

Intra-lingual and Cross-lingual Prosody Modelling

PhD Thesis Defense

Gopala Krishna Anumanchipalli

Thesis Committee

Alan W Black, LTI (Chair) Mário Figueiredo, IST Luís C. Oliveira, IST (Chair) Bhiksha Raj, LTI

Justine Cassell, HCII Isabel Trancoso, IST

Paul Taylor, Google

July 31, 2013 1 / 90

Thesis Statement Intonation Modelling Voice Conversion Intent Transfe

Speech Translation: PT-STAR*

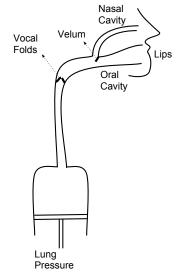
- Aim: Automatic Speech Translation for English ↔ Portuguese
 - $\bullet \ \, \mathsf{Speech} \,\, \mathsf{Recognition} \, \to \mathsf{Language} \,\, \mathsf{Translation} \, \to \mathsf{Speech} \,\, \mathsf{Synthesis} \\$
- "Complete" translation of speech input in source language
 - Speaker Identity
 - Sentence Translation
 - Speaker Intent
- This work : Text-to-Speech Synthesis

^{*}Funded by the Fundação para a Ciência e a Tecnologia (FCT), Portugal

Text-to-Speech Synthesis

- Aim: Make computers synthesize speech output from text input
- Desirables
 - Intelligibility
 - Naturalness
 - Flexibility
 - Similarity to a target speaker
 - Robustness

Units of Human Speech



Vowels: uw iy aa ay oy ow Consonants: k g ch jh t . . .

Phonemes:

Eg.: /m ae s ah ch y uw s eh t s/

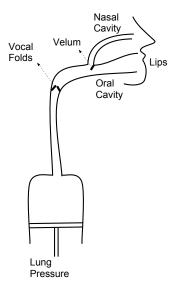
Syllables:

Eg.: /Ma/ /ssa/ /chu/ /setts/

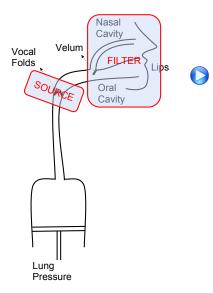
Words:

Eg.: Massachusetts

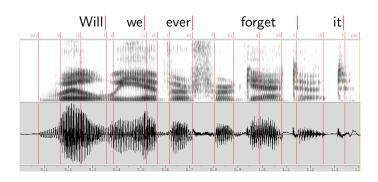
Human Speech Production



Source-Filter Model of Speech

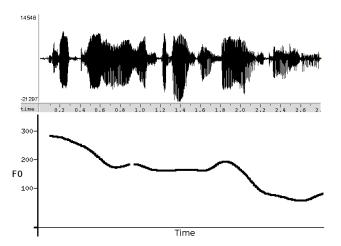


Filter: Spectrum

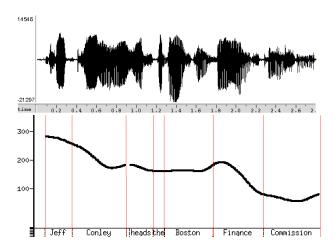


- High density of information (5-10 millisecond frames of speech)
- Contributes to Phonetic discriminability between phonemes

Source: Fundamental Frequency



Source: Intonation



Intonation

- The fundamental frequency of vibration of vocal folds
- Systematically conveys the underlying linguistic information
 - Adds Expression, Emotional state, Attitude, Style . . .
- Aspects of intonation
 - Average pitch
 - Pitch range
 - Pitch accents
 - Phrase boundaries

Thesis Statement Intonation Modelling Voice Conversion Intent Transfe

Statistical Parametric Speech Synthesis (SPSS) The state public Health Dept... Waveform synthesis **Text Analysis** F0 Spectral Lexical lookup Prediction Prediction Postlexical Rules Duration Phrasing

Figure: Runtime architecture: Statistical Parametric Speech Synthesis (SPSS)

CART models in SPSS

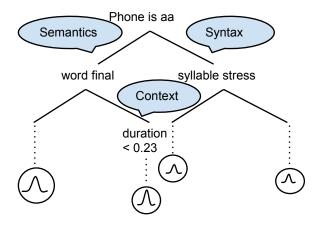


Figure: Decision trees for frame-level statistics of F₀, Spectra, Duration

Evaluating Synthetic F₀

Average Pitch (μ)

$$F_0^{\mu} = \frac{1}{n} \sum_{i=1}^n F_0(i)$$

• Pitch range (σ)

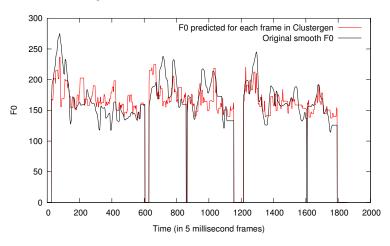
$$F_0^{\sigma} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (F_0(i) - F_0^{\mu})^2}$$

• Correlation against reference

$$r(F_{0X}, F_{0Y}) = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{F_{0X}(i) - F_{0X}^{\mu}}{F_{0X}^{\sigma}} \right) \left(\frac{F_{0Y}(i) - F_{0Y}^{\mu}}{F_{0Y}^{\sigma}} \right)$$

• Perceptual evaluation by humans is the most reliable measure

Synthetic F₀ Vs. Natural F₀



 $F_0^\mu \qquad F_0^\sigma$ Natural F₀ 167.852 30.276 r=0.49 Synthetic F₀ 168.673 18.549

Thesis Statement Intonation Modelling Voice Conversion Intent Transfe

Issues with synthetic F0 in SPSS

- Model not capturing the intonation phenomenon
- Features not discriminative enough to explain F₀ variance
- Text→F0 relationship ill-modelled at the frame level
 - Loss of Naturalness
 - Loss of Expression
 - Loss of Variance

It is possible to computationally model intonation, through —

A statistical framework for expressive modelling

- A statistical framework for expressive modelling
- Conversion between speakers within a language

- A statistical framework for expressive modelling
- Conversion between speakers within a language
- Cross-lingual transfer for improving speech translation

- A statistical framework for expressive modelling
- Conversion between speakers within a language
- Cross-lingual transfer for improving speech translation
- Conformity with existing theoritical frameworks of intonation

Contributions of this Thesis

- A Phonologically sound modelling unit for F₀ in SPSS (Anumanchipalli '13a, Sitaram '13)
- A Multi-tier architechture for F₀ synthesis (Anumanchipalli '11)
- Style-aware F₀ transformation in voice conversion (Anumanchipalli '13b)
- Intent transfer in speech translation (Anumanchipalli '12b)

Intonation Modelling

Paradigms in Intonation

Several theories are proposed previously to explain Intonation

- Physiological (Fujisaki '83, van Santen '05, Bailly and Holm '05 ...)
- Phonological (Liberman '77, Pierrehumbert '80, Silverman '92 ...)
- Stylization ('t Hart and Collier '73, Hirst '93, Taylor '00 ...)

1. Physiological Fujisaki Model

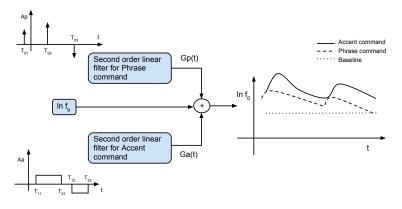


Figure: Fujisaki model — In (F_0) as a superposition of the baseline, phrase and accents.

Fujisaki Model Summary

- Physiologically motivated
- Strict assumptions on phrase and accent shapes
- Postulates additive Global and Local components
 - Potential to better explain variance √

2. Phonological Tone Sequence -ToBI

F₀ as a finite number of **To**nes and **B**reak Indices (Silverman '92)

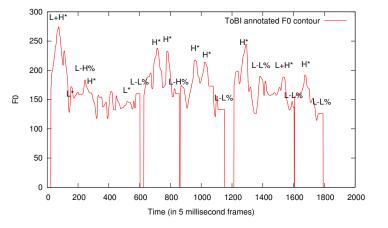


Figure: A natural F₀ contour annotated with ToBI labels

Tone Sequence Model Summary

- Sequential tonal structure
- Distinction between Pitch Accent and stress
- · Qualitative description
- Postulates limited number of descriptive shapes
 - Suitable to cluster in SPSS √

3. Stylization: TILT model of Intonation

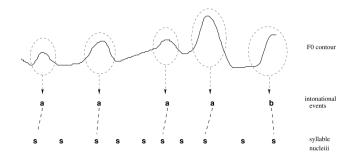


Figure: F₀ contour as a sequence of Intonational Events (Taylor '00)

Tilt Analysis of F₀

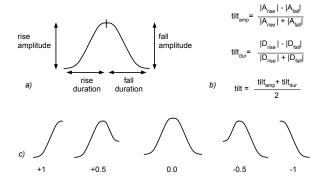


Figure: a) Analyzing each intonational event using its rise/fall values. b) three parameters to code any arbitrary rise/fall event c) Examples of 5 pitch accents with the continuous tilt value ranging from -1 to +1

TILT Model Summary

- Realize the F₀ curve as a series of **syllable-level** shapes
- Associate the event with its syllable
- Quantify each Pitch Accent in terms of Tilt
- ullet A structured representation, that can be learned from data \checkmark

Where is the Pitch Accent?

Which phonological level to anchor accent shapes to ?

- Phrase
- Word
- Syllable
- Phoneme

Distribution of Phonological units

Table: Distribution of phonological units in 1 hour of Radio news speech

Unit	Number of instances	
Sentence	464	
Phrase	1052	
Word	9214	
Syllable	14717	
Phoneme	38523	
Phoneme state	115569	
Frame	592830	

- Heavily skewed towards shorter units
- Higher questions are overwhlemed by lower positional features

Comparing F₀ Models at different levels of phonology

- Models built with comparable, appropriate question sets
- All other parts of the TTS remain the same

Table: Objective comparison of original and synthesized for F_0

Modeling unit	F_0	
	Mean	Std/dev
Original	167.85	30.28
Frame Predicted	168.67	18.55
Syllable Predicted	175.25	16.48
Word Predicted	177.00	18.95

Objective Comparison: RMSE & Correlation

Table: Objective comparison of predicted F_0 contours against references

Modeling unit	Predicted F ₀	
	RMSE	CORR
Frame	28.02	0.49
Syllable	30.33	0.40
Word	30.34	0.44

Qualitative Analysis: Frame Predicted F₀ contour

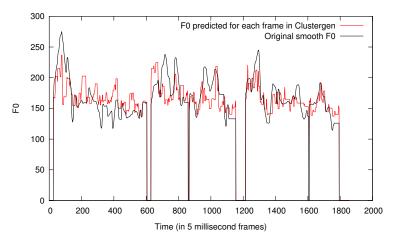


Figure: Prediction of F₀ at the frame level. Naturalness lost.

Qualitative Analysis: Syllable Predicted F₀ contour

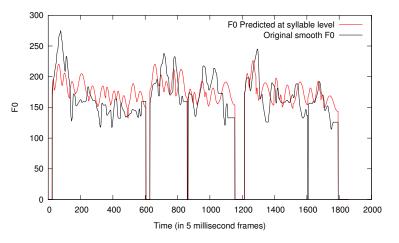


Figure: Prediction of F₀ at the Syllable level. Too many peaks.

Qualitative Analysis: Word Predicted F₀ contour

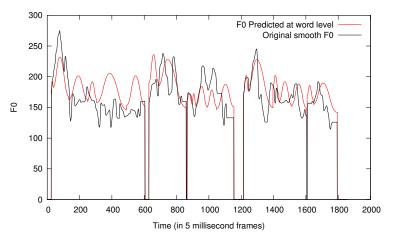
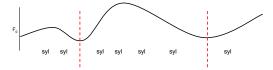


Figure: Prediction of F₀ at the Word level. Too few peaks.

nesis Statement Intonation Modelling Voice Conversion Intent Transfer

Proposal: Accent Groups (Anumanchipalli et al., '13a)

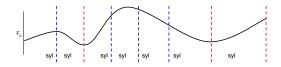


Groups of syllables which have only one accent on them

- May be spread across words
- May consist of only one syllable
- Bounded by intermediate phrase boundaries
- End in prosodic phrase boundaries
- Task/ speaker/ language/ dialect dependent

esis Statement Intonation Modelling Voice Conversion Intent Transfer

Accent Group Discovery from Speech



- A one-pass reconstruction strategy linear in #Syllables
- Parametrize each syllable under a Tilt Parametrization
- Group syllables together reconstruction error gain
- Parametrize each such Accent Group and Reconstruct F₀

hesis Statement Intonation Modelling Voice Conversion Intent Transfe

Accent Group Discovery from Speech

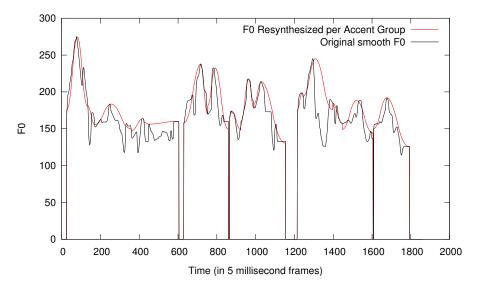


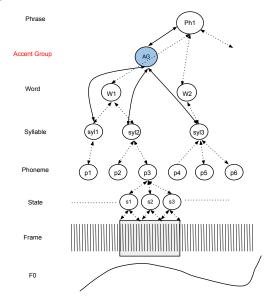
Figure: Resynthesized F₀ for automatically detected Accent Groups

Accent Groups against other phonological units

Table: Accent Groups against other phonological units

Unit	Number of instances
Sentence	464
Phrase	1052
Accent Group	7751
Word	9214
Syllable	14717
Phoneme	38523

Integration with Festival Prosodic Structure



nesis Statement Intonation Modelling Voice Conversion Intent Transfe

Prediction of Accent Groups and F₀ from Text

- Train Grammars of Accent Group parses in training data
- Predictive models using grammatical and linguistic context
- Decision at each syllable if an Accent Group boundary follows
- Predict pitch accent shape for each Accent Group
 - Question set of 83 (richer semantic features selected in CART)

hesis Statement Intonation Modelling Voice Conversion Intent Transfe

F₀ Prediction with Accent Groups

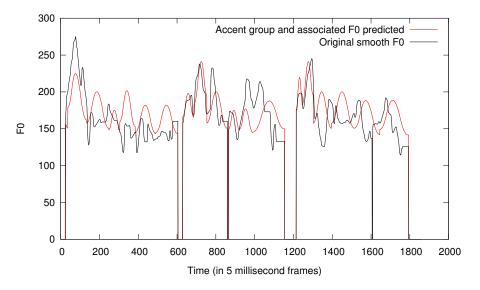
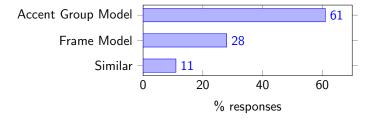


Figure: Predicted F₀ for predicted Accent Groups

nesis Statement Intonation Modelling Voice Conversion Intent Transfe

Subjective Judgment[†]: Frame Vs. Accent Group

Compared against SPSS at Frame level without SPAM



[†]50 native listeners on the Amazon Mechanical Turk

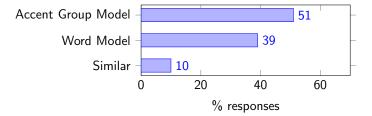
nesis Statement Intonation Modelling Voice Conversion Intent Transfe

Subjective Judgment[‡]: Syllable Vs. Accent Group



[‡]50 native listeners on the Amazon Mechanical Turk

Subjective Judgment[§]: Word Vs. Accent Group



^{§50} native listeners on the Amazon Mechanical Turk

Improved Variance

Table: Comparing Accent Group against other units for synthetic F_0

Modeling unit	F ₀		
	Mean	Standard Deviation	
Original	167.85	30.28	
Frame Predicted	168.67	18.55	
Syllable Predicted	175.25	16.48	
Accent Group	173.08	21.24	
Word Predicted	177.00	18.95	

Objective comparison over tasks and modeling units

	SLT ((read)	F2B ((news) TATS (audiobe		(audiobook)
Unit	err	corr	err	corr	err	corr
Frame	10.97	0.62	37.22	0.38	29.95	0.08
Syllable	12.15	0.47	37.05	0.23	25.28	0.07
Word	12.65	0.46	36.30	0.33	25.80	0.08
Accent	13.13	0.43	35.79	0.33	25.96	0.06
Group						
Accent	11.49	0.51	35.50	0.34	24.91	0.09
Group						
Oracle						

- Read isolated sentences are more predictable than Multi-paragraphs
- Higher phonological units better suited to model expressive F₀
- Given the ideal grouping, Accent groups are the **optimal** unit

Can we do better?

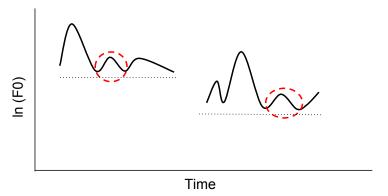


Figure: Equivalent pitch accents from two different phrases. Wrong to Average!

A Multi-tier Additive Model

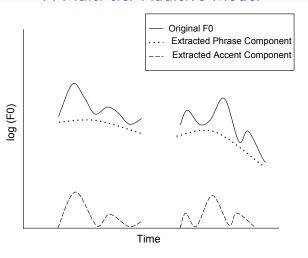


Figure: The notion of a 2-tier architectture for F_0 production.

nesis Statement Intonation Modelling Voice Conversion Intent Transfe

SPAM: Statistical Phrase/Accent Model (Anumanchipalli et al., '11)

Iterative decomposition and model training

- Initialize Phrase as minimum over each Accent Group
- Parametrize residual as Tilt Accents
- Apply constraints on models for prediction from long/short features
- Reestimate contour and adjust phrase with resynthesis error
- Iterative improvement of Phrase/Accent component Models

RMSE across Training iterations

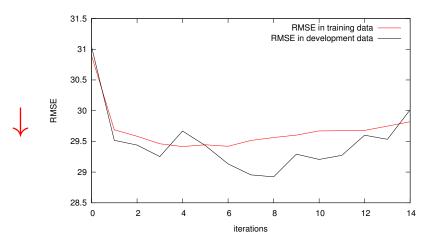


Figure: RMSE on Training and Development sets over iterations

RMSE across Training iterations

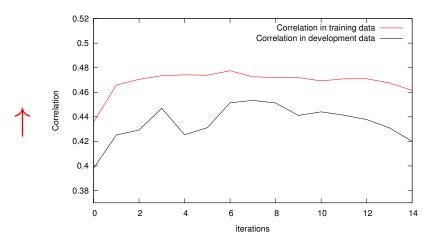


Figure: Correlation on Training and Development sets over iterations

Does SPAM gain from more data?

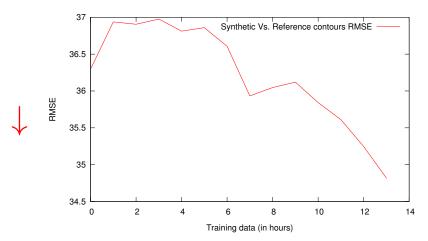


Figure: RMSE of test set with increasing amounts of training data

Does SPAM gain from more data?

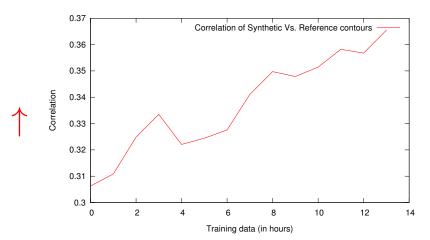


Figure: Correlation on test set using increasing amounts of training data

Models from best iterations

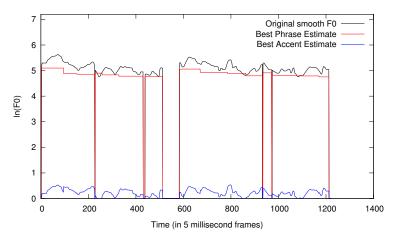


Figure: Best component splits after training

Prediction with SPAM F₀ model

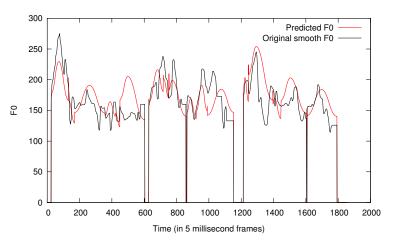


Figure: Prediction of F₀ on an unseen sentence

Objective Comparisons

Table: Comparing SPAM against other Modeling units for synthetic F_0

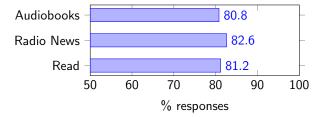
Modeling unit	F ₀		
	Mean	Standard Deviation	
Original	167.85	30.276	
Frame Predicted	168.67	18.55	
Syllable Predicted	175.25	16.484	
Word Predicted	177.00	18.95	
Accent Group	173.08	21.24	
Multi-tier Accent Group	168.77	26.41	

Table: Objective comparison of synthetic F_0

Model	RMSE	CORR
Multi-tier Accent Group	32.06	0.40
Accent Group Oracle	28.96	0.45

esis Statement Intonation Modelling Voice Conversion Intent Transfi

Subjective Preference to SPAM¶



^{¶12} Native listeners

Examples Before & After SPAM

Several wealthy and benevolent individuals in the county subscribed	
largely for the erection of a more convenient building in a better situation.	
Lastly, I saw Mr. Mason was submissive to Mr. Rochester	
O Tágide, perto da Escola de Belas Artes, passo uma vista de	
olhos pela montra da Livraria Sá da Costa, pouco à frente da secular Bertrand.	
Dirigido a todas as geracões, o Licor Beirão continua presente nas festas portuguesas.	

Summary

- · Accent Groups are optimal for modeling Pitch Accents
- A Multi-tier Phonological model for generation of F₀
- A computational framework for training/synthesis using SPAM
- Preserve expression natural variance
- Minimal Task/Language dependence

Future Directions

- Extensions to include microprosody
- Explicitly downgrading certain Accent Groups to connections
- Automatic speaker/dialect characterization
- Other Parametrizations for representing Pitch Accents
- Other Machine Learning models for F₀ modelling

Voice Conversion

Voice Conversion

- Goal: Transform a speaker's speech to sound like a target speaker
- Speaker characteristics
 - Spectrum
 - Speaking Style
 - Voice quality

Speaking style

Professional impersonators capture aspects of speaking style [Zetterholm, 2006]

- Rhythm
- Intonation
- Stress patterns across words and phrases

The biggest challenge at this stage for voice conversion algorithms is the control (modeling, mapping and modification) of the speaking style of a speaker [Stylianou, 09].

Conventional Intonation Transformation

- Obtain parallel data from the source and target speakers
- Convert source speaker's F0 mean and range to match target

$$F0_{(t)}^{tgt} = rac{\sigma^{tgt}}{\sigma^{src}} \left(F0_{(t)}^{src} - \mu^{src}
ight) + \mu^{tgt}$$

Eqn 1: Z-score transformation approach for F0 conversion

Illustration: American Female→American Male

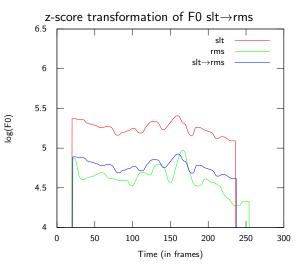
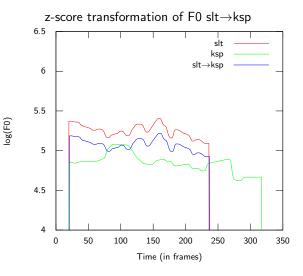


Illustration: American Female→Indian Male



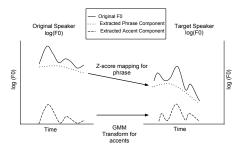
esis Statement Intonation Modelling Voice Conversion Intent Transfer

Issues with z-score F0 transformation

- Z-score transformation technique converts F0 per each frame (5-10 milliseconds)
- It cannot capture
 - Position of the pitch accents
 - Shape of the pitch accents
 - Utterance specific artefacts
- Doesn't efficiently use the parallel data!

nesis Statement Intonation Modelling Voice Conversion Intent Transfe

Mapping of Pitch Accents (Anumanchipalli et al., '13b)



- Use SPAM to decompose F₀ contours respective phrase and accent components
- Train Joint density GMMs (Toda '06) of F₀ over Accent Groups
- Compute z-score parameters for transforming phrases
- At test time, apply a z-score transform on phrases and GMM Joint Density Estimation over accent shapes

Style Capturing Intonation Transformation

• Transform phonological regions (Accent Groups) rather than frames

- Transform phonological regions (Accent Groups) rather than frames
- Simulating parallel speech data from the two speakers

- Transform phonological regions (Accent Groups) rather than frames
- Simulating parallel speech data from the two speakers
 - Detect Accent Groups in source speaker's speech

- Transform phonological regions (Accent Groups) rather than frames
- Simulating parallel speech data from the two speakers
 - Detect Accent Groups in source speaker's speech
 - \bullet 'Force align' source speaker's Accent Groups on target speaker's F_0

- Transform phonological regions (Accent Groups) rather than frames
- Simulating parallel speech data from the two speakers
 - Detect Accent Groups in source speaker's speech
 - \bullet 'Force align' source speaker's Accent Groups on target speaker's F_0
 - Parameterize accent shapes within each Accent Group

- Transform phonological regions (Accent Groups) rather than frames
- Simulating parallel speech data from the two speakers
 - Detect Accent Groups in source speaker's speech
 - \bullet 'Force align' source speaker's Accent Groups on target speaker's F_0
 - Parameterize accent shapes within each Accent Group
 - Train source→target pitch accent mapping function

- Transform phonological regions (Accent Groups) rather than frames
- Simulating parallel speech data from the two speakers
 - Detect Accent Groups in source speaker's speech
 - \bullet 'Force align' source speaker's Accent Groups on target speaker's F_0
 - Parameterize accent shapes within each Accent Group
 - Train source→target pitch accent mapping function
- Apply mapping function on each pitch accent of the source speaker to predict target speaker's pitch accent

Joint density Modeling of Parallel Pitch Accents

- Joint vectors of source-target Pitch Accents $z_t = \begin{bmatrix} x_t' \\ y_t' \end{bmatrix}$
- Modelled as mixture of M Gaussians

$$P(z_t|\lambda^{(z)}) = \sum_{m=1}^{M} w_m \mathcal{N}(z_t; \mu_m^{(z)}, \Sigma_m^{(z)})$$

• The covariance matrix $\Sigma_m^{(z)} = \begin{bmatrix} \Sigma_m^{(xx)} & \Sigma_m^{(xy)} \\ \Sigma_m^{(yx)} & \Sigma_m^{(yy)} \end{bmatrix}$

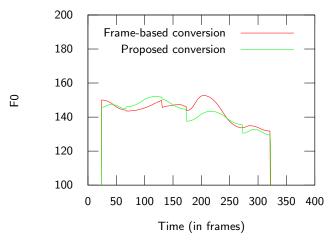
Estimating the Target Pitch Accent

• Predict most likely y_t , given $\lambda^{(z)}$ and an unseen x_t

$$\hat{y_t} = \sum_{i=1}^{M} p(m_i|x(t), \lambda^{(z)}) E(y_t|x_t, m_i, \lambda^{(z)}),
E(y_t|x_t, m_i, \lambda^{(z)}) = \mu_i^{(y)} + \sum_i^{(yx)} \sum_i^{(xx)^{-1}} (x_t - \mu_i^{(x)}),
p(m_i|x(t), \lambda^{(z)}) = \frac{w_i \mathcal{N}(x_t; \mu^i, \sum_i^{(xx)})}{\sum_{j=1}^{M} w_j \mathcal{N}(x_t; \mu_j^{(x)}, \sum_j (xx))}$$

Movement of the H*

• Tested on several speaker pairs from Arctic databases



An illustration of slt→ksp F0 conversion

Objective Comparisons

Speaker	Z-score transform		2-stage conversion	
pair	RMSE	CORR	RMSE	CORR
bdl-slt	0.49	0.38	0.47	0.52
bdl-ksp	0.26	0.45	0.29	0.53
bdl-awb	0.31	0.53	0.31	0.65
bdl-rms	0.59	0.46	0.42	0.41
ksp-bdl	0.32	0.56	0.31	0.56
ksp-slt	0.47	0.42	0.44	0.51
ksp-rms	0.49	0.34	0.70	0.51
ksp-awb	0.33	0.56	0.30	0.63
rms-bdl	0.22	0.57	0.23	0.59
rms-slt	0.63	0.25	0.44	0.49
slt-bdl	0.64	0.47	0.35	0.50
slt-rms	0.92	0.53	0.48	0.31

Summary

- The approach moves the H* as appropriate to a target speaker
- Complete conversion needs transforming all aspects of Prosody
- These include phrasing, duration and Accent Grouping

Speech Translation

Speech-to-Speech Machine Translation

Goal:Convert speech input to speech output in another language Traditional Serial Approach:

- Recognize source speech (ASR)
- Translate ASR hypothesis to target language (SMT)
- Synthesize translated sentence in target language (TTS)

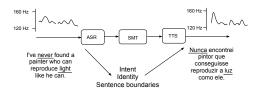
Issues in Serial Speech Translation

- A cascade of errors through the pipeline
 - Better integration needed (Mangu '07, Wolfel '08)
- Loss of information from the source side
 - ASR ignores source prosody, an essential part of speech
 Need for tighter integration

Previous work

- Integration of ASR–SMT
 - Selection from multiple hypotheses
 - Translation of lattices
 - Al-Onaizan et al, '07, Wolfel et al, '08, Nöth '00
- Integration of SMT–TTS
 - Selection of translations optimal for synthesis
 - Adell et al., '12, Parlikar et al., '10
- Integration of ASR-TTS
 - Aguero et al, '06, Kurimo et al, '10

Our Goal



- Apply Intonation models and transformations to improve S2SMT (Motivated by Pisoni et al., '08)
- Impose source speaker characteristics on target side
 - Prominence patterns
 - Overall speaking style
 - Speaker identity

Parallel Speech Corpora

- A parallel speech corpus in English and Portuguese
- Airline magazine corpus TAP-UP used to select paragraphs to record
- A speaker fluent in both languages is recorded for both languages

Data statistics

Table: Statistics of the EN-PT Parallel speech corpora

	English	Portuguese
#Paragraphs	89	89
#Sentences	420	420
#Tokens	8184	8211
#Words	2934	3283
#Tokens/sentence	19.48	19.55
Duration(mins)	60.36	59.47

EMIME Parallel Speech Database

Table: The EMIME English-German parallel speech corpus

Language	English	German
Speaker ID	GM1	GM1
#Paragraphs	_	_
#Sentences	145	145
#Tokens	1301	1198
#Words	763	697
#Tokens/Sentence	8.97	8.26
Duration(in mins)	11.68	11.87

Manual analysis of Focus

 75 sentences (10 mins) from the PT-EN corpus are manually annotated for Focus

Table: Results of manual annotation of focus in parallel speech

	Total	focussed	non-focussed	#focussed/
Language	#words	words	words	sentence
English	1569	298	1271	3.97
Portuguese	1585	285	1300	3.8

Manual Analysis ... contd

- 1100 word pairs aligned by GIZA++
 - 336 English words marked focussed
 - 303 English words marked focussed
- 48% word pairs have focus on both languages
- Comparable to inter listener disagreement within same language (Mo., '08)

Intent transfer in S2SMT (Anumanchipalli et al., 12)

- Transforming Intonation patterns over "comparable" content words
 - Fertility differnces between the languages
 - Find word correspondence across the two languages

Experiment: Cross-lingual intent transfer

- Word level accents are parametrized under SPAM
 - Done for all content words of training data (90%)
 - word alignement is used to simulate word-level parallel data
- GMM-JDE Mapping function trained on the TILT parameter pairs

Intent transfer experiments

- SPSS synthetic voices are built for all databases
- Word level intonation models (Baseline)
- Source F0 transformed to estimate target F0

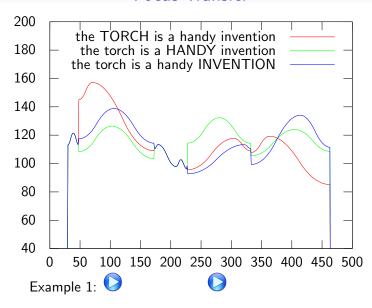
Table: Objective comparison of synthesized F0 contours

Lang Pair	Default		Proposed	
	rmse	corr	rmse	corr
en-pt	17.60	0.51	16.59	0.54
pt-en	15.90	0.47	15.30	0.49
en-de	11.93	0.54	10.98	0.51
de-en	10.27	0.46	10.17	0.46

Illustration of Prominence transfer

- A test set of 10 sentences is recorded with varying word focus
- Transformation applied on accent parameters of each content word

Focus Transfer



Can this scale to Automatic dubbing?

- Recorded videos from a Native Portuguese speaker
- Run through all stages of the S2SMT Pipeline

Demo

- Original Video
- Traditional ASR + SMT + TTS
- ASR + SMT + TTS/SPAM
- $\bullet \ \mathsf{ASR} + \mathsf{SMT} + \mathsf{TTS}/\mathsf{SPAM} + \mathsf{Intent} \ \mathsf{Transfer}$

Outstanding issues

- Preserving identity along with the style and intent across languages
- Synthesis sensitive to errors in ASR/SMT
- Efficient word and phone specific stretch/shrink functions
- Synthesizing paralinguistic events like laughter, hesitation

Summary

- A computational framework for prosodic description
 - Optimal modelling strategies to capture Intonation
 - Data-driven training and synthesis methods
 - Scalable synthesis across speakers, tasks and languages
- Voice conversion across speakers & languages
- Intent transfer for improved speech translation

Thank You!

Intent Transfer