
Introduction to Cryptography February 20, 2018

Lecture 11: Number Theory

Instructor: Vipul Goyal Scribe: Ariela Immordino

1 Introduction

This lecture will go over the relevant background from number theory and hardness assumptions
that will allow us to construct a One-Way-Function and eventually a One-Way-Permutation.

Preliminary Notation:

• N = the set of natural numbers

• Z = the set of integers

• R = the set of real numbers

2 Modular Arithmetic

Definition 1 For any N ∈ N, ZN denotes the integers from 0 to N − 1 (i.e. the integers mod N).
Equivalently ZN = {x ∈ N : 0 ≤ x < N}.

For any x ∈ N, the value of x mod N is r where r satisfies the following equation: x · b xN c+r =
N . In other words, r is the remainder when you divide x by N .

We can do both addition and multiplication in the modular universe:

• Addition: (a+ b) mod N = ((a mod N) + (b mod N)) mod N

• Multiplication: (a · b) mod N = ((a mod N) · (b mod N)) mod N

3 Greatest Common Divisor (GCD)

Definition 2 For a, b ∈ Z, GCD(a, b) is defined to be the greatest common divisor of a and b.

Remark 1 If a, b ∈ Z are relatively prime then GCD(a, b) = 1.

Theorem 1 For all a, b ∈ N, there exist x, y ∈ Z such that ax+ by = GCD(a, b).

Proof. The Extended Euclidean Algorithm (EEA) shows how to compute x and y given a
and b in poly-time.

Lemma 2 If a, b ∈ N are relatively prime with a < b, then ∃c ∈ N such that a · c = 1 mod b. In
other words, c is the inverse of a mod b.
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Proof. (of Lemma 2) By EEA, we can compute x, y ∈ Z such that ax + by = GCD(a, b). Since
a and b are relatively prime, GCD(a, b) = 1.

ax+ by = 1

⇒ ax = 1− by
⇒ ax mod b = (1− by) mod b

⇒ ax = (1 mod b) + (−by mod b)

⇒ ax = 1 mod b

Therefore, x is the inverse of a mod b

4 Euler’s Phi Function

Definition 3 For any N ∈ N, Z∗N denotes the integers that are relatively prime to N and less than
N . Equivalently Z∗N = {x ∈ N : x < N and GCD(x,N) = 1}.

Definition 4 Euler’s Phi Function (sometimes called Euler’s Totient Function) is defined as
follows: φ(N) = |Z∗N |

Examples:

• Z∗4 = {1, 3} and φ(4) = 2

• Z∗9 = {1, 2, 4, 5, 7, 8} and φ(9) = 6

• Z∗11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and φ(11) = 10

• for any prime p: Z∗p = {1, 2, ..., p} and φ(p) = p− 1

Theorem 3 Fundamental Theorem of Arithmetic: Every integer N can be represented as
follows: N =

∏
i p
ei
i where p1 < p2 < ... < pk, ∀i.ei > 0 and pi is prime. This representation is

unique.
∏
i p
ei
i is called the prime factorization of N .

Lemma 4 For N =
∏
i p
ei
i where p1 < p2 < ... < pk and ∀i.ei > 0 and pi is prime.

φ(N) = N ·
∏
i

(1− 1

pi
)

Proof. By the Fundamental Theorem of Arithmetic, we know that N =
∏k
i p

ei
i . we will prove

this using the Inclusion/Exclusion Principle1:
Let Ai = {x ∈ N : 0 < x ≤ N and pi divides x} for 1 ≤ i ≤ k.

φ(N) = |
k⋂
i=1

Āi| = N − |
k⋃
i=1

Ai|

1|
⋃n

i Ai| =
∑
∅6=I⊆[n](−1)

|I|+1|
⋂

i∈I Ai| (where [n] = {1, 2, ..., n})
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By the inclusion exclusion theorem:

φ(N) = N −
∑
∅6=I⊆[k]

(−1)|I|+1|AI | (where AI =
⋂
i∈I

Ai)

We know that the |AI | = N∏
i∈I pi

since this is the amount of numbers between 1 and N that are

divisible by all the pi for i ∈ I. This gives us:

φ(N) = N −
∑
∅6=I⊆[k]

(−1)|I|+1 N∏
i∈I pi

= N(1−
∑
∅6=I⊆[k]

(−1)|I|+1 1∏
i∈I pi

) = N
∏
i∈[k]

(1− 1

pi
)

The last equality is by the following identity and letting xi = 1
pi

:

1−
∑

xi +
∑

xixj −
∑

xixjxk + ...+ (−1)nx1x2 · · · xn =
n∏
i=1

(1− xi)

(Side Note: There are simpler proofs that use that φ is multiplicative and that φ(pk) = pk(1− 1
p).

One such proof can be found here.)

Remark 2 We can verify that φ(p) = p(1− 1
p) = p− 1.

Remark 3 If N = pq where p, q are prime and p 6= q then φ(N) = N(1− 1
p)(1− 1

q ) = (p−1)(q−1).
(We shall see later that this is used in RSA.)

Theorem 5 Fermat’s Little Theorem: If p is prime, for any a ∈ Z∗p ,

ap−1 mod p = 1

Theorem 6 Euler’s Generalization: For any N , for any a ∈ Z∗N ,

aφ(N) mod N = 1

5 Introduction to Groups

We have already seen some groups, namely ZN with addition mod N and Z∗N with multiplication
mod N , but now we will formally define what a group is. Later we will see that calculating certain
things is assumed to be hard which we will take advantage of to construct a One-Way-Function.

Definition 5 A group consists of a set G and a group operation � : G×G→ G and is formally
referred to as (G,�). It must satisfy the following properties:

1. Closure: ∀a, b ∈ G, if c = a� b then c ∈ G

2. Identity: there must exist an e ∈ G such that ∀a ∈ G, a� e = e� a = a

3. Associativity: ∀a, b, c ∈ G, (a� b)� c = a� (b� c)
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4. Inverse: ∀a ∈ G, ∃b ∈ G such that a� b = b� a = e where e is the identity element

Definition 6 An Abelian Group (G,�) is a group with the additional requirement that the group
operation is commutative. Formally ∀a, b ∈ G it must hold that a� b = b� a.

Proposition 1 ZN is a group where the group operation is addition modulo N (it is assumed that
this is the group operation unless stated otherwise).

Proposition 2 Z∗N is a group where the group operation is multiplication modulo N (it is assumed
that this is the group operation unless stated otherwise).

Proof.

1. Closure: If a, b ∈ Z∗N then we will show that (a · b) mod N ∈ Z∗N . Since both a and b are
relatively prime to N , it must be the case that (a · b) is also relatively prime to N . Using the
identity that GCD(a ·b,N) = GCD((a ·b) mod N,N) we conclude that (a ·b) mod N ∈ Z∗N .

2. Identity: We claim that 1 is the identity element. We can confirm that for any x ∈ Z∗N that
1 · x = x · 1 = x mod N

3. Associativity: Follows from the fact that multiplication modulo N is associative.

4. Inverses: Consider x ∈ Z∗N . Since x and N are relatively prime, we can use EEA to find a c
such that xc = 1 mod N . We now just need to prove that c must also be relatively prime to
N which lets us conclude that (c mod N) ∈ Z∗N .

Suppose it isn’t, then GCD(c,N) = d > 1 which means that N = N ′ · d and c = c′ · d where
c′, N ′ ∈ N.

1 = x · c mod N

⇒ N

d
= (x · c) · N

d
mod N

=
N

d
· x · c′d mod N

= N · x · c′ mod N

= 0 mod N

⇒ 1 = 0 mod N

This is a contradiction since 1 ≤ N
d < N .

Remark 4 In cryptography the group that is nearly always used is Z∗N .

Definition 7 A generator g ∈ G must be such that {g, g2, g3, ...} = G. Where for n ∈ N, x ∈ G,
xn = x� x� ..� x︸ ︷︷ ︸

n times

Definition 8 The order of a group (G,�) is equal to |G|.

Theorem 7 If the order of a group G is n then ∀a ∈ G, an = e. (This is similar to Euler’s
Generalization but for an arbitrary group. It is actually a corollary of Lagrange’s Theorem.)
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6 Multiplicative Groups of Prime Order

We will now continue discussing and proving results about groups but with the focus of eventually
constructing a One-Way Function.

Definition 9 A Prime Order Group is a group where the order is a prime.

We will see later that the most important groups in cryptography are multiplicative groups
of prime order. Unfortunately the group (Z∗p , ·) has order |Z∗p | = p − 1 so we will have to look
elsewhere.

Theorem 8 Constructing Multiplicative Groups of Prime Order: Let p be a prime such
that p = 2q + 1 where q is also a prime. The group Gq = {x2 : x ∈ Z∗p} with multiplication modulo
p is a group of order p.

Definition 10 We will use Gq to denote a multiplicative group of order q where q is prime.

Remark 5 Primes that are of the form 2q + 1 where q is also a prime are called safe primes in
cryptography and are more generally known as Sophie-German primes.

Theorem 9 Every non-identity element of Gq is a generator.

Proof. Suppose not. Then there exists a g ∈ Gq such that gi = 1 mod p for some 0 < i < q. Let
i be the smallest such exponent that satisfies that requirement.

By Theorem 7, we know that gq = 1 mod p. Consider the following the some k ∈ N such that
ki ≤ q:

gq = 1 mod p

⇒ gq−ki · gki = 1 mod p

⇒ gq−ki = 1 mod p [since gki = (gi)k = 1k = 1 mod p]

Now consider the largest such k ∈ N such that ki ≤ q. This means that 0 ≤ q−ki < i. If q−ki = 0
then q is a multiple of k which contradicts that q is prime. If 0 < q − ki since it is also less than i
and gq−ki = 1 mod p, this contradicts that i was the smallest exponent for which that was true.

7 Discrete Log Problem and Assumption

Definition 11 The Discrete Log Problem is defined for a group (G,�). Given g ∈ G where g
is a generator for G and an x ∈ G, return the exponent e ∈ N where 0 ≤ e < |G| where ge = x.
Then e is called the discrete log of x with respect to the generator g.

Assumption 1 Discrete Log Assumption (DLA): Given Gq and a generator g ∈ Gq, then for
every PPT A

Pr[x
$←− Zq : A(gx) = x] ≤ ν(log q)

(where ν(·) is a negligble function)

Remark 6 The DLA is believed to be true only for certain multiplicative prime order groups as
there are attacks for primes of certain forms.
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8 Constructing a 1-1 One-Way Function

Theorem 10 Let fg : Zq → Gq be defined as follows: fg(x) = gx. This fg is a 1-1 One-Way
Function.

Proof. Claim 1: fg is a 1-1 function.
Consider x1, x2 ∈ Zq such that x1 6= x2 (WLOG x1 > x2). It must be the case that fg(x1) = gx1 6=
gx2 = fg(x2) because g is a generator.
Suppose not. Then gx1 = gx2 ⇒ gx1−x2 = 1. Since g is a generator, x1−x2 is either 0 or a multiple
of q. The first contradicts that x1 and x2 are not equal and the second contradicts that they were
taken from the set Zq.
Claim 2: fg is a OWF.
Suppose not. There is a PPT A such that

Pr[x
$←− Zq, A(fg(x)) = x′ : f(x′) = f(x)] ≥ 1

poly(log q)

Since we know that fg is 1-1, we can simplify this probability to:

Pr[x
$←− Zq : A(fg(x)) = x] ≥ 1

poly(log q)

Using the definition of fg we get that that probability is equivalent to:

Pr[x
$←− Zq : A(gx) = x] ≥ 1

poly(log q)

The existence of this PPT A contradicts the DLA.

Remark 7 fg is not a One-Way Permutation because |Zq| 6= |Gq|.
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