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1 Hierarchy of Cryptography

We can divide cryptographic primitives and schemes into hierarchies divided by hardness assump-
tions. Roughly, the existence of primitives in higher floors implies the existence in lower floors.

Floor 0: one time pad

Floor 1: one way functions/permutations → hardcore predicates → pseudorandom permu-
tations → pseudorandom functions → secret key encrpytion

Floor 2: trapdoor permutations → public key encryption

2 Public Key Encryption

Definition 1 Public Key Encryption Scheme
A Public Key Encryption scheme (PKE) consists of the following algorithms

• Gen(n) = (pk, sk)

• Enc(pk, m) = c

• Dec(sk, c) = m

satisfying the following

1. All are PPT.

2. Correctness: ∀m,∀(sk, pk)← Gen(n), Dec(sk,E(pk,m)) = m

3. Indistinguisable Security for PKE as defined below

Definition 2 IND for PKE
A P.K.E scheme (Gen,Enc, Dec) satisfies IND if
∀PPTA,∀(m0,m1),

{(pk, sk)← Gen(n) : pk||Enc(pk,m0)} ≈c {(pk, sk)← Gen(n) : pk||Enc(pk,m1)} (1)

We can also define this in terms for prediction advantage:
∀PPTA,∀(m0,m1),

Pr[(pk, sk)← Gen(n), b
$←− {0, 1} : A(pk,Enc(pk,mb)) = b] ≤ 1

2
+ negl(n) (2)

Notice that the above definition holds for all pairs m0,m1, no matter who generates them! If we
restrict the above defintion to pairs generated by the adversary, this is sometimes called IND-
CPA; CPA stands for chosen plaintext attack because the adversary (the attacker) is chosing the
plaintext (while even knowing the public key), and cannot distinguish between the two produced
ciphertexts.
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Remark 1 As with SKE, we must have the encryption not be deterministic. In fact, if determin-
istic SKE is “bad”, then deterministic PKE is a “disaster”.

1. For deterministic SKE, an adversary can notice two ciphertexts are the same. Depending on
the situation, this may enable “replay” attacks, in which the an adversary Eve notices that
fixed ciphertexts sent from Alice to Bob correspond to some action (e.g. authentication). In
this case, the attacker doesn’t need to know the plaintext to impersonate Alice; she just needs
to send the ciphertexts.

2. For deterministic PKE, an adversary, given a single ciphertext, can encrypt likely messages
with the public key and look for the ciphertext. This is devastating if the adversary knows
likely messages, or if the size of the message is small. Also, the same “replay” attack still
applies if an attacker notices repeating ciphertexts.

Definition 3 Multi Message Security for PKE (IND)

∀{mi
0}

l(n)
i=1 ,∀{mi

1}
l(n)
i=1 , l(n) = poly(n)

{(pk, sk)← Gen(n) : {pk,Enc(pk,mi
0)}

l(n)
i=1} ≈c {(pk, sk)← Gen(n) : {pk,Enc(pk,mi

1)}
l(n)
i=1} (3)

Fortunately, we have a nice theorem that multi message PKE security follows from single
message PKE security (under the notion of indistinguishability).

Theorem 1 IND for One Time PKE =⇒ IND for Multi Message PKE

Proof. Suppose not. Thus, we assume we can distinguish {(pk, sk)← Gen(n) : {pk,Enc(pk,mi
0)}

l(n)
i=1}

and {(pk, sk)← Gen(n) : {pk,Enc(pk,mi
1)}

l(n)
i=1}, and also that (Gen, Enc, Dec) is One Time PKE

Secure (IND). We define the following hybrids.

H0 : {(pk, sk)← Gen(n) : {pk,Enc(pk,mi
0)}

l(n)
i=1}

H1 : {(pk, sk)← Gen(n) : {pk,Enc(pk,m1
1), Enc(pk,mi

0)}
l(n)
i=2}

H2 : {(pk, sk)← Gen(n) : {pk,Enc(pk,m1
1)

2
i=1, Enc(pk,mi

0)}
l(n)
i=3}

...

Hj−1 : {(pk, sk)← Gen(n) : {pk,Enc(pk,m1
1)

j−1
i=1 , Enc(pk,mi

0)}
l(n)
i=j }

Hj : {(pk, sk)← Gen(n) : {pk,Enc(pk,m1
1)

j
i=1, Enc(pk,mi

0)}
l(n)
i=j+1}

...

Hl(n) : {(pk, sk)← Gen(n) : {pk,Enc(pk,mi
1)}

l(n)
i=1}

By assumption, H0 and Hl(n) can be distinguished. Thus, by the Hybrid Lmma, ∃Hk−1 and Hk

and a PPT adversary A s.t. A can distinguish Hk−1 and Hk with a noticeable advantage. We use
A to construct a PPT adversary B to break One Time PKE security, which is a contradiction.
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B works as follows:

1. B picks (mk
0,m

k
1) and receives from the oracle Enc(pk,mk

b ).

2. B invokesA on the following distribution: {{Enc(pk,mi
1)}

k−1
i=1Enc(pk,mk

b ){Enc(pk,mi
0)}

l(n)
k+1}

3. A outputs b = 0 (for Hk−1) or b = 1 (for Hk)

4. B repeats A’s output

B is cleary a PPT algorithm as it only creates a polynomial length distribution and simply queriesA,
which is also PPT. We also remark that the construction of the distribution is such that determining
if it’s Hk or Hk−1 exactly determines if mb is m1 or m0. Because PPT A is correct with noticeable
probability, so is B.

3 ElGamal PKE

The scheme ElGamal is based on the Decisional Diffie Hellman assumption(DDH).

Definition 4 Decisional Diffie Hellman (DDH)
Consider a multiplicative Gq of prime order q and let g ∈ Gq be a generator. The following

distributions are then computationally indistinguishable:

{a, b $←− Zq : g, ga, gb, gab} ≈c {a, b, r
$←− Zq : g, ga, gb, gab} (4)

Definition 5 ElGamal PKE

1. Gen(n): Sample g ← G, x← Zq Set h = gx.pk := (g, h), sk := x

2. Enc(pk,m): Sample r
$←− Zq. Output c = (c1, c2) = (gr,mhr).

3. Dec(x,c): Compute cx1 . Output c2(c
x
1)−1.

All algorithms are PPT. To show correctness,

c2(c
x
1)−1 = mhr((gr)x)−1 = mhr(gxr)−1 =

= m(gx)r(gxr)−1 = m(gxr)(gxr)−1 = m.

For security, we prove the following lemma.

Lemma 2 {g, gx, gr,m0g
xr} ≈c {g, gx, gr,m1g

xr}

Proof. Sample R
$←− Zq. We define the following hybrids:

H0 : {g, gx, gr,m0g
xr}

H1 : {g, gx, gr,m0g
R}

H2 : {g, gx, gr, gR}
H3 : {g, gx, gr,m1g

R}
H4 : {g, gx, gr,m1g

xr}
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H0 ≈c H1 by DDH assumption. H1 = H1 = H3 (but we may replace = by ≈c, since equal
distributions are obviously computationally indistinguishable.). We can see the equality by viewing
multiplication by a fixed element as a permutation on the underlying group. H3 ≈ H4 by DDH
assumption. Thus, H0 ≈c H4 by transitivity.

4 Other Cryptography Concerns

Imagine the following SKE protocol is secure.

A
Alice

B
Bob

E(k, “SELL MSFT”)

Eve, although not shown, can intercept the messages. The following occurs:

A
Alice

B
Bob

E(k, “BUY MSFT”)

What went wrong? The problem is that the schemes described thus far in the class are mal-
leable. That is, the attacker can modify the ciphertext with predictable results without knowing
the plaintext! We have already seen this for the one time pad. For example, consider Alice sending
Bob a single message using a one time pad with previously agreed upon secret key k. Suppose Eve
knows that Alice and Bob are sending messages of the form “CMD||STOCK ′′, where “CMD” is
4 bytes (either “SELL” or “BUY ”) and “STOCK” is a 4 byte stock symbol. Thus, Alice sends
c1 = (SELL||MSFT ) ⊕ k. Eve intercepts c1, and computes c2 = c1 ⊕ (SELL ⊕ BUY ||0000) =
(SELL⊕BUY ⊕ SELL||MSFT ⊕ 0000)⊕ k = (BUY ||MSFT )⊕ k. Eve sends c2 to Bob.

5 ElGamal Attack

Here is an example of how ElGamal is malleable. Suppose Alice is sending a bid, m to Bob, by
sending (c1, c2) = (gr,mhr). Eve wants to bankrupt Alice; thus she intercepts Alice’s message and
sends (c3, c4) = (c1, k ∗mhr) where k is a large positive integer. Upon decryption, Bob will receive
a bid of k ∗m, which Alice cannot afford but is now under contract to pay.

6 Non Malleability

For practical value, we need notions of non malleability for encrpytions. Here are informal defini-
tions to be made precise later. For SKE, given encryptions of m0,m1, ...,mn, an adversary cannot
produce an encryption of mn+1 s.t. mn+1 6= mi∀0 ≤ i ≤ n.

For PKE, given an encrpytion of m, an adversary cannot produce an encrpytion of m′ where
m and m′ are “related”, where “related” will be made precise in the future.
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