1 Introduction

This lecture will go over the relevant background from number theory and hardness assumptions that will allow us to construct a One-Way-Function and eventually a One-Way-Permutation.

Preliminary Notation:

- \mathbb{N} = the set of natural numbers
- \mathbb{Z} = the set of integers
- \mathbb{R} = the set of real numbers

2 Modular Arithmetic

Definition 1 For any $N \in \mathbb{N}$, \mathbb{Z}_N denotes the integers from 0 to $N - 1$ (i.e. the integers mod N). Equivalently $\mathbb{Z}_N = \{x \in \mathbb{N} : 0 \leq x < N\}$.

For any $x \in \mathbb{N}$, the value of $x \mod N$ is r where r satisfies the following equation: $x \cdot \lfloor \frac{x}{N} \rfloor + r = N$. In other words, r is the remainder when you divide x by N.

We can do both addition and multiplication in the modular universe:

- Addition: $(a + b) \mod N = ((a \mod N) + (b \mod N)) \mod N$
- Multiplication: $(a \cdot b) \mod N = ((a \mod N) \cdot (b \mod N)) \mod N$

3 Greatest Common Divisor (GCD)

Definition 2 For $a, b \in \mathbb{Z}$, $GCD(a, b)$ is defined to be the greatest common divisor of a and b.

Remark 1 If $a, b \in \mathbb{Z}$ are relatively prime then $GCD(a, b) = 1$.

Theorem 1 For all $a, b \in \mathbb{N}$, there exist $x, y \in \mathbb{Z}$ such that $ax + by = GCD(a, b)$.

Proof. The Extended Euclidean Algorithm (EEA) shows how to compute x and y given a and b in poly-time.

Lemma 2 If $a, b \in \mathbb{N}$ are relatively prime with $a < b$, then $\exists c \in \mathbb{N}$ such that $a \cdot c = 1 \mod b$. In other words, c is the inverse of $a \mod b$.

11-1
Proof. (of Lemma 2) By EEA, we can compute $x, y \in \mathbb{Z}$ such that $ax + by = \text{GCD}(a, b)$. Since a and b are relatively prime, $\text{GCD}(a, b) = 1$.

\[
ax + by = 1 \\
\Rightarrow ax = 1 - by \\
\Rightarrow ax \mod b = (1 - by) \mod b \\
\Rightarrow ax = (1 \mod b) + (-by \mod b) \\
\Rightarrow ax = 1 \mod b
\]

Therefore, x is the inverse of $a \mod b$.

4 Euler’s Phi Function

Definition 3 For any $N \in \mathbb{N}$, \mathbb{Z}_N^* denotes the integers that are relatively prime to N and less than N. Equivalently $\mathbb{Z}_N^* = \{x \in \mathbb{N} : x < N \text{ and GCD}(x, N) = 1\}$.

Definition 4 Euler’s Phi Function (sometimes called Euler’s Totient Function) is defined as follows: $\phi(N) = |\mathbb{Z}_N^*|$

Examples:

- $\mathbb{Z}_4^* = \{1, 3\}$ and $\phi(4) = 2$
- $\mathbb{Z}_9^* = \{1, 2, 4, 5, 7, 8\}$ and $\phi(9) = 6$
- $\mathbb{Z}_{11}^* = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ and $\phi(11) = 10$
- for any prime p: $\mathbb{Z}_p^* = \{1, 2, ..., p\}$ and $\phi(p) = p - 1$

Theorem 3 Fundamental Theorem of Arithmetic: Every integer N can be represented as follows: $N = \prod p_i^{e_i}$ where $p_1 < p_2 < ... < p_k$, $\forall i. e_i > 0$ and p_i is prime. This representation is unique. $\prod p_i^{e_i}$ is called the prime factorization of N.

Lemma 4 For $N = \prod p_i^{e_i}$ where $p_1 < p_2 < ... < p_k$ and $\forall i. e_i > 0$ and p_i is prime.

\[
\phi(N) = N \cdot \prod_{i}(1 - \frac{1}{p_i})
\]

Proof. By the Fundamental Theorem of Arithmetic, we know that $N = \prod p_i^{e_i}$. we will prove this using the Inclusion/Exclusion Principle.

Let $A_i = \{x \in \mathbb{N} : 0 < x \leq N \text{ and } p_i \text{ divides } x\}$ for $1 \leq i \leq k$.

\[
\phi(N) = \left| \bigcap_{i=1}^{k} A_i \right| = N - \bigcup_{i=1}^{k} A_i
\]

\[1\bigcup A_i = \sum_{\emptyset \neq I \subseteq [n]} (-1)^{|I|+1} \left| \bigcap_{i \in I} A_i \right| \quad \text{(where } [n] = \{1, 2, ..., n\})\]
By the inclusion exclusion theorem:

\[
\phi(N) = N - \sum_{\emptyset \neq I \subseteq [k]} (-1)^{|I| + 1} |A_I| \quad \text{(where } A_I = \bigcap_{i \in I} A_i)\]

We know that the \(|A_I| = \prod_{i \in I} p_i\) since this is the amount of numbers between 1 and \(N\) that are divisible by all the \(p_i\) for \(i \in I\). This gives us:

\[
\phi(N) = N - \sum_{\emptyset \neq I \subseteq [k]} (-1)^{|I| + 1} \prod_{i \in I} p_i = N \left(1 - \sum_{\emptyset \neq I \subseteq [k]} (-1)^{|I| + 1} \prod_{i \in I} p_i\right) = N \prod_{i \in [k]} (1 - \frac{1}{p_i})
\]

The last equality is by the following identity and letting \(x_i = \frac{1}{p_i}:\)

\[
1 - \sum x_i + \sum x_ix_j - \sum x_ix_jx_k + \ldots + (-1)^n x_1x_2 \cdots x_n = \prod_{i=1}^n (1 - x_i)
\]

(Side Note: There are simpler proofs that use that \(\phi\) is multiplicative and that \(\phi(p^k) = p^k(1 - \frac{1}{p})\). One such proof can be found [here](#).

\[
\text{Remark 2 } \text{We can verify that } \phi(p) = p(1 - \frac{1}{p}) = p - 1.
\]

\[
\text{Remark 3 } \text{If } N = pq \text{ where } p, q \text{ are prime and } p \neq q \text{ then } \phi(N) = N\left(1 - \frac{1}{p}\right)\left(1 - \frac{1}{q}\right) = (p - 1)(q - 1). \\
\text{(We shall see later that this is used in RSA.)}
\]

\[
\text{Theorem 5 Fermat’s Little Theorem: If } p \text{ is prime, for any } a \in \mathbb{Z}_p^*, \\
a^{p-1} \mod p = 1
\]

\[
\text{Theorem 6 Euler’s Generalization: For any } N, \text{ for any } a \in \mathbb{Z}_N^*, \\
a^{\phi(N)} \mod N = 1
\]

5 Introduction to Groups

We have already seen some groups, namely \(\mathbb{Z}_N\) with addition mod \(N\) and \(\mathbb{Z}_N^*\) with multiplication mod \(N\), but now we will formally define what a group is. Later we will see that calculating certain things is assumed to be hard which we will take advantage of to construct a One-Way-Function.

\[
\text{Definition 5 A group consists of a set } G \text{ and a group operation } \odot : G \times G \to G \text{ and is formally referred to as } (G, \odot). \text{ It must satisfy the following properties:}
\]

1. Closure: \(\forall a, b \in G, \text{ if } c = a \odot b \text{ then } c \in G\)

2. Identity: there must exist an \(e \in G\) such that \(\forall a \in G, a \odot e = e \odot a = a\)

3. Associativity: \(\forall a, b, c \in G, (a \odot b) \odot c = a \odot (b \odot c)\)
Inverse: \(\forall a \in G, \exists b \in G \) such that \(a \odot b = b \odot a = e \) where \(e \) is the identity element.

Definition 6 An Abelian Group \((G, \odot)\) is a group with the additional requirement that the group operation is commutative. Formally \(\forall a, b \in G \) it must hold that \(a \odot b = b \odot a \).

Proposition 1 \(Z_N \) is a group where the group operation is addition modulo \(N \) (it is assumed that this is the group operation unless stated otherwise).

Proposition 2 \(Z^*_N \) is a group where the group operation is multiplication modulo \(N \) (it is assumed that this is the group operation unless stated otherwise).

Proof.

1. **Closure:** If \(a, b \in Z^*_N \) then we will show that \((a \cdot b) \mod N \in Z^*_N \). Since both \(a \) and \(b \) are relatively prime to \(N \), it must be the case that \((a \cdot b) \) is also relatively prime to \(N \). Using the identity that \(\text{GCD}(a \cdot b, N) = \text{GCD}((a \cdot b) \mod N, N) \) we conclude that \((a \cdot b) \mod N \in Z^*_N \).

2. **Identity:** We claim that \(1 \) is the identity element. We can confirm that for any \(x \in Z^*_N \) that \(1 \cdot x = x \cdot 1 = x \mod N \).

3. **Associativity:** Follows from the fact that multiplication modulo \(N \) is associative.

4. **Inverses:** Consider \(x \in Z^*_N \). Since \(x \) and \(N \) are relatively prime, we can use EEA to find a \(c \) such that \(x \cdot c = 1 \mod N \). We now just need to prove that \(c \) must also be relatively prime to \(N \) which lets us conclude that \((c \mod N) \in Z^*_N \).

Suppose it isn’t, then \(\text{GCD}(c, N) = d > 1 \) which means that \(N = N' \cdot d \) and \(c = c' \cdot d \) where \(c', N' \in \mathbb{N} \).

\[
1 = x \cdot c \mod N \\
\Rightarrow \frac{N}{d} = (x \cdot c) \cdot \frac{N}{d} \mod N \\
= \frac{N}{d} \cdot x \cdot c'd \mod N \\
= N \cdot x \cdot c' \mod N \\
= 0 \mod N \\
\Rightarrow 1 = 0 \mod N
\]

This is a contradiction since \(1 \leq \frac{N}{d} < N \).

Remark 4 In cryptography the group that is nearly always used is \(Z^*_N \).

Definition 7 A generator \(g \in G \) must be such that \(\{g, g^2, g^3, \ldots\} = G \). Where for \(n \in \mathbb{N}, x \in G \), \(x^n = x \odot x \odot \ldots \odot x \) \(n \) times.

Definition 8 The order of a group \((G, \odot)\) is equal to \(|G|\).

Theorem 7 If the order of a group \(G \) is \(n \) then \(\forall a \in G, a^n = e \). (This is similar to Euler’s Generalization but for an arbitrary group. It is actually a corollary of Lagrange’s Theorem.)
6 Multiplicative Groups of Prime Order

We will now continue discussing and proving results about groups but with the focus of eventually constructing a One-Way Function.

Definition 9 A **Prime Order Group** is a group where the order is a prime.

We will see later that the most important groups in cryptography are multiplicative groups of prime order. Unfortunately the group \((\mathbb{Z}_p^*, \cdot)\) has order \(|\mathbb{Z}_p^*| = p - 1\) so we will have to look elsewhere.

Theorem 8 Constructing Multiplicative Groups of Prime Order: Let \(p\) be a prime such that \(p = 2q + 1\) where \(q\) is also a prime. The group \(G_q = \{x^2 : x \in \mathbb{Z}_p^*\} \) with multiplication modulo \(p\) is a group of order \(p\).

Definition 10 We will use \(G_q\) to denote a multiplicative group of order \(q\) where \(q\) is prime.

Remark 5 Primes that are of the form \(2q + 1\) where \(q\) is also a prime are called **safe primes** in cryptography and are more generally known as Sophie-German primes.

Theorem 9 Every non-identity element of \(G_q\) is a generator.

Proof. Suppose not. Then there exists a \(g \in G_q\) such that \(g^i = 1 \mod p\) for some \(0 < i < q\). Let \(i\) be the smallest such exponent that satisfies that requirement.

By Theorem 7, we know that \(g^q = 1 \mod p\). Consider the following the some \(k \in \mathbb{N}\) such that \(ki \leq q\):

\[
g^q = 1 \mod p
\]

\[
\Rightarrow g^{q-ki} \cdot g^{ki} = 1 \mod p
\]

\[
\Rightarrow g^{q-ki} = 1 \mod p \quad \text{[since } g^{ki} = (g^i)^k = 1^k = 1 \mod p]\]

Now consider the largest such \(k \in \mathbb{N}\) such that \(ki \leq q\). This means that \(0 \leq q - ki < i\). If \(q - ki = 0\) then \(q\) is a multiple of \(k\) which contradicts that \(q\) is prime. If \(0 < q - ki\) since it is also less than \(i\) and \(g^{q-ki} = 1 \mod p\), this contradicts that \(i\) was the smallest exponent for which that was true. \(\blacksquare\)

7 Discrete Log Problem and Assumption

Definition 11 The **Discrete Log Problem** is defined for a group \((G, \circ)\). Given \(g \in G\) where \(g\) is a generator for \(G\) and \(x \in G\), return the exponent \(e \in \mathbb{N}\) where \(0 \leq e < |G|\) where \(g^e = x\). Then \(e\) is called the discrete log of \(x\) with respect to the generator \(g\).

Assumption 1 Discrete Log Assumption (DLA): Given \(G_q\) and a generator \(g \in G_q\), then for every PPT \(A\)

\[
\Pr[x \overset{\$}{\leftarrow} G_q : A(g^x) = x] \leq \nu(\log q)
\]

(where \(\nu(\cdot)\) is a negligible function)

Remark 6 The DLA is believed to be true only for certain multiplicative prime order groups as there are attacks for primes of certain forms.
Constructing a 1-1 One-Way Function

Theorem 10 Let $f_g : Z_q \rightarrow G_q$ be defined as follows: $f_g(x) = g^x$. This f_g is a 1-1 One-Way Function.

Proof.

Claim 1: f_g is a 1-1 function.

Consider $x_1, x_2 \in Z_q$ such that $x_1 \neq x_2$ (WLOG $x_1 > x_2$). It must be the case that $f_g(x_1) = g^{x_1} \neq g^{x_2} = f_g(x_2)$ because g is a generator.

Suppose not. Then $g^{x_1} = g^{x_2} \Rightarrow g^{x_1-x_2} = 1$. Since g is a generator, $x_1 - x_2$ is either 0 or a multiple of q. The first contradicts that x_1 and x_2 are not equal and the second contradicts that they were taken from the set Z_q.

Claim 2: f_g is a OWF.

Suppose not. There is a PPT A such that

$$\Pr[x \xleftarrow{\$} Z_q, A(f_g(x)) = x' : f(x') = f(x)] \geq \frac{1}{poly(\log q)}$$

Since we know that f_g is 1-1, we can simplify this probability to:

$$\Pr[x \xleftarrow{\$} Z_q : A(f_g(x)) = x] \geq \frac{1}{poly(\log q)}$$

Using the definition of f_g we get that that probability is equivalent to:

$$\Pr[x \xleftarrow{\$} Z_q : A(g^x) = x] \geq \frac{1}{poly(\log q)}$$

The existence of this PPT A contradicts the DLA.

Remark 7 f_g is not a One-Way Permutation because $|Z_q| \neq |G_q|$.

11-6