Introduction to Cryptography Date: 03/01/2018
Lecture 14: Public-Key Encryption-II

Instructor: Vipul Goyal Scribe: Yifan Song

1 Review: Indistinguishable Security for Public-Key Encryption

Definition 1 (Indistinguishable Security for PKE) We say a public-key encryption scheme (Gen, Enc, Dec)
satisfies IND-SEC (Indistinguishable security), if for all (mg, m1), the following two distributions are com-
putationally indistinguishable:

{(pk, sk) < Gen(k) : pk o Enc(pk, mo)} ~. {(pk, sk) < Gen(k) : pk o Enc(pk, m1)}
where k is the security parameter.

Remark 1 Although RSA may look like a PKE satisfying definition I, one needs to note that RSA is a
deterministic encryption scheme. Since the adversary holds the public key, it can encrypt those two messages
by itself. Therefore, RSA is not a IND-SEC PKE.

2 Trapdoor One-way Function

2.1 Definition of Trapdoor OWF

Definition 2 (Trapdoor One-way Function) We say a family of collections of functions { F, }, where F,, =
{fi : D; — Ri}fil, is a trapdoor one-way functions if:

e Function Sampler: there exists a PPT generator G which takes the security parameter n as input and
outputs (i,t) where i € [I,,] and t is a trapdoor associated with f; € F,.

o There exists a PPT algorithm Com such that for all security parameter n and for all i,x € D;,

Com(n,i,x) = fi(x).

o Input Sampler: there exists a PPT sampler S such that for all n,i, S(n,i) will return a uniformly

random element in D;. We will write x <i D; to represents that x is chosen uniformly from D;.

e For all PPT adversary A,
Pr((i,t) « G(n),z >~ Di,y = fi(z) : A(i,y) = 2] < negl(n)

o Invertible with trapdoor: there exists a PPT algorithm B, which is given (i,t,y) where (i,t) < G(n),
such that B(i,t,y) = x ify = fi(z) and B(i,t,y) =L ify ¢ R;.

Remark 2 Note that, for each security parameter n, F,, is a collection of functions while for OWF/OWP,
each security parameter just corresponds to one function. If |F,| = 1, since f € F,, can be efficiently
inverted when given the trapdoor, an adversary can simply hardcore the trapdoor in itself.

The last requirement implies that for each f; € F,,, f; is a one-to-one mapping.
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2.2 Construction of PKE using Trapdoor OWP

In this part, we will give a construction of PKE based on a trapdoor one-way permutation. Suppose {F, }
is a trapdoor one-way permutation. We use G to denote the function sampler of {F},} and B for the PPT
algorithm which takes the trapdoor ¢ as input and inverts { F},}. We define (Gen, Enc, Dec) as following:

e Gen: it takes the security parameter n as input. Gen first calls G(n) = (i,t). Then, it sets sk = ¢ and
pk = (i, fi, hi) where f; € F,, and h; is a hardcore predicate for f;. (Recall that each OWP has a
hardcore predicate.) Finally Gen(n) outputs (pk, sk).

e Enc: it takes a one-bit message m and a public key pk = (i, f;, h;) as input. Enc first randomly
samples x «* D;. Then output ¢ = (¢1,¢2) = (fi(r), m @ hi(r)).

e Dec: it takes a cipher-text ¢ = (¢, c2) and a secret key sk = t as input. Dec first uses sk = ¢ to invert
c¢1 by using B. Suppose the output is . Then compute h;(r) and output cy @ h;(r).

Now we show the above construction is a PKE satisfying IND-SEC.

Proof.

For correctness, it follows from the properties of the trapdoor one-way permutation { F}, }.

Now consider the security property. Note that pk = (i, f;, h;). We only need to show that, for all

(mO) ml)a

{((i, fishi), ) < Gen(n),r & D; : (i, fi, hi) o (fi(r), mo @ ha(r))}
~e {(G, fi,hi),t) < Gen(n),r & D : (i, fi, hi) o (fi(r),m1 ® hy(r))}

Consider the following 4 hybrids:

Hy = {((i, fishi),t) < Gen(n),r & Dy : (i, fi hi) o (fi(r), mo @ hy(r))}
Hi = {((, fi, hi),t) < Gen(n),r & Dy, b & {0,1} : (4, fi, hs) o (fi(r), mo @ b)}
Hy = {((i. fishi),t) ¢ Gen(n),r & Di,b & {0,1} : (i, fi, ha) o (fi(r),my © b))
Hy = {((i, fi,hi),t) < Gen(n),r & Dy : (i, fi, hi) o (fi(r), m1 & hy(r))}

By the property of the hardcore predicate, any PPT adversary is not able to distinguish between h;(r)
and a uniformly random bit b. Thus Hy ~. H;. Similarly, Hs ~. Hs. Since b is uniformly random, mg & b
is also uniformly random (and independent with 4, f;, h;, f;(r)). Similarly, m; @ b is uniformly random.
Thus H; and H; are identical. Therefore, Hy ~. Hs. It is exactly what we need.

2.3 RSA implies Trapdoor OWP

In this part, we show that RSA assumption implies a trapdoor one-way permutation. To this end, we will
show the correspondences between RSA assumption and a trapdoor one-way permutation.
We construct a trapdoor one-way permutation as following:

e Function Sampler: G first generates two different primes p, ¢ and compute N = pq. Then, randomly
sample e € Zg \y and compute d such that ed = 1( mod N). Finally, G outputs (i,t) = ((N,e),d).

e Foreachi = (N,e), fi(x) = 2°( mod N). Itis easy to see that f;(x) can be efficiently computed.
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e Input Sampler: note that D; = Z%;. Thus there exists a PPT algorithm to sample a random element
from D;.

e By RSA assumption, for all PPT adversary A,
Pr[((N,e),d) < G(n),z & D,y =2° mod N): A(N,e,y) = z| < negl(n)
e Invertible with trapdoor: we construct B as following: B takes ((IV,e),d,y) as input and outputs
y? = 29 = 2( mod N).

Note that the input space and the output space are both Z%;. Thus, it gives us a construction of a trapdoor
one-way permutation.

3 Construction of PKE using LWE Assumption

3.1 Review: Decisional Learning with Error Assumption

The decisional learning with error (DLWE) assumption states that the following two distributions are com-
putationally indistinguishable:

{s & (Zy)"™, A & (Zy)™™", e ~ Error™ ! : (A, As + e)}
me (A& (@) u & (21 (A, )

Here Error is the error distribution which is roughly a Gaussian Distribution. We write e ~ Error™*! to
represents that e is sampled following the distribution Error™>1.
3.2 PKE construction based on DLWE Assumption

In this part, we will give a construction of PKE based on DLWE Assumption. We define (Gen, Enc,Dec) as
following:

e Gen: it takes the security parameter n as input. Gen randomly samples s & (Zy)"t, A & (Zg)™ ™, e ~
Error™ !, Then, compute b = As + e. Let pk = (A,b) and sk = s. Finally, Gen outputs
(pk, sk) = ((A,b), 5).

e Enc: it takes a one-bit message m and a public key pk = (A, b) as input. Enc first randomly samples
z {0,1}™*1 Then output ¢ = (c1,c2) = (xT A, 27b + mq/2).

e Dec: it takes a cipher-text ¢ = (1, ¢2) and a secret key sk = s as input. Dec first computes co — ¢ 8.
If the result is close to 0, then output 0. Otherwise, output 1

Now we give a proof sketch that above construction is a PKE with IND-SEC.
Proof.
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For correctness, since the error vector e is close to 0 with all but a negligible probability. Therefore, the
scalar 2” e is also close to 0 (compared with ¢/2). Thus, for ¢ = (c1,c2) = (T A, 27b + mq/2),

cg—c18

= x'b+mq/2—x" As

xT(As +e)+mq/2—x' As
= zle+mq/2

If m = 0, then c; — ¢y s is close to 0. Otherwise, it is close to 1. Thus, Dec successfully decrypts the
message with all but a negligible probability.
For security, consider the following hybrids. For (mg, m1),

Hy = {((A,b),s) < Gen(n),z <~ {0,1}™*: (A,b) o (T A, z7b + moq/2)}
Hy = {((Ab),s) < Gen(n),x «— {0,111 u <2 ()™ : (A,u) o (7 A, 27w + moq/2)}
Hy = {((Ab),s) < Gen(n),x «— {0,111 w2 ()™ : (A,u) o (7 A, 27w+ m1q/2)}
Hy = {((A,b),s) < Gen(n),z <~ {0,1}"*: (A,b) o (T A, zTb + m1q/2)}

We first show that Hy ~. H;. Suppose there is some PPT adversary A which can distinguish Hy and H;
with some non-negligible advantage. We will then construct an adversary B to break the DLWE assumption.
Recall that, in the DLWE experiment, B will takes a pair (A, w) as input. B works as following:

1. B uses (A, w) as the public key pk and then encrypts mg. Let ¢ = Enc(pk, my).

2. B calls the adversary A with input (pk, ¢). Then output the result of A.

Note that, if w is b, then the distribution of the input of A is the same as Hy. If w is u, then the
distribution of the input of A is the same as H;. Therefore, B has the same advantage to win the DLWE
experiment as A does to distinguish Hy and H;. It contradicts with the DLWE assumption.

Thus, Hy =, H;. Similarly, we have Hy ~,. Hs.

As for H; and Hs, the proof idea is to show the distribution of co = xTu + moq/2 is statistically
indistinguishable with a uniform bit even given u and 7 A. The proof relies on the Leftover Hash Lemma.
By symmetry, the distribution of &’ u + m1q/2 is also statistically indistinguishable with a uniform bit
when given w and &7 A. Thus H; and H, are statistically indistinguishable.

Remark 3 We correct the mistake in class where the encryption function chooses x S (Zq)mX1. In this

case, " e is uniformly random in L. It thus does not satisfy our requirement that xe is close to 0 with all

but a negligible probability. The correct version is choosing x L {0,1}mxL,
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