
Introduction to Cryptography Date: 03/01/2018

Lecture 14: Public-Key Encryption-II

Instructor: Vipul Goyal Scribe: Yifan Song

1 Review: Indistinguishable Security for Public-Key Encryption

Definition 1 (Indistinguishable Security for PKE) We say a public-key encryption scheme (Gen, Enc, Dec)
satisfies IND-SEC (Indistinguishable security), if for all (m0,m1), the following two distributions are com-
putationally indistinguishable:

{(pk, sk)← Gen(k) : pk ◦ Enc(pk,m0)} ≈c {(pk, sk)← Gen(k) : pk ◦ Enc(pk,m1)}

where k is the security parameter.

Remark 1 Although RSA may look like a PKE satisfying definition 1, one needs to note that RSA is a
deterministic encryption scheme. Since the adversary holds the public key, it can encrypt those two messages
by itself. Therefore, RSA is not a IND-SEC PKE.

2 Trapdoor One-way Function

2.1 Definition of Trapdoor OWF

Definition 2 (Trapdoor One-way Function) We say a family of collections of functions {Fn}, where Fn =
{fi : Di → Ri}Ini=1, is a trapdoor one-way functions if:

• Function Sampler: there exists a PPT generator G which takes the security parameter n as input and
outputs (i, t) where i ∈ [In] and t is a trapdoor associated with fi ∈ Fn.

• There exists a PPT algorithm Com such that for all security parameter n and for all i, x ∈ Di,
Com(n, i, x) = fi(x).

• Input Sampler: there exists a PPT sampler S such that for all n, i, S(n, i) will return a uniformly

random element in Di. We will write x
$←− Di to represents that x is chosen uniformly from Di.

• For all PPT adversary A,

Pr[(i, t)← G(n), x
$←− Di, y = fi(x) : A(i, y) = x] ≤ negl(n)

• Invertible with trapdoor: there exists a PPT algorithm B, which is given (i, t, y) where (i, t)← G(n),
such that B(i, t, y) = x if y = fi(x) and B(i, t, y) =⊥ if y 6∈ Ri.

Remark 2 Note that, for each security parameter n, Fn is a collection of functions while for OWF/OWP,
each security parameter just corresponds to one function. If |Fn| = 1, since f ∈ Fn can be efficiently
inverted when given the trapdoor, an adversary can simply hardcore the trapdoor in itself.

The last requirement implies that for each fi ∈ Fn, fi is a one-to-one mapping.
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2.2 Construction of PKE using Trapdoor OWP

In this part, we will give a construction of PKE based on a trapdoor one-way permutation. Suppose {Fn}
is a trapdoor one-way permutation. We use G to denote the function sampler of {Fn} and B for the PPT
algorithm which takes the trapdoor t as input and inverts {Fn}. We define (Gen, Enc, Dec) as following:

• Gen: it takes the security parameter n as input. Gen first calls G(n) = (i, t). Then, it sets sk = t and
pk = (i, fi, hi) where fi ∈ Fn and hi is a hardcore predicate for fi. (Recall that each OWP has a
hardcore predicate.) Finally Gen(n) outputs (pk, sk).

• Enc: it takes a one-bit message m and a public key pk = (i, fi, hi) as input. Enc first randomly

samples x $←− Di. Then output c = (c1, c2) = (fi(r),m⊕ hi(r)).

• Dec: it takes a cipher-text c = (c1, c2) and a secret key sk = t as input. Dec first uses sk = t to invert
c1 by using B. Suppose the output is r. Then compute hi(r) and output c2 ⊕ hi(r).

Now we show the above construction is a PKE satisfying IND-SEC.
Proof.
For correctness, it follows from the properties of the trapdoor one-way permutation {Fn}.
Now consider the security property. Note that pk = (i, fi, hi). We only need to show that, for all

(m0,m1),

{((i, fi, hi), t)← Gen(n), r
$← Di : (i, fi, hi) ◦ (fi(r),m0 ⊕ hi(r))}

≈c {((i, fi, hi), t)← Gen(n), r
$← Di : (i, fi, hi) ◦ (fi(r),m1 ⊕ hi(r))}

Consider the following 4 hybrids:

H0 := {((i, fi, hi), t)← Gen(n), r
$← Di : (i, fi, hi) ◦ (fi(r),m0 ⊕ hi(r))}

H1 := {((i, fi, hi), t)← Gen(n), r
$← Di, b

$← {0, 1} : (i, fi, hi) ◦ (fi(r),m0 ⊕ b)}

H2 := {((i, fi, hi), t)← Gen(n), r
$← Di, b

$← {0, 1} : (i, fi, hi) ◦ (fi(r),m1 ⊕ b)}

H3 := {((i, fi, hi), t)← Gen(n), r
$← Di : (i, fi, hi) ◦ (fi(r),m1 ⊕ hi(r))}

By the property of the hardcore predicate, any PPT adversary is not able to distinguish between hi(r)
and a uniformly random bit b. Thus H0 ≈c H1. Similarly, H2 ≈c H3. Since b is uniformly random, m0⊕ b
is also uniformly random (and independent with i, fi, hi, fi(r)). Similarly, m1 ⊕ b is uniformly random.
Thus H1 and H2 are identical. Therefore, H0 ≈c H3. It is exactly what we need.

2.3 RSA implies Trapdoor OWP

In this part, we show that RSA assumption implies a trapdoor one-way permutation. To this end, we will
show the correspondences between RSA assumption and a trapdoor one-way permutation.

We construct a trapdoor one-way permutation as following:

• Function Sampler: G first generates two different primes p, q and compute N = pq. Then, randomly
sample e ∈ Z∗

φ(N) and compute d such that ed = 1( mod N). Finally, G outputs (i, t) = ((N, e), d).

• For each i = (N, e), fi(x) = xe( mod N). It is easy to see that fi(x) can be efficiently computed.
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• Input Sampler: note that Di = Z∗
N . Thus there exists a PPT algorithm to sample a random element

from Di.

• By RSA assumption, for all PPT adversary A,

Pr[((N, e), d)← G(n), x
$←− Di, y = xe( mod N) : A(N, e, y) = x] ≤ negl(n)

• Invertible with trapdoor: we construct B as following: B takes ((N, e), d, y) as input and outputs
yd = xde = x( mod N).

Note that the input space and the output space are both Z∗
N . Thus, it gives us a construction of a trapdoor

one-way permutation.

3 Construction of PKE using LWE Assumption

3.1 Review: Decisional Learning with Error Assumption

The decisional learning with error (DLWE) assumption states that the following two distributions are com-
putationally indistinguishable:

{s $← (Zq)n×1,A
$← (Zq)m×n, e ∼ Errorm×1 : (A,As+ e)}

≈c {A
$← (Zq)m×n,u

$← (Zq)n×1 : (A,u)}

Here Error is the error distribution which is roughly a Gaussian Distribution. We write e ∼ Errorm×1 to
represents that e is sampled following the distribution Errorm×1.

3.2 PKE construction based on DLWE Assumption

In this part, we will give a construction of PKE based on DLWE Assumption. We define (Gen, Enc, Dec) as
following:

• Gen: it takes the security parameter n as input. Gen randomly samples s $← (Zq)n×1,A
$← (Zq)m×n, e ∼

Errorm×1. Then, compute b = As + e. Let pk = (A, b) and sk = s. Finally, Gen outputs
(pk, sk) = ((A, b), s).

• Enc: it takes a one-bit message m and a public key pk = (A, b) as input. Enc first randomly samples

x
$←− {0, 1}m×1. Then output c = (c1, c2) = (xTA,xTb+mq/2).

• Dec: it takes a cipher-text c = (c1, c2) and a secret key sk = s as input. Dec first computes c2 − c1s.
If the result is close to 0, then output 0. Otherwise, output 1

Now we give a proof sketch that above construction is a PKE with IND-SEC.
Proof.
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For correctness, since the error vector e is close to 0 with all but a negligible probability. Therefore, the
scalar xTe is also close to 0 (compared with q/2). Thus, for c = (c1, c2) = (xTA,xTb+mq/2),

c2 − c1s

= xTb+mq/2− xTAs

= xT (As+ e) +mq/2− xTAs

= xTe+mq/2

If m = 0, then c2 − c1s is close to 0. Otherwise, it is close to 1. Thus, Dec successfully decrypts the
message with all but a negligible probability.

For security, consider the following hybrids. For (m0,m1),

H0 = {((A, b), s)← Gen(n),x
$←− {0, 1}m×1 : (A, b) ◦ (xTA,xTb+m0q/2)}

H1 = {((A, b), s)← Gen(n),x
$←− {0, 1}m×1,u

$←− (Zq)m×1 : (A,u) ◦ (xTA,xTu+m0q/2)}

H2 = {((A, b), s)← Gen(n),x
$←− {0, 1}m×1,u

$←− (Zq)m×1 : (A,u) ◦ (xTA,xTu+m1q/2)}

H3 = {((A, b), s)← Gen(n),x
$←− {0, 1}m×1 : (A, b) ◦ (xTA,xTb+m1q/2)}

We first show that H0 ≈c H1. Suppose there is some PPT adversary A which can distinguish H0 and H1

with some non-negligible advantage. We will then construct an adversary B to break the DLWE assumption.
Recall that, in the DLWE experiment, B will takes a pair (A,w) as input. B works as following:

1. B uses (A,w) as the public key pk and then encrypts m0. Let c = Enc(pk,m0).
2. B calls the adversary A with input (pk, c). Then output the result of A.
Note that, if w is b, then the distribution of the input of A is the same as H0. If w is u, then the

distribution of the input of A is the same as H1. Therefore, B has the same advantage to win the DLWE
experiment as A does to distinguish H0 and H1. It contradicts with the DLWE assumption.

Thus, H0 ≈c H1. Similarly, we have H2 ≈c H3.
As for H1 and H2, the proof idea is to show the distribution of c2 = xTu + m0q/2 is statistically

indistinguishable with a uniform bit even given u and xTA. The proof relies on the Leftover Hash Lemma.
By symmetry, the distribution of xTu + m1q/2 is also statistically indistinguishable with a uniform bit
when given u and xTA. Thus H1 and H2 are statistically indistinguishable.

Remark 3 We correct the mistake in class where the encryption function chooses x $←− (Zq)m×1. In this
case, xTe is uniformly random in Zq. It thus does not satisfy our requirement that xTe is close to 0 with all

but a negligible probability. The correct version is choosing x
$←− {0, 1}m×1.
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