Introduction to Cryptography

February 20, 2018

Lecture 11: Number Theory

Instructor: Vipul Goyal Scribe: Ariela Immordino

1 Introduction

This lecture will go over the relevant background from number theory and hardness assumptions that will allow us to construct a One-Way-Function and eventually a One-Way-Permutation.

Preliminary Notation:

- \mathbb{N} = the set of natural numbers
- \mathbb{Z} = the set of integers
- \mathbb{R} = the set of real numbers

2 Modular Arithmetic

Definition 1 For any $N \in \mathbb{N}$, Z_N denotes the integers from 0 to N-1 (i.e. the integers mod N). Equivalently $Z_N = \{x \in \mathbb{N} : 0 \le x < N\}$.

For any $x \in \mathbb{N}$, the value of $x \mod N$ is r where r satisfies the following equation: $x \cdot \lfloor \frac{x}{N} \rfloor + r = N$. In other words, r is the remainder when you divide x by N.

We can do both addition and multiplication in the modular universe:

- Addition: $(a+b) \mod N = ((a \mod N) + (b \mod N)) \mod N$
- Multiplication: $(a \cdot b) \mod N = ((a \mod N) \cdot (b \mod N)) \mod N$

3 Greatest Common Divisor (GCD)

Definition 2 For $a, b \in \mathbb{Z}$, GCD(a, b) is defined to be the greatest common divisor of a and b.

Remark 1 If $a, b \in \mathbb{Z}$ are relatively prime then GCD(a, b) = 1.

Theorem 1 For all $a, b \in \mathbb{N}$, there exist $x, y \in \mathbb{Z}$ such that ax + by = GCD(a, b).

Proof. The Extended Euclidean Algorithm (EEA) shows how to compute x and y given a and b in poly-time.

Lemma 2 If $a, b \in \mathbb{N}$ are relatively prime with a < b, then $\exists c \in \mathbb{N}$ such that $a \cdot c = 1 \mod b$. In other words, c is the inverse of $a \mod b$.

Proof. (of Lemma 2) By EEA, we can compute $x, y \in \mathbb{Z}$ such that ax + by = GCD(a, b). Since a and b are relatively prime, GCD(a, b) = 1.

$$ax + by = 1$$

$$\Rightarrow ax = 1 - by$$

$$\Rightarrow ax \mod b = (1 - by) \mod b$$

$$\Rightarrow ax = (1 \mod b) + (-by \mod b)$$

$$\Rightarrow ax = 1 \mod b$$

Therefore, x is the inverse of $a \mod b$

4 Euler's Phi Function

Definition 3 For any $N \in \mathbb{N}$, Z_N^* denotes the integers that are relatively prime to N and less than N. Equivalently $Z_N^* = \{x \in \mathbb{N} : x < N \text{ and } GCD(x, N) = 1\}.$

Definition 4 Euler's Phi Function (sometimes called Euler's Totient Function) is defined as follows: $\phi(N) = |Z_N^*|$

Examples:

- $Z_4^* = \{1, 3\}$ and $\phi(4) = 2$
- $Z_9^* = \{1, 2, 4, 5, 7, 8\}$ and $\phi(9) = 6$
- $Z_{11}^* = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ and $\phi(11) = 10$
- for any prime p: $Z_p^* = \{1, 2, ..., p\}$ and $\phi(p) = p 1$

Theorem 3 Fundamental Theorem of Arithmetic: Every integer N can be represented as follows: $N = \prod_i p_i^{e_i}$ where $p_1 < p_2 < ... < p_k$, $\forall i.e_i > 0$ and p_i is prime. This representation is unique. $\prod_i p_i^{e_i}$ is called the prime factorization of N.

Lemma 4 For $N = \prod_i p_i^{e_i}$ where $p_1 < p_2 < ... < p_k$ and $\forall i.e_i > 0$ and p_i is prime.

$$\phi(N) = N \cdot \prod_{i} (1 - \frac{1}{p_i})$$

Proof. By the Fundamental Theorem of Arithmetic, we know that $N = \prod_i^k p_i^{e_i}$. we will prove this using the Inclusion/Exclusion Principle¹:

Let $A_i = \{x \in \mathbb{N} : 0 < x \le N \text{ and } p_i \text{ divides } x\}$ for $1 \le i \le k$.

$$\phi(N) = |\bigcap_{i=1}^{k} \bar{A}_i| = N - |\bigcup_{i=1}^{k} A_i|$$

 $[\]frac{1}{1|\bigcup_{i=1}^{n} A_i|} = \sum_{\emptyset \neq I \subseteq [n]} (-1)^{|I|+1} |\bigcap_{i \in I} A_i|$ (where $[n] = \{1, 2, ..., n\}$)

By the inclusion exclusion theorem:

$$\phi(N) = N - \sum_{\emptyset \neq I \subseteq [k]} (-1)^{|I|+1} |A_I| \quad \text{(where } A_I = \bigcap_{i \in I} A_i)$$

We know that the $|A_I| = \frac{N}{\prod_{i \in I} p_i}$ since this is the amount of numbers between 1 and N that are divisible by all the p_i for $i \in I$. This gives us:

$$\phi(N) = N - \sum_{\emptyset \neq I \subseteq [k]} (-1)^{|I|+1} \frac{N}{\prod_{i \in I} p_i} = N(1 - \sum_{\emptyset \neq I \subseteq [k]} (-1)^{|I|+1} \frac{1}{\prod_{i \in I} p_i}) = N \prod_{i \in [k]} (1 - \frac{1}{p_i})$$

The last equality is by the following identity and letting $x_i = \frac{1}{p_i}$:

$$1 - \sum x_i + \sum x_i x_j - \sum x_i x_j x_k + \dots + (-1)^n x_1 x_2 \cdots x_n = \prod_{i=1}^n (1 - x_i)$$

(Side Note: There are simpler proofs that use that ϕ is multiplicative and that $\phi(p^k) = p^k(1-\frac{1}{p})$. One such proof can be found here.)

Remark 2 We can verify that $\phi(p) = p(1 - \frac{1}{p}) = p - 1$.

Remark 3 If N = pq where p, q are prime and $p \neq q$ then $\phi(N) = N(1 - \frac{1}{p})(1 - \frac{1}{q}) = (p-1)(q-1)$. (We shall see later that this is used in RSA.)

Theorem 5 Fermat's Little Theorem: If p is prime, for any $a \in \mathbb{Z}_p^*$,

$$a^{p-1} \mod p = 1$$

Theorem 6 Euler's Generalization: For any N, for any $a \in Z_N^*$,

$$a^{\phi(N)} \mod N = 1$$

5 Introduction to Groups

We have already seen some groups, namely Z_N with addition $\mod N$ and Z_N^* with multiplication $\mod N$, but now we will formally define what a group is. Later we will see that calculating certain things is assumed to be hard which we will take advantage of to construct a One-Way-Function.

Definition 5 A group consists of a set G and a group operation $\odot: G \times G \to G$ and is formally referred to as (G, \odot) . It must satisfy the following properties:

- 1. Closure: $\forall a, b \in G$, if $c = a \odot b$ then $c \in G$
- 2. Identity: there must exist an $e \in G$ such that $\forall a \in G$, $a \odot e = e \odot a = a$
- 3. Associativity: $\forall a, b, c \in G$, $(a \odot b) \odot c = a \odot (b \odot c)$

4. Inverse: $\forall a \in G$, $\exists b \in G$ such that $a \odot b = b \odot a = e$ where e is the identity element

Definition 6 An **Abelian Group** (G, \odot) is a group with the additional requirement that the group operation is commutative. Formally $\forall a, b \in G$ it must hold that $a \odot b = b \odot a$.

Proposition 1 Z_N is a group where the group operation is addition modulo N (it is assumed that this is the group operation unless stated otherwise).

Proposition 2 Z_N^* is a group where the group operation is multiplication modulo N (it is assumed that this is the group operation unless stated otherwise).

Proof.

- 1. Closure: If $a, b \in Z_N^*$ then we will show that $(a \cdot b) \mod N \in Z_N^*$. Since both a and b are relatively prime to N, it must be the case that $(a \cdot b)$ is also relatively prime to N. Using the identity that $GCD(a \cdot b, N) = GCD((a \cdot b) \mod N, N)$ we conclude that $(a \cdot b) \mod N \in Z_N^*$.
- 2. Identity: We claim that 1 is the identity element. We can confirm that for any $x \in Z_N^*$ that $1 \cdot x = x \cdot 1 = x \mod N$
- 3. Associativity: Follows from the fact that multiplication modulo N is associative.
- 4. Inverses: Consider $x \in Z_N^*$. Since x and N are relatively prime, we can use EEA to find a c such that $xc = 1 \mod N$. We now just need to prove that c must also be relatively prime to N which lets us conclude that $(c \mod N) \in Z_N^*$.

Suppose it isn't, then GCD(c, N) = d > 1 which means that $N = N' \cdot d$ and $c = c' \cdot d$ where $c', N' \in \mathbb{N}$.

$$1 = x \cdot c \mod N$$

$$\Rightarrow \frac{N}{d} = (x \cdot c) \cdot \frac{N}{d} \mod N$$

$$= \frac{N}{d} \cdot x \cdot c'd \mod N$$

$$= N \cdot x \cdot c' \mod N$$

$$= 0 \mod N$$

$$\Rightarrow 1 = 0 \mod N$$

This is a contradiction since $1 \le \frac{N}{d} < N$.

Remark 4 In cryptography the group that is nearly always used is Z_N^* .

Definition 7 A generator $g \in G$ must be such that $\{g, g^2, g^3, ...\} = G$. Where for $n \in \mathbb{N}$, $x \in G$, $x^n = \underbrace{x \odot x \odot ... \odot x}_{n \text{ times}}$

Definition 8 The order of a group (G, \odot) is equal to |G|.

Theorem 7 If the order of a group G is n then $\forall a \in G$, $a^n = e$. (This is similar to Euler's Generalization but for an arbitrary group. It is actually a corollary of Lagrange's Theorem.)

6 Multiplicative Groups of Prime Order

We will now continue discussing and proving results about groups but with the focus of eventually constructing a One-Way Function.

Definition 9 A Prime Order Group is a group where the order is a prime.

We will see later that the most important groups in cryptography are multiplicative groups of prime order. Unfortunately the group (Z_p^*,\cdot) has order $|Z_p^*|=p-1$ so we will have to look elsewhere.

Theorem 8 Constructing Multiplicative Groups of Prime Order: Let p be a prime such that p = 2q + 1 where q is also a prime. The group $G_q = \{x^2 : x \in Z_p^*\}$ with multiplication modulo p is a group of order p.

Definition 10 We will use G_q to denote a multiplicative group of order q where q is prime.

Remark 5 Primes that are of the form 2q + 1 where q is also a prime are called **safe primes** in cryptography and are more generally known as Sophie-German primes.

Theorem 9 Every non-identity element of G_q is a generator.

Proof. Suppose not. Then there exists a $g \in G_q$ such that $g^i = 1 \mod p$ for some 0 < i < q. Let i be the smallest such exponent that satisfies that requirement.

By Theorem 7, we know that $g^q = 1 \mod p$. Consider the following the some $k \in \mathbb{N}$ such that $ki \leq q$:

$$g^{q} = 1 \mod p$$

$$\Rightarrow g^{q-ki} \cdot g^{ki} = 1 \mod p$$

$$\Rightarrow g^{q-ki} = 1 \mod p \qquad [\text{since } g^{ki} = (g^{i})^{k} = 1^{k} = 1 \mod p]$$

Now consider the largest such $k \in \mathbb{N}$ such that $ki \leq q$. This means that $0 \leq q - ki < i$. If q - ki = 0 then q is a multiple of k which contradicts that q is prime. If 0 < q - ki since it is also less than i and $q^{q-ki} = 1 \mod p$, this contradicts that i was the smallest exponent for which that was true.

7 Discrete Log Problem and Assumption

Definition 11 The **Discrete Log Problem** is defined for a group (G, \odot) . Given $g \in G$ where g is a generator for G and an $x \in G$, return the exponent $e \in \mathbb{N}$ where $0 \le e < |G|$ where $g^e = x$. Then e is called the discrete log of x with respect to the generator g.

Assumption 1 Discrete Log Assumption (DLA): Given G_q and a generator $g \in G_q$, then for every PPT A

$$Pr[x \stackrel{\$}{\leftarrow} Z_q : A(g^x) = x] \le \nu(\log q)$$

(where $\nu(\cdot)$ is a negligible function)

Remark 6 The DLA is believed to be true only for certain multiplicative prime order groups as there are attacks for primes of certain forms.

8 Constructing a 1-1 One-Way Function

Theorem 10 Let $f_g: Z_q \to G_q$ be defined as follows: $f_g(x) = g^x$. This f_g is a 1-1 One-Way Function.

Proof. Claim 1: f_q is a 1-1 function.

Consider $x_1, x_2 \in Z_q$ such that $x_1 \neq x_2$ (WLOG $x_1 > x_2$). It must be the case that $f_g(x_1) = g^{x_1} \neq g^{x_2} = f_q(x_2)$ because g is a generator.

Suppose not. Then $g^{x_1} = g^{x_2} \Rightarrow g^{x_1-x_2} = 1$. Since g is a generator, $x_1 - x_2$ is either 0 or a multiple of q. The first contradicts that x_1 and x_2 are not equal and the second contradicts that they were taken from the set Z_q .

Claim 2: f_g is a OWF.

Suppose not. There is a PPT A such that

$$\mathbf{Pr}[x \overset{\$}{\leftarrow} Z_q, A(f_g(x)) = x' : f(x') = f(x)] \ge \frac{1}{poly(\log q)}$$

Since we know that f_g is 1-1, we can simplify this probability to:

$$\mathbf{Pr}[x \stackrel{\$}{\leftarrow} Z_q : A(f_g(x)) = x] \ge \frac{1}{poly(\log q)}$$

Using the definition of f_g we get that that probability is equivalent to:

$$\mathbf{Pr}[x \stackrel{\$}{\leftarrow} Z_q : A(g^x) = x] \ge \frac{1}{poly(\log q)}$$

The existence of this PPT A contradicts the DLA.

Remark 7 f_g is not a One-Way Permutation because $|Z_q| \neq |G_q|$.