
Introduction to Cryptography 03/06/2018

Lecture 15: MAC and Hash Functions

Instructor: Vipul Goyal Scribe: Yimin Yang

1 Review

Any encryption scheme guarantees hiding, but it does not guarantee that the adversary cannot
sample a message in some intelligible way.

We have already discussed the example of one-time pad:

Alice
c = k⊕s−−−−−−−−−−−−−−−−−−−−−−−→
Eve

Bob

Alice and Bob share a key k of a one-time pad, and Alice has two possible messages:
s0: Sell MSFT
s1: Buy MSFT
Alice can send c = k⊕ s (s is s0 or s1) to Bob. And an adversary Eve is sitting on the channel.

Eve can just take a ciphertext c, and compute c′ = c ⊕ s0 ⊕ s1. Eve does not know the key that
Alice and Bob share and the message Alice encrypted. But now, if s = s0, c

′ is the encryption of
s1; if s = s1, c

′ is the encryption of s0.

2 Message Authentication Code(MAC)

Alice (k)
m1, σ1−−−−−−−−−−−−−−−−−−−−−−−−−−→ Bob (k)
m2, σ2←−−−−−−−−−−−−−−−−−−−−−−−−−−
m3, σ3−−−−−−−−−−−−−−−−−−−−−−−−−−→

For Alice and Bob who share a secret key k with each other, MAC is used to authenticate the
messages that one sent to another.

2.1 Definition of MAC

Definition 1 (Message Authentication Code) A Message Authentication Code consists of 3
PPT algorithms:

• Gen(n): takes security parameter n as input, outputs shared secret key k

• Auth(k, m): takes key k and message m as input, outputs σ

• Verify(k, m, σ): outputs 0/1 (reject/accept)

2.2 Properties of MAC

• Correctness

∀k ← Gen(n), ∀m, V erify(k,m,Auth(k,m)) = 1.

15-1

• Unforgeability

∀PPT A, Pr[A wins the forging game] is negligible.

Forging Game:

Challenger C and Adversary A

1) C generates the key k

2) A sends message mi to C, gets back σi = Auth(k,mi)

3) Repeat 2) any polynomial times

4) Guess: A outputs (m,σ). A wins the guessing game if ∀i, m 6= mi and V erify(k,m, σ) = 1

Remark 1 We will see Digital Signature in the next class. The basic difference between Digital
Signature and MAC is that MAC is not publicly verifiable. You need the same secret key to generate
the MAC and verify it, but everybody can use the public key to verify the digital signature.

2.3 Construction

A PRF on message m with the key k is also a MAC with message m with key k.

• Gen(n): output k = GenPRF (n)

• Auth(k,m): output PRF (k,m)

• V erify(k,m, σ): check if σ = PRF (k,m)

Proof Sketch
Suppose there exists a PPT adversary A which can win the Guessing Game with probability

ε = noticeable(n). It means A can guess PRF (k,m) given {PRF (k, mi)}polyi=1 s.t. ∀mi 6= m.
Now replace PRF by a Random Function. We can see such A cannot exist. Because given

A, we can construct an adversary B, which can win the Guessing Game of PRF with probability
ε = noticeable(n).

3 Collision-Resistant Hash Functions(CRHF)

3.1 Definition of CRHF

Definition 2 (Collision-Resistant Hash Functions) A set of functions H = {hi : Di → Ri}i ∈
I is a CRHF family if:

• Easy to sample: there exists a PPT algorithm Gen(n) which can output a uniform i ∈ I from
the family.

• Easy to evaluate: ∀i, ∀x, hi(x) can be computed in polynomial time.

• Compression: ∀i, |Di| > |Ri|.

• Collision-resistance:

∀ PPT adversary A, Pr[i← Gen(n), (x, x′)← A(i) : x 6= x′, hi(x) = hi(x
′)] ≤ negl(n).

15-2

3.2 Facts

• Fact 1: No single hash function can be collision-resistant.

If you have a single hash function, such that the domain is larger than the range, there will
definitely exist collisions.

• Fact 2: If H is a CRHF family, H is also a family of one-way functions, if ∀i, |hi(x)| ≤ |x|
c

(c

can be any constant greater than 1).

Proof idea

Most inputs in domain Di have colliding inputs.

Suppose hi is not a one-way function. There exists a PPT adversary A which can invert hi.

Given A, we can build a PPT algorithm B which can find collisions:

Pick a random x from Di, compute y = hi(x).

Then get x′ = A(y).

Pr[x = x′] =
1

number of pre− images of hi(x)
=

1

p

Pr[x 6= x′] = 1− 1

p

It’s very likely for the inverter to give a different pre-image rather than the original input.
Then we can find collisions.

3.3 Hash then MAC

Given a CRHF family H = {hi : {0, 1}∗ → {0, 1}n}i ∈ I and MAC scheme (Gen,Auth, V erify),
construct the Hash then MAC scheme (Gen′, Auth′, V erify′) as follows:

• Gen′: same as Gen(n), also sample a hash function from H: i← I. (k, i) is the key.

• Auth′((k, i), m): compute y = hi(m), then output Auth(k, y) = σ.

• V erify′((k, i), m, σ): compute y = hi(m), σ′ = Auth(k, y). Check if σ′ = σ.

This scheme can handle arbitrary length of messages.

Proof of Security for m ∈ {0, 1}∗:
Adversary is given {mj}j , then it can compute {hi(mj)}j , {Auth(hi(mj), k)}j .
Adversary outputs m, hi(m), Auth(hi(m), k).
If the adversary wins the forging game, there are two cases:

• case 1:

∀j, hi(m) 6= hi(mj)

=> The adversary has to forge the underlying MAC scheme.

15-3

• case 2:

∃j, s.t. hi(m) = hi(mj), but m 6= mj

=> collision in hi

To forge the Hash then MAC scheme, the adversary should either forge the underlying MAC
scheme, or find collisions in the CRHF family H.

3.4 Construction Based on Discrete Logarithm Assumption

Assumption 1 (Discrete Logarithm Assumption) Given Gq which is a multiplicative group
of prime order q and a generator g ∈ Gq, then for every PPT A,

Pr[x
$←− Zq : A(gx) = x] ≤ negl(log q)

Construction:
Family H is parameterized by group G of prime order q, and a generator g in G.

• Gen(n): sample h from G at random, where h = gr. i = h.

• Evaluate(h, x): parse x as (x1, x2). x1, x2 must be in Zq. Then output gx1hx2 .

The hash function can be evaluated in polynomial time.

• Compressing:

gx1hx2 ∈ G, so the size of output is log q.

|x| = 2|x1|, x1 ∈ Zq
|x| = 2 log q, so the size of input is 2 log q.

So the input is almost double of the size of the output.

• Collision-Resistance:

Proof.
Suppose there is a PPT adversary A. Given gx1hx2 , A can output x, x′ s.t. x 6= x′.
We can construct a PPT adversary B to compute discrete log of h. B works as follows:
B gets from A:

x = (x1, x2)
x′ = (x′1, x

′
2)

s.t. gx1hx2 = gx
′
1hx

′
2

This means gx1+r·x2 = gx
′
1+r·x′2

x1 + r · x2 = x′1 + r · x′2
If x 6= x′, x2 6= x′2

Then r =
x′1 − x1
x2 − x′2

Now we can get the discrete log of h. This is a contradiction.

15-4

Remark 2 We can extend this construction to get an arbitrarily compressing hash function. The
idea is:

• Gen(n): sample h1, h2, ..., hm ∈ G s.t. hj = grj

i = (h1, h2, .., hm)

• Eval(i, x) : x = (x0, x1, ..., xm)

output gx0hx11 h
x2
2 ...h

xm
m ∈ G

The input is very long, but the output is an element in group G.
Proof: exercise
Hint: you should be able to find the discrete log of at least one hi, thus reach a contradiction.

15-5

