, the differently-shifted subsets are susceptible to
frequency analysis, which is even more effective than against substitution ciphers.

If the key length reaches that of the message, the Vigeneére cipher reduces to a one-time pad.
But before we can discuss that, let’s define a new concept...

5 Perfect Security

What would it mean for a cryptographic scheme to be secure? Consider an adversary A who has
cipher text ¢ (from the space of cipher texts C) and wishes to find the original message m (from
the space of messages M) but does not have the key k (from the space of keys K).

Would the following be reasonable conditions for security?

PlA(c) > m] =0
No. This is impossible; the adversary can always guess the message.

P[A(c) — m] is very, very small
No. Assurances that they won’t guess the whole message are insufficient when it’s possible for
them to still decrypt vital portions of it.

P[A(c) guesses any given character| = 1/26
No. This is too optimistic. Frequency analysis can let the adversary get individual characters
with higher confidence than chance. Conversely, this doesn’t rule out the adversary still be-
ing able to learn things about the message as a whole that don’t have to do with individual
characters.

A better definition is that having ¢ doesn’t give the adversary any information about m.
¢ is independent from m. Put formally:

Definition 2 If a cryptographic scheme meets the following condition:
V(my,me) € M,Ve € C: Plk + G(-) : Enc(mq,k) = ] = Plk + G() : Enc(ma, k) = |

Then it is perfectly secure.

Note that perfect security is only over a domain of messages. The adversary may still know
certain things about the encrypted message from their knowledge of M, and indeed
such information is impossible to conceal. For instance, if M only contains messages of up to 100
characters, then the adversary will still know of a perfectly secure message that its length is no
more than 100 characters.

6 One-Time Pad

This is not merely a theoretical possibility. There exists an encryption scheme, discovered more
than a hundred years ago, called the one-time pad, which is perfectly correct and perfectly
secure.
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Definition 3 A cryptographic scheme that is both correct and perfectly secure is called perfectly correct.

To use the one-time pad, the key generator produces a random string of length at least
that of the message. To encrypt, the key is xored with the message. To decrypt, the key
is just xored with the cipher text. Formally:

G(:) — k, where k is a random string at least as long as any message to be encrypted

Enc(m,k) > mdk=c

Dec(c,k) »cdk=m

A one-time pad is perfectly correct.

Proof. Because ((z ®y) ®y) = x) for any = and y, a one-time pad is always correct.
Given a cipher ¢ € C and a message length n, Ym € M
Plk < G(-) : Enc(m, k) = |
=Pk+ G() :mdk =
=Pk« G() :chdm =k
= 27" because the key bits are random and so each of the n bits has a 1/2 chance of matching
the corresponding bit of ¢ ® m.
All messages then have the have the same likelihood given a certain cipher text, so the adversary
gains no information about the message from seeing the cipher text and the condition for perfect
security is met. Since the scheme is always correct and is perfectly secure, one-time pads are
perfectly correct. [ |

7 Shannon’s Theorem

Shannon’s theorem tells us that there aren’t really any other perfectly correct cryptographic
schemes.

Theorem 1 (Shannon’s theorem) It is impossible to have a perfectly correct symmetric key
scheme if |K| (the number of possible keys) is less than |M|.

Proof. Consider a scheme for which || < |M|. We will show that 3¢, my, ma such that the perfect
security condition is violated.
Generate all K| possible keys {k1, k2, ..., kx| }
For a cipher text ¢ = Enc(mq, k1), attempt to decrypt it with each of those keys:
s1 = Dec(c, k1)

S‘;q = Dec(c, k‘]q)
And gather these attempts together into a set S.
|S] < |K| < | M| because each key produces one no more than one unique decryption attempt.
Because |S| < M|, Imy € M s.t. my ¢ S and for this mo
Plk < G(-) : Enc(ma, k) =] =0 # Pk < G(-) : Enc(m,k) = |
Therefore the perfect security condition is violated and this scheme is not perfectly correct. [ |
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8 Limits of the One-Time Pad

If the one-time pad is really always correct and perfectly secure, then what are we doing with the
next twelve weeks of this class? The problem is that while a one-time pad is perfect and unlike
most mathematically perfect things, it’s actually possible in the real world, it’s still usually not
very practical.

The key must be as long as the message, or else we’re back to the eminently crackable Vigenere
cipher. For many things we’d like to send, the message may be very large, and so the key is much
harder to surreptitiously hand over, store, and eventually destroy than a memorizable Vigenere key
or the alphabetic permutation of a substitution cipher.

Generating a truly random key is also difficult and expensive, and historic one-time pads have
fallen to careful cryptanalysis of the pseudorandom number generators behind the keys.

For most applications, then, the one-time pad is impractical and people turn to cryptographic

schemes which aren’t perfectly secure, but which are provably secure. It’s those we’ll be learning
about for the rest of the semester.

2-5



	Symmetric Key Cryptography
	Caesar Cipher
	Substitution Cipher
	Vigenère Cipher
	Perfect Security
	One-Time Pad
	Shannon's Theorem
	Limits of the One-Time Pad

