Introduction to Cryptography February 20, 2018
Lecture 11: Number Theory

Instructor: Vipul Goyal Scribe: Ariela Immordino

1 Introduction

This lecture will go over the relevant background from number theory and hardness assumptions
that will allow us to construct a One-Way-Function and eventually a One-Way-Permutation.
Preliminary Notation:

e N = the set of natural numbers
e 7 = the set of integers

e R = the set of real numbers

2 Modular Arithmetic

Definition 1 For any N € N, Zy denotes the integers from 0 to N —1 (i.e. the integers mod N ).
FEquivalently Zy ={z e N: 0 <z < N}.

For any = € N, the value of z mod N is r where r satisfies the following equation: z- | ] +r =

N. In other words, r is the remainder when you divide = by N.
We can do both addition and multiplication in the modular universe:

e Addition: (a+b) mod N = ((@ mod N)+ (b mod N)) mod N
e Multiplication: (a-b) mod N = ((a mod N)- (b mod N)) mod N

3 Greatest Common Divisor (GCD)

Definition 2 For a,b € Z, GCD(a, b) is defined to be the greatest common divisor of a and b.
Remark 1 Ifa,b € Z are relatively prime then GCD(a,b) = 1.

Theorem 1 For all a,b € N, there exist x,y € Z such that ax + by = GCD(a,b).

Proof. The Extended Euclidean Algorithm (EEA) shows how to compute x and y given a
and b in poly-time. [ |

Lemma 2 Ifa,b € N are relatively prime with a < b, then 3¢ € N such that a-c=1 mod b. In
other words, c is the inverse of a mod b.
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Proof. (of Lemma 2) By EEA, we can compute z,y € Z such that az + by = GCD(a,b). Since
a and b are relatively prime, GCD(a,b) = 1.

ar +by=1
=ar=1—-0by
= ar modb=(1—->by) modb
= ar = (1 mod b)+ (—by mod b)
=ar=1 modbd

Therefore, = is the inverse of @ mod b [ |

4 Euler’s Phi Function

Definition 3 For any N € N, Z}; denotes the integers that are relatively prime to N and less than
N. Equivalently Z3, = {xr e N:z < N and GCD(z,N) = 1}.

Definition 4 FEuler’s Phi Function (sometimes called Euler’s Totient Function) is defined as
follows: ¢(N) = |Z%|

Examples:

o 77 ={1,3} and ¢(4) =2

o 7 ={1,2,4,5,7,8} and $(9) = 6

o Zi =1{1,2,3,4,5,6,7,8,9,10} and ¢(11) = 10

e for any prime p: Z; = {1,2,...,p} and ¢(p) =p — 1

Theorem 3 Fundamental Theorem of Arithmetic: Every integer N can be represented as
follows: N = T, p;* where p1 < p2 < ... < p, Vi.e; > 0 and p; is prime. This representation is
unique. |1, p;" is called the prime factorization of N.

Lemma 4 For N = [[, p;* where p1 < pa < ... < pi, and Vi.e; > 0 and p; is prime.
1
P(N) :N-H(l—;)
. (2
(2

Proof. By the Fundamental Theorem of Arithmetic, we know that N = Hf p;'. we will prove
this using the Inclusion/Exclusion Principleﬂ
Let Aj={x € N:0 <z <N and p; divides z} for 1 <1i <k.

k k
o(N) = | Ail =N — | Al
i=1 i=1

1‘ UZL A’i| = Z(B;&Ig[n](_l)m+1| mz‘el A’i| (Where [n} = {172?'“?'”})
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By the inclusion exclusion theorem:

(N)=N— > (D)4, (where A; = (") A))

OAIC[K] iel

We know that the |Af| = HLIP' since this is the amount of numbers between 1 and N that are
S 4
divisible by all the p; for ¢ € I. This gives us:

s =N- Y ()N Y () =N [ )
0AIC K] [Lierp: 0AIC[H ' ‘

The last equality is by the following identity and letting x; = p%:

1-— Zml + inxj - Zwil‘jxk + .o+ () "z -y = H(l —x;)

(Side Note: There are simpler proofs that use that ¢ is multiplicative and that ¢(p*) = pF(1-1).

p
One such proof can be found here.)
|

Remark 2 We can verify that ¢(p) = p(1 — %) =p-—1.

Remark 3 If N = pq where p, q are prime and p # q then ¢(N) = N(lf%)(lfé) =(p—1)(qg—1).
(We shall see later that this is used in RSA.)

Theorem 5 Fermat’s Little Theorem: If p is prime, for any a € Z;,

-1

a? mod p=1

Theorem 6 Fuler’s Generalization: For any N, for any a € Z},

a®™) mod N =1

5 Introduction to Groups

We have already seen some groups, namely Zy with addition mod N and Z3, with multiplication
mod N, but now we will formally define what a group is. Later we will see that calculating certain
things is assumed to be hard which we will take advantage of to construct a One-Way-Function.

Definition 5 A group consists of a set G and a group operation ® : G x G — G and is formally
referred to as (G,®). It must satisfy the following properties:

1. Closure: Ya,b € G, ifc=a®b then c € G
2. Identity: there must exist an e € G such thatVa € G, a®@e=e®a=a

3. Associativity: Ya,b,c € G, (a®b)©c=a0 (bOc)
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4. Inverse: Ya € G, Ab € G such that a © b =b® a = e where e is the identity element

Definition 6 An Abelian Group (G,®) is a group with the additional requirement that the group
operation is commutative. Formally Va,b € G it must hold that a ©b=0® a.

Proposition 1 Zy is a group where the group operation is addition modulo N (it is assumed that
this is the group operation unless stated otherwise).

Proposition 2 Z3; is a group where the group operation is multiplication modulo N (it is assumed
that this is the group operation unless stated otherwise).

Proof.

1. Closure: If a,b € Z} then we will show that (a-b) mod N € Zj,. Since both a and b are
relatively prime to IV, it must be the case that (a-b) is also relatively prime to N. Using the
identity that GCD(a-b, N) = GCD((a-b) mod N, N) we conclude that (a-b) mod N € Z%.

2. Identity: We claim that 1 is the identity element. We can confirm that for any x € Zj; that
l-x=xz-1=2 mod N

3. Associativity: Follows from the fact that multiplication modulo N is associative.

4. Inverses: Consider x € Z},. Since x and N are relatively prime, we can use EEA to find a ¢
such that xc =1 mod N. We now just need to prove that ¢ must also be relatively prime to
N which lets us conclude that (¢ mod N) € Z},.

Suppose it isn’t, then GCD(¢, N) = d > 1 which means that N = N’ -d and ¢ = ¢ - d where
d,N' eN.

l=2z-¢ modN

N N

:>7
d
N
:Em«c’d mod N
=N-z-¢ mod N
=0 mod N

=1=0 mod N

This is a contradiction since 1 < % < N.

Remark 4 In cryptography the group that is nearly always used is Zy;.

Definition 7 A generator g € G must be such that {g,¢% g%, ..} = G. Where forn €N, x € G,
"=x0r0. 0Ox
—_——

n times

Definition 8 The order of a group (G,®) is equal to |G|.

Theorem 7 If the order of a group G is n then Ya € G, a™ = e. (This is similar to Euler’s
Generalization but for an arbitrary group. It is actually a corollary of Lagrange’s Theorem.)
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6 Multiplicative Groups of Prime Order

We will now continue discussing and proving results about groups but with the focus of eventually
constructing a One-Way Function.

Definition 9 A Prime Order Group is a group where the order is a prime.

We will see later that the most important groups in cryptography are multiplicative groups
of prime order. Unfortunately the group (Z7,-) has order |Z;| = p — 1 so we will have to look
elsewhere.

Theorem 8 Constructing Multiplicative Groups of Prime Order: Let p be a prime such
that p = 2q + 1 where q is also a prime. The group G, = {x?:2 € Z;;} with multiplication modulo
P s a group of order p.

Definition 10 We will use Gy to denote a multiplicative group of order q where q is prime.

Remark 5 Primes that are of the form 2q + 1 where q is also a prime are called safe primes in
cryptography and are more generally known as Sophie-German primes.

Theorem 9 FEvery non-identity element of G, is a generator.

Proof. Suppose not. Then there exists a g € G4 such that ¢' =1 mod p for some 0 < i < q. Let
i be the smallest such exponent that satisfies that requirement.
By Theorem 7, we know that g2 =1 mod p. Consider the following the some k € N such that
ki < q:
g?=1 modp
= g7 M. g =1 modp
= g7* =1 mod p [since g™ = (¢")* =1F =1 mod p)
Now consider the largest such k € N such that k¢ < g. This means that 0 < q¢—ki <. If q—ki =0

then ¢ is a multiple of & which contradicts that ¢ is prime. If 0 < g — k7 since it is also less than 4
and g7 % =1 mod p, this contradicts that i was the smallest exponent for which that was true. W

7 Discrete Log Problem and Assumption

Definition 11 The Discrete Log Problem is defined for a group (G,®). Given g € G where g
is a generator for G and an x € G, return the exponent e € N where 0 < e < |G| where g¢ = x.
Then e is called the discrete log of © with respect to the generator g.

Assumption 1 Discrete Log Assumption (DLA): Given G, and a generator g € G, then for

every PPT A
$

Priz < Z;: A(9") = z] < v(logq)
(where v(-) is a negligble function)
Remark 6 The DLA is believed to be true only for certain multiplicative prime order groups as
there are attacks for primes of certain forms.
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8 Constructing a 1-1 One-Way Function

Theorem 10 Let f, : Z; — G4 be defined as follows: fq(x) = g*. This fy is a 1-1 One-Way
Function.

Proof. Claim 1: f, is a 1-1 function.

Consider x1,x2 € Z, such that x; # x2 (WLOG z1 > x2). It must be the case that fy(x1) = ¢g*' #
g"? = fg(x2) because g is a generator.

Suppose not. Then ¢g™' = ¢g*2 = ¢g*17%2 = 1. Since g is a generator, x1 — xs is either 0 or a multiple
of q. The first contradicts that x; and xo are not equal and the second contradicts that they were
taken from the set Z,.

Claim 2: fq4is a OWF.

Suppose not. There is a PPT A such that

$ 1
Pr(z < Z4, A(fg(x)) = 2" : f(2') = f(2)] > poly(log q)

Since we know that f; is 1-1, we can simplify this probability to:

S o ANl L
Priz < Z; : A(fy(z)) J 2 poly(log q)

Using the definition of f;, we get that that probability is equivalent to:

$ 1
Prlz <~ Z,: A(¢*) =2] > —————
| e Alg) =1l poly(log q)
The existence of this PPT A contradicts the DLA. [ ]

Remark 7 f, is not a One-Way Permutation because |Zy| # |Gq|.
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