
Introduction to Cryptography 03/29/2018

Lecture 18: Bitcoin and Blockchain (continued)

Instructor: Vipul Goyal Scribe: Eipe Koshy

1 Review

Q1. How does a miner check if a newly downloaded copy of the public ledger is legitimate?
Ans. The miner checks if the downloaded public ledger is legitimate by computing hashes and
comparing them to existing hashes one-by-one for successive blocks on the public ledger.

Q2. What is a key problem with transactions using Bitcoin? Detail a potential workaround for
this problem and show that it does not solve the problem completely.
Ans. Transactions using Bitcoin on the blockchain are not instantaneous, which can pose a problem
for people receiving payments (such as merchants.) This problem is referred to as the ”Double-
spending” problem, since the payer can transfer the same payment to multiple payees at the same
time and only one payee will receive the payment once confirmation comes through.

A potential workaround is to use signed contracts (for e.g. If Alice has to pay Bob 1 Bitcoin
BTC, Alice, who has 1 BTC associated with her public key, will send Bob a signed contract that
states ”Alice will transfer 1 BTC to Bob”, which Bob can redeem at any time to receive 1 BTC.) Us-
ing these signed contracts appears to make transactions instantaneous. However, this workaround
also suffers from the double-spending problem, since the payer can send multiple payees signed
contracts for the same amount, and only one of the payees will receive payments once they redeem
the contract.

Q3. What happens to Bitcoins (BTC) mined and transactions made which are made on one
arm of a fork, if the other arm of the fork becomes longer (and hence, valid)? Ans. Both BTC
mined and transactions made on the shorter arm of the fork become invalid, since blocks with
invalid blocks are rejected by the network as being invalid.

1-1

Q4. How can replay attacks be prevented on the blockchain?
Ans. Unique information specific to transactions, such as timestamps or nonces, can be used by
miners to distinguish valid transactions from invalid ones.

2 Applications built on top of Bitcoin and the Blockchain

There are many applications that can be built on top of Bitcoin and the Blockchain. In this section,
we will attempt to enumerate a few examples of such applications:

• Bitcoin scripting language

The Bitcoin scripting language enables custom transactions based on certain criteria be-
ing met (which could occur in the future.) Examples of potential transactions enables by the
scripting language include:

1. ”A will transfer 1 BTC to anyone who publishes the value of f−(y), where f− is a
hard-to-invert function.”

2. ”A will transfer 1 BTC to B if B publishes a signed statement that ’B will ship a TV to
A’”

3. ”A will transfer 1 BTC to a script being run at a particular address”
Note, the script at this address will be run by a miner (which will be suitably rewarded
for running the script.) Possible use-cases for such scripts include rent-collection, sub-
scriptions, etc.

• Smart Assets

Smart Assets are either a virtual representation of a physical asset, or represent virtual
goods, such as an equity share. Examples of smart assets include:

1-2

1. Gold-backed cryptocurrency coins
The basic idea is that each coin represents a value of gold (for e.g. 1 coin represents 1
gram of gold.) The value of gold is stored by a trusted third-party custodian and can
be traded with other coin holders. Such coins can be used in smart contracts, and can
reduce volatility in coin value (since the coins are backed by gold, the value of which is
relatively more stable.)

2. Virtual representations of real-world goods
The basic idea is that real-world goods, such as shipping insurance, land records, etc. are
represented as abstract assets (using virtual currency tokens) on the blockchain. These
abstract assets act as a public record of ownership (using a mechanism similar to that
used to represent Bitcoin ownership) and can be transferred between owners securely
and safely.

3 Information Verification on the Blockchain - Merkle trees

Verification on the blockchain is facilitated by the use of cryptographic primitives called Merkle
trees. Merkle trees have been around since the 1980’s and simplify the problem of key management
for digital signatures. Given that exchanging a public key can be complex, a scheme is needed that
reduces both the number of public keys needed to sign messages as well as their total size. Merkle
trees are such a scheme, which uses a single public key to sign many messages.

A use-case that exemplifies the need for such a scheme is an email provider that signs email
messages. Given that the provider has to sign and send millions of email messages everyday, it
needs a signature scheme that generates millions of signatures, each of which are easy to verify.
Merkle trees provide a solution to this use-case, as we shall see further below.

Our goal in developing the Merkle tree scheme is to build a cryptographic scheme that can
generate a required number of signatures. Essentially, we are looking to develop a batch signature
scheme, where each signature is individually verifiable.

A naive implementation of such as signature scheme is to sign a hash f concatenation of n
messages, i.e.,

1. Gen(1n)→ (pk, sk)

2. σ = Signsk(H(m1|m2|m3|m4|....|mn))

3. V erifypk(m1, σ) requires that we know the other n − 1 messages, so that we can hash and
verify.

1-3

While such a scheme works in practice, the length of the signature generated is of the order of
the sum of the length of the messages, which makes management difficult. Our goal is to do better.

The key idea behind Merkle trees is to arrange messages as the leaf nodes of a tree, then re-
peatedly hash pairs of nodes till there is only one hash left at the root of the tree, which is then
signed.

Assume m2 is the message whose signature needs to be verified. For verification, we need
the signature, as well as the hashes of the siblings at every level. Referring to the diagram
above, we need the signature σ, as well as the hashes of the siblings at every level, i.e. H(m1),
H(H(m3), H(m4)). Using m2 and the hashes of the siblings, we can generate the hash at the root,
H(H(H(m1), H(m2)), H(H(m3), H(m4))) which can then be verified against the signature σ using
the public key.

Correctness

Part 1: By signing the root, all messages are effectively signed.
Part 2: Size of the signature is related to log(n), where n is the number of messages.

1-4

Security
An adversary should not be able to produce message m′, such that message m′=mi ∀i messages
covered by signature σ. Security relies on the Collision Resistance of the hash functions used.
Suppose the adversary generates a message m′, say, in place of message m2 as shown in the figure.
Given this new message, and the original siblings at every level, the adversary must be able to gen-
erate the same hash at the root. Doing so will require the hashes generated with the new message,
m′ at multiple levels must be the same as that using the old message, m2, which is ruled out by
the collision resistance property of the hash functions used. In our example, for the same hash to
be generated at the root, the following hashes to all be equal, which is difficult given the collision
resistance property of the hash functions:

1. H(m′) 6= H(m2)

2. H(H(m′), H(m2)) 6= H(H(m1), H(m2))

3. H(H(H(m′), H(m2)), H(H(m3), H(m4))) 6= H(H(H(m1), H(m2)), H(H(m3), H(m4)))

Properties

1. Able to sign messages as a block.

2. Enables light weight verification on low-memory devices such as mobile devices.

Usage in Bitcoin
Merkle trees are used for lightweight verification of transactions in Bitcoin. To verify all the
transactions in a block, one doesn’t need to download all the transactions in the block. One can
instead just download the hashes going down a particular branch of the Merkle tree and compute
the hashes all the way to the root.

4 Limitations of Bitcoin

Bitcoins have several limitations including:

1. Transactions are not instantaneous.

2. Wastage of computational resources.
Bitcoin uses Proof of Work as the mechanism for validation, which consumes a lot of resources.
As a solution, we can use alternate energy-efficient validation mechanisms, such as:

• Proof of Stake: Validation is performed by those who already own units of the cryp-
tocurrency.

• Proof of Storage: Validation is performed by those who have storage that can be used
for the public ledger of the cryptocurrency.

3. Scalability
Based on the current block sizes and mining rates, Bitcoin can process 7 transactions per
second. In comparison, Visa can process > 5000 transactions per second.

1-5

5 Types of forks in Bitcoin

There are two types of possible of forks in Bitcoin:

1. Soft forks
Soft forks are a backward compatible means of upgrading software on the nodes of the
blockchain, where the original chain (which contains non-upgraded software and contains
original blocks) also accepts non-updated blocks, while the upgraded nodes on the forked
chain only accepts updated blocks.

Examples of soft forks1 include:

• BIP 66 : A soft fork on Bitcoins signature validation

• P2SH : A soft fork that enabled multi-signature addresses in Bitcoins network

2. Hard forks
Hard forks are non-backward compatible means of upgrading software on nodes of the blockchain,
where the original and forked chain run different software and rules, which are not compatible
with each other. Blocks mined on any one chain are not compatible with the other chain.

Examples of hard forks1 include:

• Ethereum's Byzantium: Represents a planned multi-phase upgrade of Ethereum's blockchain
base to deliver features such as better scalability and integration of private transactions

• Monero hard fork : Represents an upgrade to Monero network to implement a feature
called Ring Confidential Transactions (RCT) to improve privacy and security

1https://masterthecrypto.com/guide-to-forks-hard-fork-soft-fork/

1-6

https://masterthecrypto.com/guide-to-forks-hard-fork-soft-fork/

	Review
	Applications built on top of Bitcoin and the Blockchain
	Information Verification on the Blockchain - Merkle trees
	Limitations of Bitcoin
	Types of forks in Bitcoin

