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Abstract—To bound the amount of information transmitted
from a fitness map to a genetic algorithm population, we use a
method suggested by Abu-Mostafa et al. [1] for measuring the
information storage capacity of general forms of memory and
represent the genetic algorithm as a communication channel.
Our results show that a number of bits linear in the size
of the search space can be stored in a fitness map, but on
average only a logarithmic number of bits can be stored within a
genetic algorithm population of bounded size and finite precision
representation. Our results place an upper bound on the rate at
which information can be transmitted through, or generated by
and later extracted from, a genetic algorithm under fairly general
conditions.
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algorithm; channel capacity; populations;

I. INTRODUCTION

Evolution, when viewed as a process of information gen-
eration, implies the ability of organisms to appropriate in-
formation from their environment to aid in survival of the
species [2], [3], [4], [5]. The method by which (fitness)
information from the environment is incorporated into the
hereditary memory of the species is natural selection, acting on
variants within the population [3], [4]. Genetic algorithms [6],
[7], [8] are digital programs that mimic evolution in several
ways, including the transmission of information from a fitness
function (“environment”) to the genetic memory of a digital
species [9], [10]. The transmission of information through
selection is accomplished by affecting the reproductive prob-
abilities among variants, the quantitative details of which can
be modeled using Shannon’s theory of information [11], [12],
[9]. We concern ourselves with quantifying the transmission
of information from a fitness function (alternatively, fitness
map) to a population of organisms, analyzing the process by
reducing it to the transmission of messages through a noisy
communication channel [11].

By measuring the information capacity of both fitness maps
and output populations, we derive an upper bound on the
expected rate of information transfer from a fitness map to
a population for genetic algorithms of bounded population
size. We compare this to the intrinsic (bit-level) information
storage capacity of the fitness map and find that a number
of bits linear in the size of the instance space can be stored
in a fitness map, but, on average, only a logarithmic number
of bits can be extracted from the fitness map through the

use of a genetic algorithm. These results place an upper
bound on both the fitness value of information [13], [14]
and the channel capacity of a genetic algorithm population
space, since the fitness value of information is bounded from
above by Shannon entropy [13], and Shannon entropy itself
is upper bounded by the information capacity (see Appendix,
Section A).

The results derived here make progress toward discrimi-
nating between the amount of information internally gener-
ated by a genetic algorithm and the amount of information
provided to it by its external fitness map. If we bound the
amount of information stored within a fitness map, then any
information exceeding that amount can be unambiguously
ascribed to the internal workings of the genetic algorithm
itself; any informational output below that amount may be
the result of information transfer, rather than information
creation. Furthermore, by quantifying the channel capacity
of output populations directly, one can bound the expected
number of bits per population, thus bounding the information
transmission through a genetic algorithm as a whole.

II. RELATED WORK

Many researchers have sought to quantify how evolutionary
processes transfer information from environments to popula-
tions [3], [4], [9], [12], [13], [15], [14], for biological and
digital organisms. We briefly review some of the related work
in this area.

Spetner [3], [4] pioneered early work in measuring infor-
mation transmission through natural selection, considering the
amount of information created by adaptive mutations when
measured against the severity of environmental constraints,
thereby quantifying the average information flow from en-
vironment to population through single evolutionary events.
Kargupta [12] measured information flow through genetic
algorithm operators using Shannon’s information theory, mod-
eling genetic algorithm operators as noisy communication
channels, in a manner strikingly similar to the work presented
here.1 Kargupta’s work explores how error-free communica-
tion through noisy channels (as studied in information theory)
can guide the search for genetic algorithm operators that
best balance the trade-off between generating diversity and
preserving message fidelity in the face of selection, recombi-
nation and mutation. Schneider [9] used information theory to
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quantify the reduction of Shannon entropy in digital organism
genomes, demonstrating how information can quickly arise in
a population when first stored in a researcher-selected fitness
function and later mined by a genetic algorithm. As the present
manuscript demonstrates, fitness functions can serve as large
reservoirs of information (linear in the size of the search
space), when an appropriate choice of fitness function is made.

Smith [16] provided an overview of how the concept of
information has been applied by biologists since the molecular
revolution, discussing Shannon information and the sym-
bolic nature of genetic signaling structures and code-bearing
molecules.

Bergstrom et al. [13] showed that, when applied to popula-
tions evolving by natural selection, two different measures of
information (Shannon entropy and the decision-theory value of
information) can form a single measure called the fitness value
of information. Furthermore, their work demonstrates that the
fitness value of information is bounded above by Shannon
entropy, and that even before the function of a biological signal
is known, one can place an upper bound on the possible fitness
consequences of that signal. In a related paper, Donaldson-
Matasci et al. [14] further demonstrated the strong connection
between the fitness value of information (which takes bio-
logical consequences into account) and mutual information
(which is oblivious to consequences, function and meaning)
in evolving systems that respond to imperfect environmental
cues. In a similar vein, a detailed model integrating the fitness
value of information and the directionality of information with
Shannon entropy and mutual information was developed by
Rivoire and Leibler [15].

The current work differs from prior related efforts in a few
ways. First, we do not concern ourselves with specific genetic
algorithms or genetic operators, allowing for general stochastic
population-based processes to be evaluated using our method.
Second, the results here apply to both fixed and time-varying
fitness functions, in contrast to some prior work (e.g. [3], [9]).
Finally, by measuring information properties at the level of
populations rather than at the level of individual organisms
we are able to quantify information capacities regardless of
how individuals within the population are composed (e.g. their
chromosome structure, allele frequencies, etc.); this departs
from some prior work, though not all (for example, see Rivoire
and Leibler [15], who take a similar approach).

III. PRELIMINARIES

We will now review some relevant concepts and define some
terminology that will prove useful for deriving our results. The
definitions, concepts and material in this section are largely
reproduced from [17].

A. Genetic Algorithms

Genetic Algorithms are search and optimization systems
inspired by biological evolutionary processes that have the
following general structure, roughly following [7]:

1) Initialize population of individuals, P0, where the sub-
script 0 represents the current time step.

...

0100110100100...
1101100001110. . .
0111111101111 . . .

= 0.1
= 0.2

= 0.3 ...
0111111101111 . . .

0100110100100...
0111111101111 . . .

...

0110110101111. . .
0111101100100. . .

0111111100100. . .

...

0100110100100...
1101100001110. . .
0111111101111 . . .

POPULATION EVALUATE FITNESS SELECTION

MUTATION + CROSSOVER

SEARCH SPACE

SELECT K ELEMENTS TO
INITIALIZE POPULATION

STOP?

Fig. 1. The control flow structure of a typical genetic algorithm.

2) Evaluate initial fitnesses of population (according to
fitness function.)

3) While the termination condition is not met by current
population, Pt:

- Select members from Pt for replication (according
to selection operator that uses fitness evaluations
previously calculated), forming temporary popula-
tion P ′t .

- Recombine members of P ′t (according to recom-
bination operator), forming temporary population
P ′′t .

- Mutate members of P ′′t (according to mutation
operator), forming population Pt+1.

- Evaluate fitness of all members of Pt+1 (according
to fitness function).

Each of the italicized items represents a point of action
where many different methods and parameters can be used.
The items in bold represent sub-methods used by the algorithm
for carrying out the various procedures. Certain genetic al-
gorithms eschew either recombination or mutation altogether,
relying exclusively on one or the other to supply population
diversity. The above, therefore, serves only as a general outline
of typical design choices for genetic algorithm implementa-
tion. Algorithm 1 provides a pseudo-code implementation for
the general genetic algorithm described. For those interested,
detailed discussion of genetic algorithm implementations can
be found in the classic text by Goldberg [6] and the more
recent book by Reeves and Rowe [8].

It should be noted that the results derived here in no
way depend on the specific implementation of population-
based search algorithm used, subject to the conditions that:
there is a finite maximum population size, the search space
is finite and the composition of a population can only be
probabilistically determined by the researcher, otherwise not
being directly under his or her control. Most genetic algorithm
implementations meet these requirements, and thus the results
derived here apply widely.

B. Fitness Functions and Fitness Maps

A fitness function is any function f : X → R that maps
an individual, x ∈ X , of a population to a real number [7].
Here, we consider fitness functions that map individuals to
binary numbers, f : X → {0, 1}l, l ∈ N, and restrict ourselves

757



Algorithm 1: A Simple Genetic Algorithm
input : Search Space X and Fitness Function F
output: Population

population ← initialize population(X );
fitnesses ← F (population);
while should terminate(fitnesses) is False do

population′ ← select and replicate(population) ;
population′′ ← recombine(population′) ;
population ← mutate(population′′) ;
fitnesses ← F (population);

end
return population

to finite domains of individuals, restrictions which hold for
genetic algorithms operating on modern computer hardware.

For our finite domains, a fitness map is an exhaustive, un-
compressed representation of the mapping between individuals
and fitness values generated by a fitness function. It can be
defined as the set of all ordered pairs (i, f(i)), where i denotes
an individual in our domain and f(i) its fitness value.

1) Fitness Map Representations: Finite fitness maps can be
represented as a set of point-value pairs (which we denote as
list form) or as a one-dimensional array of values (array form),
where position in the array corresponds to the index of an
individual. If each individual is encoded using log2 |X | binary
digits, then the list form representation ostensibly requires
an additional |X | log2 |X | binary digits to encode compared
to array form, since an identifier for each individual must
be encoded along with its fitness value. Although the array
form appears to require fewer binary digits overall, it assumes
knowledge of the ordering used to index individuals. Selecting
one ordering from the |X |! possible requires O(|X | log |X |)
bits of information,2 so both representations are actually
equivalent in the number of binary digits required to encode
a single map.

We therefore assume an array form representation, so that
a finite fitness map is represented as a binary string of length
n = l×|X |, where l is the number of binary digits required to
encode each fitness value [18]. We assume a lexicographic or-
dering of elements, thereby storing the additional |X | log2 |X |
bits of identifier information in the algorithm used to decode
the fitness map, and not in the fitness map itself.

0100 1001 0100 11111001 00001001

ARRAY FORM

Value for
Individual

Value for
Individual

LIST FORM

(i-0, 0100)
(i-1, 1001)
(i-2, 0100)
(i-3, 1111)

.

.

.

Fig. 2. Two alternative representations of fitness maps.

2) Fitness Value Representations: If the distribution of
fitness values in a fitness map is known beforehand, a com-
pression scheme such as Huffman encoding can be used

to assign short binary strings to frequently occurring fitness
values and longer strings to less frequently occurring values. If
distribution information is not available, however, we assume
an equiprobable distribution of values, so that each value in
the set Y of possible fitness values has a 1

|Y| probability
of occurring [19], [20], [21]. This assumption results in an
encoding length of l = log2 |Y| binary digits per value,
following Shannon’s entropy formula [11].

IV. INFORMATION STORAGE THROUGH OBJECT RANKING

Having defined fitness functions and fitness maps, we begin
our discussion of information storage in fitness maps by
considering how information can be stored using a simple one-
dimensional ordering of distinguishable objects. Consider a
space of n distinguishable items, under which some canonical
ordering holds, such as lexicographical ordering. For con-
creteness, consider a list of n first and last names, such as
“Allen Simon” and “Ronald Mitchell”, which can be sorted
in alphabetical order. We now consider two people, Alice and
Bob, who must communicate a message to one another using
nothing but the list of names and a shared knowledge of the
encryption method. Alice can communicate one of n! possible
messages to Bob, simply by choosing the order in which she
lists the n names. Each permutation of values corresponds to a
unique message, and since there are n! possible permutations,
she can transmit up to log2 n! bits of information per message
using this communication channel. To decode the message
from the list of names, Bob needs to have a mapping from
permutations (i.e., possible orderings of the list of the names)
to possible messages. This can be done using a look-up
table (for small spaces) or an algorithm that transforms list
permutations directly into alphabetic strings. (See Appendix
A, “Simple Ordinal Communication Channel,” of [17] for an
implementation of one such algorithm).

Given that the ordering of distinguishable objects can store
information, we note that any ranking that assigns real val-
ues to distinguishable objects can be used to order a set
of objects, either fully (for injective mappings) or partially
(for non-injective mappings). Non-injective mappings provide
information storage capability bounded by the degeneracy of
the mapping, with highly degenerate mappings providing less
information storage. Therefore, fitness information as encoded
in fitness maps can store information by imposing a partial
ordering on the space of individuals in a population. As-
signing different fitness values to different individuals serves
the purpose of placing an ordering over those individuals,
thus allowing an adept Alice to transmit a message through
the careful selection of a fitness map. Viewed in this way,
the creation of a fitness map becomes the encoding step in
message transmission, the genetic algorithm acts as a noisy
communication channel, and the examination of an outcome
population at time t serves as the decoding step, where the
original message is recovered with some probability. Figure 3
illustrates the schematic view of genetic algorithm processes
as a communication channel.
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With this representation in mind, we will now quantify the
amount of information that can be stored in a genetic algorithm
fitness map and determine the amount that can be transmitted
and extracted at some later time.

A L I C E S E L E C T I O N  O F
F I T N E S S  M A P

M E S SAG E

S I G N A L

N O I S E
S O U RC E

R E C E I V E D
S I G N A L

P O P U L AT I O N
O U TC O M E B O B

M E S SAG E

G E N E T I C
A LG O R I T H M

Fig. 3. Genetic algorithm operation as a noisy communication channel. The
stochastic nature of the genetic algorithm acts as the noise source. Selecting
a fitness map makes some population outcome(s) more likely, but cannot
guarantee that the desired population will be received on the terminal end,
due to the effects of noise. Examination of the population outcome acts as
the decoding step for message transmission. Figure adapted from [11].

V. INFORMATION TRANSMITTED FROM FITNESS MAPS

Let f : X → Y be a fitness map, represented as a binary
string, mapping a space of elements X to a finite set of
fixed-precision numerical values Y . Following Abu-Mostafa
and St. Jacques [1], we define the information capacity, C,
of a memory to be the logarithm of the number of cases it
can distinguish between. To assess the information storage
capacity of a fitness map and that of an output population,
we consider two situations:

1) First, when we have access to the fitness map itself and
can directly observe the numerical values of f .

2) Second, when we do not have access to f , but only to
a population of k items chosen from X (with replace-
ment), at time t.

The first situation measures the bit-level information storage
capacity of a fitness map, while the second measures the infor-
mation storage capacity of a finite population, thus providing
a means of bounding the quantity of information that can be
extracted from a population, and by extension, the maximum
expected rate of information transfer through use of a genetic
algorithm as a communication channel.

Considering the second situation, we assume the genetic
algorithm is stochastic, such that the initial population is
randomly selected (and is thus outside of the control of the
researcher, i.e. Alice), as is the precise population composition
at each time step t. The population composition at each step
subsequent to the first is influenced by the fitness map in
a probabilistic manner, and thus can be influenced, but not
directly controlled, by the researcher. This uncertainty acts as
noise within the communication channel.

For Alice to faithfully transmit a message to Bob requires
redundancy in the transmission [22], so we assume that Alice
is allowed to run the genetic algorithm several times using the

same fitness map, allowing Bob to make multiple observations
of the final population outcome and average his results. Bob
then tries to infer the intended message from the averaged
population outcome, which we can represent as the |X |-
dimensional average of r vectors, each consisting of |X |
population proportions after t steps on a randomly initialized
trial. Formally, let pt = [p1, p2, . . . , p|X |]t be a population
histogram vector, with 0 ≤ pi ≤ 1 for i = 1, . . . , |X |,
where each pi ∈ R represents the proportion of the population
consisting of item xi ∈ X in the final outcome population Pt,
and

∑
i pi = 1. We take the limit as t goes to infinity, since

during the early steps of the genetic algorithm’s operation the
population composition may not yet be substantially shaped by
the fitness map (reflecting more the randomized initialization
than the effects of sustained selection). Putting this together,
we define a population outcome vector, p∗, as

p∗ = [p∗1, p
∗
2, . . . , p

∗
|X|]

= lim
r→∞

[
1

r

r∑
i=1

lim
t→∞

[p1, p2, . . . , p|X |]t

]
. (1)

The vector p∗ can simply be thought of as the average
population outcome for a given fitness map when a genetic
algorithm is run for many independent trials using that fitness
map. Since more than one fitness map may result in the
same p∗ vector, the mapping from fitness map to averaged
population outcome vector (received message) may not be
injective. Furthermore, we make no assumption concerning
the surjectivity of the mapping from fitness maps to popula-
tion outcome vectors, so the quantities we derive calculating
information capacity C as a function of number of possible
population outcomes will represent upper bounds.

For practical purposes, the numbers r and t will be large
but finite. Thus, p∗ represents an idealization that must be
approximated for any realistic algorithm.

A. First Case: Directly Accessing f

If the numerical values of f are directly accessible, and f
is encoded as binary string of length n, a total of 2n different
fitness maps can be distinguished. Using the previously given
definition of information capacity, the storage capacity of
fitness map f is the expected log2(2

n) = n bits.
Given that there are |Y||X | unique fitness maps possible

given X and Y

C = log2(|Y||X |)
∈ O(|X | log |Y|). (2)

When Y is fixed, log |Y| becomes a constant and we have
C ∈ O(|X |).

B. Second Case: Values of f not Directly Observable

In the case where numerical fitness information is not
directly available, we must infer fitness information indirectly
based on relative reproductive success of items in a population
by examining the population outcome vector.
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We assume a bounded maximum population size and a
finite precision representation of population outcome vectors.
Neither assumption involves a loss of generality for genetic al-
gorithms running on finite-state computer hardware, since such
digital representations are necessarily of limited precision and
operate under finite resource constraints. Using the information
capacity formula instead of the usual channel entropy H
involves making an implicit assumption that each population
outcome is equally likely; if some population outcomes are
more likely than others, the channel entropy will decrease
and at the extreme, when only one population outcome is
possible regardless of fitness map choice, the channel entropy
(and information storage capability) reduces to zero bits.
Thus, information capacity serves as an optimistic measure of
the actual information transmission possible using a genetic
algorithm under the conditions outlined.

We now derive two bounds, one for the information capacity
of individual population outcomes at time t, and one for the
information capacity of population outcome vectors, which are
the averages of several population outcome histograms.

1) Information Capacity of Individual Population Out-
comes: In observing output populations of size k, there
are exactly

(
k+|X |−1

k

)
unique populations possible, using the

combinatoric formula for combinations with repetition. This
number of distinguishable cases denotes the number of possi-
ble “messages” that can be received using this communication
channel at a time t, based solely on counting the number of
each variant in an outcome population. Under the assumption
of bounded population size, let k be the maximum population
size attainable, and let j be the actual size of the outcome
population at time t. We then find that

C = log2

(
j + |X | − 1

j

)
≤ log2

(
k + |X | − 1

k

)
= log2

[
(k + |X | − 1)!

k!(|X | − 1)!

]

= log2

∏k+|X |−1
i=|X | i

k!


= log2

k+|X |−1∏
i=|X |

i

− log2(k!)

=

k+|X |−1∑
i=|X |

log2(i)− log2(k!)

≤
k+|X |−1∑
i=|X |

log2(k + |X | − 1)− log2(k!)

= (k + |X | − 1− |X |+ 1) log2(k + |X | − 1)− log2(k!)

= k log2(|X |+ k − 1)− log2(k!)

≤ k [log2(|X |) + log2(k − 1)]− log2(k!) (3)
∈ O(log |X |) for fixed k (4)

where inequality (3) follows from Lemma 1, for reason-
able values of |X | and k (see Appendix). The expression
O(log |X |) is an asymptotic upper bound on C, under the
implicit assumption that every possible population outcome
has a fitness map capable of producing it. If the mapping from
fitness maps to population outcomes is not surjective, then
fewer than all possible population outcomes can be produced
by the genetic algorithm. Therefore, the bound of O(log |X |)
is an optimistic upper bound based on favorable assumptions
in relation to the definition of information capacity.

This bound optimistically describes the expected amount
of information Alice is able store in a population, using
her fitness map and the genetic algorithm as the writing
mechanism. Thus, it determines the maximum expected rate at
which information can be conveyed using a genetic algorithm
population, given a population of bounded size. Since only
a finite number of unique populations are possible, there
is a corresponding finite number of messages that can be
received using this communication channel. Thus, taking the
logarithm base two of the number of possible messages gives
the information capacity of genetic algorithm populations of
bounded size. We find that the information capacity C is
logarithmic in the size of the instance space X .

2) Information Capacity of Population Outcome Vectors:
We now consider population outcome vectors, which are the
averages of many population outcome histograms. We note
that each element of X will comprise some portion of the
population in the limit, between 0.0 and 1.0, with the portions
summing to one. If we assume that this percentage can be
known to only a finite precision, as per our assumptions, then
the problem becomes one of assigning s individual percentage
points among the elements of X , with repetition. For example,
if each element can have 0 to 100 shares of the population, we
must assign the one hundred shares among the |X | elements
of X in some fashion. In this case, we must count the number
of ways there are to distribute 100 items among |X | buckets
(with repetition, taking order into account), which is |X |100.
More generally, there are |X |s ways to assign s items among
|X | elements. However, by taking order into account some
assignments become repeated in this set, due to the fact that
our s items are actually indistinguishable. Therefore, the true
number of distinguishable cases (without regard to assignment
order) is less than or equal to |X |s. Taking the logarithm base
2, we find

C ≤ log2(|X |s)
= s log2(|X |)
∈ O(log |X |) for fixed s (5)

which is an upper bound on the information capacity of
population outcome vectors, since the true number of distin-
guishable cases is generally less than |X |s.

Thus, we find that the messages output by our communica-
tion channel provide at most O(log |X |) bits of information per
message, whether each message consists of a single population
outcome or an averaged population outcome vector. Returning
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to our motivating question of how much information can be
transmitted from a fitness map to a population, we find that
because each population conveys, at most, a logarithmic num-
ber of bits on average, the quantity of information that can be
successfully transferred to an output population is necessarily
limited to the same amount. Thus, genetic algorithms can
appropriate no more than O(log |X |) bits of information from
their fitness maps, on average, per population. Furthermore,
this places a logarithmic bound on how much information can
be expected to accumulate within a population, irrespective
of the length of time during which a genetic process is in
operation.

VI. TIME-VARYING FITNESS MAPS

Our analysis has thus far focused on bounding the infor-
mation transmission from a fixed fitness map to an output
population, but we now consider the case of time-varying
fitness maps as well.

Since our bounds are derived by bounding the maximum
number of unique output populations and calculating the
information storage capacity given this number of possible
populations, we find that introducing time-varying fitness maps
does not alter either our bounds or their derivations. Time-
varying fitness maps do not produce additional unique output
populations, and thus cannot increase the information capacity
of a genetic algorithm output population. Our derivations
are agnostic concerning the precise processes that produce
the final outcome population, under the assumptions that
the output population is of bounded size and has a com-
position not under the direct control of the researcher, both
of which hold for stochastic genetic algorithms with time-
varying fitness functions implemented on finite-state computer
hardware. When calculating the information capacity of an
output population, the only relevant detail is how many distinct
outcomes are possible, and introducing time-varying fitness
maps does nothing to increase this number.

Thus, our logarithmic information bounds hold for both
fixed and time-varying fitness maps, covering a large variety
of genetic algorithm implementations.

VII. RELEVANCE OF RESULTS

To review, our analysis demonstrates that while a fitness
map allows for up to O(|X |) bits of storage, only O(log |X |)
bits can typically be recovered by a genetic algorithm with a
bounded population size and finite precision. We now consider
some practical consequences of these results.

First, a large quantity of information is lost in using a
fitness map as an information storage device within a genetic
algorithm. On average, far less information can be recovered
from the population of a genetic algorithm than can be encoded
in the fitness map, under the conditions outlined. In choosing
(or constructing) a fitness map that transfers information to a
population, one must provide a linear quantity of information
to recover only a logarithmic amount of information at a later
time. From a practical standpoint, this process is inefficient.

Second, we note that the bounds derived here place an
upper bound on the rate at which functional [24] or semantic
information can be transmitted through a genetic algorithm
with bounded population size and fixed precision. This is in
agreement with prior work [13], [14] that bounds semantic no-
tions of information (such as the fitness value of information)
using Shannon entropy and mutual information.

Third, these results bound not only the rate of information
transmission through a genetic algorithm, but also bound
the rate at which information can be exported by such an
algorithm. Since the final product of the genetic algorithm
process is a population, the rate at which information can be
output by the genetic algorithm is also logarithmic in the size
of the input space. Even for genetic algorithms capable of
generating more than a logarithmic number of bits internally,
the form of output serves as a bottleneck that restricts the
overall rate of export.

Lastly, our analysis urges caution when stating claims
concerning the information generation capabilities of vari-
ous genetic algorithms [9], [23], since demonstrating actual
generation of information requires one to first identify and
account for information stored within the fitness map. If the
quantity of information output by the algorithm does not
exceed O(log |X |) bits, then one cannot determine whether the
information was transfered extrinsically from the preexisting
storage of the fitness map, or was generated intrinsically by the
algorithm itself. Thus, such analysis and careful discrimination
should feature in all future research into the information
generation capabilities of genetic algorithms.

VIII. CONCLUSION

To address the question of how much information can be
transmitted through a genetic algorithm from a fitness map
to an output population, we have represented the genetic
algorithm as a noisy communication channel and measured
the information storage capacity of both the input (fitness
map) and the output (population) of that system. Following
the method of Abu-Mostafa et al. [1] for measuring the
information storage capacity of general forms of memory, we
found the information capacity C of fitness maps is linear in
the size of the input space, while the information capacity
of population outcomes (for populations of bounded size or
population vectors of fixed precision) is logarithmic in the size
of the input space. These results apply to genetic algorithms
using static and time-varying fitness functions.

Thus, under fairly general conditions, the maximum ex-
pected number of bits per population is logarithmic in the
size of the input space, bounding the information transmission
rate for genetic algorithms. Furthermore, these results urge
caution and careful analysis when attempting to quantify
the information generation capabilities of genetic algorithms,
or any other population based algorithm in general, since
the information present in an output population may reflect
information provided to the algorithm by the researcher’s
choice of fitness function rather than information generated
by the algorithm itself.
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APPENDIX
SUPPLEMENTARY MATERIAL

Lemma 1. log2(|X |+ k − 1) ≤ log2(|X |) + log2(k − 1) for
|X | ≥ 2, k = 3, 4, . . .

Proof: First we note that, given our conditions on |X |
and k,

|X | ≥ k − 1

k − 2
,

since the expression on the right side asymptotically ap-
proaches 1 with increasing k, and achieves a maximum value
of 2 when k = 3.

Continuing,

|X | ≥ k − 1

k − 2

=
1− k

2− k
|X |(2− k) ≤ 1− k (since (2− k) < 0)

|X |(1− (k − 1)) ≤ 1− k

|X | − (k − 1)|X | ≤ 1− k

|X | ≤ (k − 1)|X |+ 1− k

|X | ≤ (k − 1)|X | − (k − 1)

|X |
k − 1

≤ |X | − 1

|X |
k − 1

+ 1 ≤ |X |.

We next take the logarithm, base 2, of both sides, yielding

log2

(
|X |
k − 1

+ 1

)
≤ log2(|X |)

log2

(
|X |
k − 1

+
k − 1

k − 1

)
≤ log2(|X |)

log2

(
|X |+ k − 1

k − 1

)
≤ log2(|X |)

log2 (|X |+ k − 1)− log2(k − 1) ≤ log2(|X |)
log2 (|X |+ k − 1) ≤ log2(|X |) + log2(k − 1).

A. Shannon Entropy and Information Capacity.
Shannon entropy H is bounded from above by information

capacity C. To see this relationship, note that the Shannon
entropy over a discrete space of possible populations P has
the form

H(P) = −
∑
p∈P

Pr(p) log2 Pr(p),

where p is a population, and H(P) is maximized when
Pr(p) = 1

|P| . The information capacity C can be re-written as

C = − log2
1

|P|

= −
∑
p∈P

1

|P|
log2

1

|P|

≥ H(P),

thereby establishing the relationship.

B. Compression of Fitness Maps3

Although we have represented fitness maps as simple binary
strings mapping elements of X to fitness values, this linear
representation is rare in genetic algorithms, which compute,
rather than store in explicit form, fitness information. The
reason is simple: if you have a search space consisting of
binary strings of length 512, there are 2512 such strings,
roughly 10154; yet there are only an estimated 1080 atoms in
the observable universe. Therefore, we cannot represent such
maps in their entirety within computer memory. Generating
fitness information allows us to circumvent this difficulty by
not having to store fitness information for strings in our space.

Fitness functions form a compressed representation of a
fitness map. Take, for example, a Hamming distance fitness
function, which calculates the Hamming distance between two
strings of any finite length and can be represented as follows

hamming(a, b, length):
difference = 0
for i from 0 to length:

difference += (a[i] != b[i])
return difference

This pseudo-code (along with accompanying interpreter
code), while not as compact as possible, is orders of magnitude
more compressed than an uncompressed fitness map for all
strings of length 512, yet computes the same function. This
compression raises a difficulty when attempting to measure
the amount of information necessary to represent arbitrary
fitness mappings; it would appear some fitness maps are
greatly compressible and, therefore, require much less than
|X | log2 |Y| bits of information to encode.

Although true, this compression is not possible in general,
since incompressible strings of every length exist.4 Therefore,
to be able to represent an arbitrary fitness map over elements
in X a minimum number of binary digits is required, which
is of order |X | log |Y|.
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NOTES
1This similarity was brought to the attention of the author by Cosma

Shalizi, after the completion of the present work, but prior to its final
publication.

2Although a lexicographic ordering of the elements in X is usually
assumed, it is not the only ordering possible for binary strings. Other
orderings, such as Binary Reflective Gray codes [8], produce a different
interpretation of the positions in the array. Therefore, we must specify which
ordering is being used.

3The material in this section is largely reproduced from [17].
4Although one could imagine a short program outputting a string repre-

senting all binary strings of a given length, one must still split the resulting
output into individual strings, which can be done in many possible ways.
Selecting one particular split from the set of possibilities, therefore, incurs an
additional information cost that must be accounted for. Although an extensive
investigation of compression is beyond the scope of this manuscript, the simple
point that not all strings are compressible suffices here for our purposes.
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