
Introduction to Cryptography 02/22/2018

Lecture 11: Key Agreement

Instructor: Vipul Goyal Scribe: Francisco Maturana

1 Hardness Assumptions

In order to prove the security of cryptographic primitives, we need to be able to show that certain
problems cannot be solved efficiently. This, however, has proven to be a very difficult task, so we
often have to rely on hardness assumptions for our proofs of security. These assumptions are based
on longstanding problems for which no efficient algorithms are known, and are therefore widely
believed to be hard.

Assumption 1 (Discrete Log Assumption (DL)) Let Gq be an order q multiplicative group,
where q is a prime, and let g ∈ Gq be a generator. Then, for all PPT adversary A:

Pr[x
$← Zq : A(gx) = x] ≤ negl(|q|)

We can construct a one-to-one OWF fg : Zq → Gq based on the DL assumption:

fg(x) = gx

Lemma 1 The function fg is a one-to-one OWF.

Proof. First we show that fg is one-to-one. Since g is a generator, and Gq is of order q it must
be the case that for all x, y ∈ Zq such that x 6= y, gx 6= gy, or otherwise g would not be able to
generate all the elements of Gq. Then, if x, y ∈ Zq are such that fg(x) = fg(y), we must have that
x = y.

The function fg can be efficiently computed by using exponentiation by squaring. This will take
O(log |Zq|) = O(|q|) group operations in the worst case.

Finally, fg is hard to invert as a direct consequence of the DL assumption.
Given that we typically work with bit-strings instead of prime order groups, it would be useful

to adapt fg to work in the more familiar setting. We can construct a one-to-one OWF that takes
bit strings as input by making use of the following lemma.

Lemma 2 Let f : Zq → Gq be a function, let n be such that 2n ≤ q < 2n+1, let m be such that
2m ≥ |Gq|, and let f ′ : {0, 1}n → {0, 1}m be such that:

f ′(x) = f(x) for all x ∈ {0, 1}n

where x ∈ {0, 1}n and f(x) ∈ Gq are respectively mapped to elements of Zq and {0, 1}m in the
trivial way. If f is a OWF, then f ′ is a OWF.

Proof. Suppose, towards contradiction, that there is an adversary A that can invert f ′ with
noticeable probability p. Consider the adversary A′ that attempts to invert f as follows: on input
Y ∈ Gq, A

′ converts Y to an element y ∈ {0, 1}m and outputs A(y).
Given our choice of n, all the elements in {0, 1}n have a corresponding element in Zq, and at

least one half of the elements in Zq have a corresponding element in {0, 1}n. This means that an

11-1

element X ∈ Zq chosen at random will have a corresponding element x ∈ {0, 1}n with probability
at least 1/2. The probability that A′ succeeds given that such an x exists, is exactly p. Therefore,
the overall probability that A′ succeeds is at least p/2, which is noticeable.

It is also worth noting that if f is one-to-one, then f ′ is also one-to-one, since the mappings
{0, 1}n → Zq and Gq → {0, 1}m are one-to-one.

Assumption 2 (Computational Diffie-Hellman Assumption (CDH)) Let Gq be a prime-
order multiplicative group and let g ∈ Gq be a generator. Choose x, y uniformly at random from
Zq. Let X = gx and Y = gy. Then, for all PPT adversary A:

Pr[A(g,X, Y) = gxy] ≤ negl(|q|)

Notice that this is a potentially stronger assumption than DL, since if we are able to solve DL
efficiently, we are also able to solve CDH efficiently.

Assumption 3 (Desicional Diffie-Hellman Assumption (DDH)) Let Gq, g,X, Y be defined

as before. Let Z = gxy and R
$← Gq. Then, for all PPT adversary A:

|Pr[A(g,X, Y, Z) = 0]− Pr[A(g,X, Y,R) = 0]| ≤ negl(|q|)

Notice that this assumption is potentially stronger than CDH. Clearly, if we are able to compute
gxy efficiently, then we can just compute it and check if Z = gxy.

The tuples (gx, gy, gxy) are sometimes called DDH triplets or DDH tuples in the literature.

1.1 RSA assumption/function

Let N = pq where p and q are distinct primes. Then, as we previously mentioned:

|Z∗N | = Φ(N) = (p− 1)(q − 1)

Choose an e ∈ {1, 2, . . . ,Φ(N)− 1} such that e is relatively prime to Φ(N). Compute d such that
ed = 1 mod Φ(N) (d must exist since e is relatively prime to Φ(N)). We call the following function
the RSA function:

fN,e(x) = xe mod N

The RSA assumption states that given e and N , it is hard to compute e-th roots. More formally:

Assumption 4 (RSA assumption) Let Πn be the set of primes of length n. Then:

Pr

[
p, q ← Πn, p 6= q, N = pq,
e← Z∗Φ(N), x← Z∗N

: A(xe mod N) = x

]
≤ negl(n)

One key property of the RSA assumption is that when we know d it becomes very easy to invert.

11-2

Inverting RSA Given xe mod N we can compute:

xed mod N = xed mod Φ(N) mod N = x1 mod Φ(N) mod N = x mod N = x

Given Φ(N), it is easy to compute d from e by using the extended euclidean algorithm. Therefore,
RSA becomes easy to invert on we know Φ(N). Computing Φ(N) in this case, however, is believed
to be hard.

One way in which we may compute Φ(N) is by factorizing N into p and q, and then computing
(p−1)(q−1). This means that factoring being hard is a necessary condition for the RSA assumption
to hold. It is not known if this is a sufficient condition, however, since there might be other ways
of computing Φ(N) that do not involve factoring.

The RSA assumption, however, implies that the RSA function is hard to invert when we have
no additional information.

Lemma 3 The RSA function is a OWP under the RSA assumption.

Proof. First we show that it is a permutation. Suppose there are two preimages x, y ∈ Z∗N
mapping to the same image. Then:

xe = ye mod N

(xe)d = (ye)d mod N

x1 mod Φ(N) = y1 mod Φ(N) mod N

x = y mod N

Since the domain and codomain of the function are the same, we deduce that it is a permutation.
We can efficiently compute the RSA function by using exponentiation by squaring. This will

take O(log |Z∗Φ(N)|) group operations.
Finally, the fact that the RSA function is hard to invert follows directly from the RSA assump-

tion.
RSA is often presented as an asymmetric encryption scheme, where the RSA function with the

public key e is used to encrypt messages and the RSA function with the private key d is used to
decrypt them. It is worth noting, however, that RSA is not a secure encryption scheme, since it
is deterministic. As shown in a previous lecture, no deterministic encryption scheme is secure for
multiple messages.

1.2 Learning with Errors (LWE)

Consider the following problem. Let x = (x1, x2, . . . , xn) where xi ∈ Zq for all i ∈ [n]. Given several
equations:

a11x1 + a12x2 + · · ·+ a1nxn = b1 mod q

a21x1 + a22x2 + · · ·+ a2nxn = b2 mod q

...

11-3

The goal is to find an x satisfying the system of equations. This is a classical problem easily solved
using Gaussian elimination.

LWE introduces the following variation. We are given noisy version b̃1, b̃2, . . . , b̃n of b1, b2, . . . , bn
such that:

b̃i = bi + ei for all i ∈ [n]

where ei is noise sampled from a given distribution.

Assumption 5 (Learning with Errors (LWE)) For all PPT adversary A:

Pr[A(a11, a12, . . . , b̃1, b̃2, . . .) = x] ≤ negl(n)

LWE is believed to be hard when noise is sampled from a normal distribution with certain
standard deviations.

This assumption is often used in lattice-based cryptography.

2 Diffie-Hellman Key Exchange

A key exchange protocol (KEP) allows two PPT parties—say Alice and Bob having randomness
rA, rB respectively—to interact with each other. Let τ be the public transcript at the end of the
protocol. The view of Alice is VA = (rA, τ) and the view of Bob is VB = (rB, τ). Given VA and VB,
Alice and Bob can compute kA and kB respectively. If kA = kB, denote them by k.

• Correctness: the protocol is correct if:

Pr
rA,rB

[kA = kB] = 1

• Security: Consider PPT Eve (denoted by E) eavesdropping the communication channel.

The view of Eve is τ . Let k be the key and let Un
$← {0, 1}n. The protocol is secure if:

|Pr[E(τ, k) = 0]− Pr[E(τ, Un) = 0]| ≤ negl(n)

where the probability is taken with respect to the coins of the entire experiment (Un and the
randomness of Alice, Bob, and Eve).

2.1 DH key exchange protocol

Let Gq be a multiplicative group of prime order q, and let g ∈ Gq be a generator. The protocol is
the following:

1. A picks x
$← Zq, computes X = gx, and sends X to B;

2. B picks y
$← Zq, computes Y = gy, and sends Y to A;

3. A computes kA = Y x = (gy)x = gxy;

4. B computes kB = Xy = (gx)y = gxy.

11-4

This protocol satisfies the definition of a KEP.

• Correctness: clear from the protocol.

• Security: Eve is given X = gx, Y = gy, and has to distinguish k = gxy from a uniformly
random Un. Suppose Eve can distinguish them: then we can construct an algorithm B that
can solve the DDH problem.

2.2 Active adversaries

Notice that throughout this section, we assumed that Eve can only observe messages, but not
modify or interfere with them in any way. Suppose that we allow Eve to modify messages. Since
Alice and Bob have no way of telling who they are interacting with, Eve can perform the KEP
with Alice and Bob separately and then mediate the conversation between them. Alice and Bob
will think that they are interacting with each other, but Eve can read (and modify) all of their
messages. This is what is typically called a man-in-the-middle attack (MITM).

11-5

