
Efficient Per Query Information Extraction from a
Hamming Oracle

Winston Ewert
& George Montañez

Department of Computer Science

Baylor University

Waco, TX

William A. Dembski
Southwestern Baptist

Theological Seminary

Fort Worth

Texas

Robert J. Marks II
Department of Electrical

and Computer Engineering

Baylor University

Waco, TX

Abstract—Computer search often uses an oracle to determine
the value of a proposed problem solution. Information is ex-
tracted from the oracle using repeated queries. Crafting a search
algorithm to most efficiently extract this information is the job
of the programmer. In many instances this is done using the
programmer’s experience and knowledge of the problem being
solved. For the Hamming oracle, we have the ability to assess
the performance of various search algorithms using the currency
of query count. Of the search procedures considered, blind
search performs the worst. We show that evolutionary algorithms,
although better than blind search, are a relatively inefficient
method of information extraction. An algorithm methodically
establishing and tracking the frequency of occurrence of alphabet
characters performs even better. We also show that a search for
the search for an optimal tree search, as suggested by our previous
work, becomes computationally intensive.

I. INTRODUCTION

An oracle [6], [11], [12], [13], [21] is a common source

of information in assisted search. The computational overhead

of the oracle often dominates the time required for a search.

In such cases, the computational overhead of a search can be

measured by its query count.

Branch-and-bound search [2] for feature selection [18] uses

the structure of combinatoric search spaces with the specific

goal of reduction of the query count. Using data generated

by the EPRI Electric Transient Mid-Term Stability Program
software [9], Jensen et al., for example, use branch-and-bound

search for feature selection to train neural networks. Each

query in the search is computationally expensive because it

requires the training of a layered perceptron [22].

Simulation software is often used as an oracle. NASA’s

evolutionary design software of an X-band antenna [16], [17],

for example, requires evaluation of fitness during its search

process. It does so using The Numerical Electromagnetics
Code (NEC-4) [3], [4] as an oracle. NEC-4 is a widely

used antenna modeling software package for wire and surface

antennas. Likewise, ONR developed evolutionary search for

optimal ensonification parameters uses repeated queries to an

acoustic simulator: a layered perceptron neural network [22]

trained on data generated by acoustic modeling software [14].

Oracles can be used with relative degrees of efficiency [10].

In the most simple of examples using a needle in a haystack
oracle, blind sampling without replacement outperforms blind

sampling with replacement in terms of average query count.

In a more complex case of assisted search, a “ratchet search”

in the software known as Avida results in better per query

performance that does a standard evolutionary search [10].

In many cases, evaluation of oracle query efficiency can

only be answered through extensive Monte Carlo simulation.

An exception is the Hamming oracle which is well suited for

analytical study. We have a target of length L using an alphabet

of N , e.g

METHINKS*IT*IS*LIKE*A*WEASEL

has L = 28 letters from an alphabet of N = 27 (26 letters

and a space). When a sequence of letters is presented to

a Hamming oracle, the oracle responds with the Hamming

distance equal to the number of letter mismatches in the

sequence.

There are numerous ways in which the Hamming oracle can

(and has) been used to find unknown phrases [6], [19], [23].

In terms of query count, some are more efficient than others.

How is this simple oracle best interrogated using the cur-

rency of queries? We analyze commonly used Markov based

evolutionary algorithms and demonstrate, by comparison, that

the resulting stochastic hill climbing searches use oracles

better than blind search. The frequency of occurrence (FOO)
Hamming oracle algorithm (FOOHOA) is a deterministic

algorithm that performs significantly better than stochastic

hill climbing. Unlike a Markov approach which uses only its

current state to determine its next step, information extracted

during the entire history of the search is used to determine the

next query.

Is it possible to know, in general, when a search built around

a fixed oracle is optimal? Alternately, given an oracle, what is

the maximum amount of information that can be extracted

on a per query basis? A search for the search (S4S) [8]

attempts to find either a search algorithm that exceeds specified

performance criteria or, in the extreme, to find the algorithm

with the globally best performance. Given a Hamming oracle,

we present a search over all possible search trees that use

the Hamming oracle to find the tree with minimum average

depth. The corresponding search generates the greatest amount

of active information per query of all such tree searches. The

S4S, however, is so computationally intense, optimal trees can

290978-1-4244-5692-5/10/$26.00 © IEEE 2010

42nd South Eastern Symposium on System Theory
University of Texas at Tyler
Tyler, TX, USA, March 7-9, 2010

T1B.4



only be found for short messages using small alphabets.

Study of efficient extraction of information from the Ham-

ming oracle is instructive in understanding the difficulty and

obstacles of efficient information extraction from other oracles

where analytic tractability is not as friendly.

II. INFORMATION MEASURES

Let the probability of identifying the correct phrase with a

single random query be p. The inherent difficulty of the search

then can be measured by the endogenous information [6],

IΩ = − log2 p.

For L letters from an alphabet of size N , we have

p = N−L

and

IΩ = L log2 N. (1)

The endogenous information can be viewed as the total

information available from the search.

We consider searches that are asymptotically perfect, that is,

will eventually succeed. For a given search, let the expected

number of queries before a success be Q. Then the active
information per query [6], [10] is1

I⊕ =
IΩ

Q
. (2)

Using (1), (2) becomes

I⊕ =
L log2 N

Q
. (3)

In a random search with replacement, for example, the number

of queries prior to a success is a geometric random variable

with mean

Q =
1
p

= NL.

Using (3),

I⊕ =
L log2 N

NL
.

Without replacement, Q = 1
2NL and the active information

per query doubles.

III. MARKOV MODELS OF EVOLUTIONARY SEARCH

Markov models are useful in describing certain evolutionary

searches [1], [24], [25]. Before analysis, a brief background

on Markov processes is required.

1We are consistent in the use of this definition. Dividing by the expected
value of queries, however, does not give the expected value of I⊕. Indeed,
from Jensen’s inequality [5], E[1/Q] ≥ 1/E[Q].

A. Markov Processes With an Absorbing State

We are searching for a target message of length L. In

general, an (L+1)× (L+1) Markov matrix, P, has elements

(P)k,λ = pk,λ (4)

where pk,λ is the probability of going to state k given we are

in state λ. When all L letters of a sequence have been defined,

the process is stopped at the final absorbing state from which

there is no escape. The absorbing state is the target message

and, when achieved, the search is announced as a success. The

corresponding Markov matrix with absorbing state L is

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p0,0 p0,1 · · · p0,L−1 0
p1,0 p1,1 · · · p1,L−1 0
p2,0 p2,1 · · · p2,L−3 0
...

...
. . .

...
...

pL−2,0 pL−2,1 · · · pL−2,L−1 0
pL−1,0 pL−1,1 · · · pL−1,L−1 0
pL,0 pL,1 · · · pL,L−1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[

S �0
�q T 1

]

where, for clarity, we have partitioned the P matrix, S is an

L× L matrix, and

�q = [pL,0 pL,1 · · · pL,L−1]T .

Then the iteration �π(n + 1) = P�π(n) has the solution

�π(n) = Pn�π(0) =
[

Sn �0
�q T
n 1

]
�π(0). (5)

The probability of going from state λ to k in the nth iteration

is (Sn)k,λ. Summing all of these probabilities for all (k, λ)
gives the geometric series

∞∑
n=0

Sn = [I− S]−1. (6)

The matrix2 F := [I−S]−1, dubbed the functional matrix, has

elements

(F)k,λ =
{

expected number of the times

state λ has gone to state k.
(7)

Define �N = �1T F where �1 is a vector of 1’s. Then ( �N)k is

the number of steps to absorption assuming an initialization

of state k.

• If we begin with λ = 0 correct characters, then the

initialization, �π(0), has a one in the first place and is

otherwise zero. In this case, G = ( �N)0 where G is the

expected number of generations to success.

• A better initialization would be to start with a �π(0) vector

whose probabilities reflect selection from a randomly

2In some cases, the matrix I−S may be ill-conditioned [20]. In our analysis,
we only consider inversion of matrices with condition numbers not exceeding
105.

291



chosen initialization. Let G denote the expected number

of generations. Then

G = �NT�π(0) (8)

B. Information Measures in Markov Searches

The endogenous information of a search for L letters using

an N character alphabet is given in (1). If each iteration

requires K queries (corresponding to K children) the expected

number of queries to do a perfect search is Q = KG where

G is given by (8). So the active information per query is

I⊕ =
L log2 N

KG
. (9)

For all of the Markov matrices considered here, we will use

λ = the number of correct letters

as the state. We will start with a randomly selected string

which could be in any of the possible states. To determine the

probability of starting in a particular state, we need to calculate

the probability of a random string having that many letters in

common with the target string. We can calculate the vector of

starting positions to be used in the initialization as

�π(0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Pr[λ = 0]

Pr[λ = 1]

Pr[λ = 2]
...

Pr[λ = k]
...

Pr[λ = L− 1]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qL

(
L
1

)
qL−1p

(
L
2

)
qL−2p2

...(
L
k

)
qL−kpk

...(
L

L−1

)
qpL−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where p = 1/N , q = 1 − p, and the binomial coefficient

is
(
n
k

)
= n!

k!(n−k)! . We will use this initialization for all of

the algorithms to extract the expected number of queries or

generations before absorption.

Once we have determined the matrix associated with par-

ticular algorithm, we can use (8) to calculate the expected

number of iterations of the algorithm and thus determine the

active information per query extracted through the algorithm.

C. Markov Search
We now apply the Markov model to the analysis of four

different evolutionary search strategies. Unless otherwise in-

dicated, all probabilities in this section (Section III-C) are

assumed to be nonzero only on the interval 0 ≤ λ ≤ L.

(A) K Children Each With a Single Mutation. In the

single mutation scenario, only one of the L characters

is changed in every child of the parent. This is done

by selecting a random position in the sequence and

changing that position to a random character drawn from

the alphabet. We first consider the case where there is

a single child and then when K children are generated

and the best fitness among the children is kept for the

next parent.

• Mutation of One Character per String.

◦ For One Child. We define the following events

� B means the score is better,

� S means the score is the same,

� W means the score is worse,

� g (for good) means the randomly chosen posi-

tion already matches the target, and

� b = ḡ (for bad) means it doesn’t.

Using the theorem of total probability, we eval-

uate three cases.

a) Worse. The probability of a worse score is

Pr[W ] = Pr[W |g]Pr[g] + Pr[W |b]Pr[b]

=
N − 1

N
× λ

L
+ 0× L− λ

L
=

(N − 1)λ
NL

.

(10)

b) Better. The probability of a better score is

Pr[B] = Pr[B|g]Pr[g] + Pr[B|b]Pr[b]

= 0× λ

L
+

1
N
× L− λ

L
=

L− λ

NL
. (11)

c) Same. The probability of the same score is

Pr[S] = Pr[S|g]Pr[g] + Pr[S|b]Pr[b]

=
1
N
× λ

L
+

N − 1
N

× L− λ

L

=
λ + (N − 1)(L− λ)

NL
. (12)

Note that, as expected, Pr[B]+Pr[S]+Pr[W ] = 1.
◦ For K Children. We now consider K offspring.

The mutation result of one child is independent

of another. The best child is chosen to be the

parent of the next generation. When there is a

tie, one is chosen at random. We will assume

the parent has λ correct characters and analyze

whether we do better (λ+1), worse (λ−1), or the

same (λ). Let’s consider the same three cases.3

a) Worse. The only way to get a worse score

is for all the children to have a worse score.

Thus, using (10),

Pr[λ− 1|λ] = (Pr[W ])K =
(

(N − 1)λ
NL

)K

.

(13)

b) Better. The probability of at least one of the

children having a better score than the parent

3As K →∞, we expect to always have a better result. This is confirmed by
the asymptotic values of probabilities in (13), (14) and (15). a) Worse. From
(13), limK→∞ Pr[λ − 1|λ] = 0. b) Better. From (14), limK→∞ Pr[λ +
1|λ] = 1 − limK→∞ [[1− (L− λ)/(NL)]K = 1. c) Same. Lastly,

from (15), limK→∞ Pr[λ|λ] = limK→∞ (1− (L− λ)/(NL))K −
limK→∞ [((N − 1)λ)/(NL)]K = 0

292



is the complement of none of the children

having a better score. Thus, using (11),

Pr[λ + 1|λ] = 1− (
Pr[B̄]

)K

= 1− (1− Pr[B])K = 1−
(

1− L− λ

NL

)K

(14)

c) Same. Since

Pr[λ|λ] = 1− (Pr[λ− 1|λ] + Pr[λ + 1|λ]) ,

we conclude from (13) and (14) that

Pr[λ|λ] =
(

1− L− λ

NL

)K

−
(

(N − 1)λ
NL

)K

.

(15)

With the state λ as a source node, this analysis

can be interpreted using the Markov chain shown

on the left in Figure 1 with transitional probabili-

ties given by (13), (14) and (15). As shown in the

middle of Figure 1, the chain can be equivalently

viewed with λ as a sink node. For the chain with

an absorbing state shown on the bottom right in

Figure 1, there are two special cases to consider.

(1) For λ = 0, we have Pr[λ|λ− 1] = 0. (2) For

λ = L, we have Pr[λ|λ + 1] = 0. Otherwise we

have the following.

a) Coming from state λ + 1. Using (13), we

obtain

Pr[λ|λ + 1] = ((N − 1)(λ + 1)/NL)K

b) Coming from state λ − 1. Likewise, with

λ → λ− 1, (14) gives

Pr[λ|λ− 1] = 1−
(

(N − 1)L + (λ− 1)
NL

)K

c) Staying at state λ. With (15), all transitions

from the λ node in the center entry in Figure 1

are now identified.

• Results. For any particular choice of message

length, L, and alphabet size, N , there will be

a choice of the number of offspring, K, which

gives the smallest number of generations to find

the hidden string. Figure 2(A) shows a plot of the

active information per query where the choice of K
is optimized at each point.

(B) Ratchet Strategy. This strategy is similar to the previous

strategy except that only one child is generated per

generation. A single mutation at a randomly selected

location is performed. If the child has a better Hamming

distance than the parent, it is kept. Otherwise the parent

is asked to generate another child and the process is

repeated.

• One Child Ratchet Analysis. The method of

mutation is the similar to the one child mutation

in Section III-C(A). As before, we evaluate three

cases.

a) Worse. It is impossible to do worse, since

any deleterious mutation will be rejected. Thus

Pr[W ] = 0.
b) Better. The probability of a better score is the

same as before in (11)

Pr[B] =
L− λ

NL
. (16)

c) Same. The probability of the same score can be

derived by adding (12) and (10), since the score

will remain the same if the mutation is either

deleterious or neutral.

Pr[S] =
(N − 1)λ

NL
+

λ + (N − 1)(L− λ)
NL

=
λ + (N − 1)L

NL
. (17)

• Markov Matrix. As before we can use the proba-

bilities to construct a Markov matrix. The chain is

similar to that in the previous case except that there

is no way to move backwards.

a) Coming from state λ − 1. With λ → λ − 1,

(16) gives

Pr[λ|λ− 1] =
L− (λ− 1)

NL

b) Staying at state λ. From (17),

Pr[λ|λ] =
λ + (N − 1)L

NL

The exceptions are (1) λ = 0 for which Pr[λ|λ −
1] = 0, and (2) the absorbing state λ = L for which

Pr[λ|λ] = 1.

• Results. Figure 2(B) shows the active information

per query for the ratchet strategy given different

alphabet sizes and message lengths. Increasing the

message length does not appear to significantly

change the efficiency of active information extrac-

tion. However, increasing the alphabet size has a

rather noticeable effect. The efficiency of informa-

tion extraction decreases. The plot, however, shows

better results than those in Figure 2(A).

(C) Mutating Children With a Fixed Mutation Rate. In

this strategy each letter in the string has a probability of

being changed. Each child will have the same string as

the parent except that each letter will be changed with

a fixed probability, μ.

• For One Child. We use the same notation as in

Section III-C(A) and add M for mutated. Thus M̄
means not mutated.

293



Fig. 1. LEFT: The search problem as a Markov chain. The λ node is shown as a source node. CENTER: An equivalent representation of the Markov model
with λ as a sink node. RIGHT: Non absorbing (top) and absorbing (bottom) cases.

a) Define the probability of worse from good for a

single character as

pw := Pr[W |g]

= Pr[(W |g)|M ]Pr[M ] + Pr[(W |g)|M̄ ]Pr[M̄ ]

=
N − 1

N
μ + 0 =

μ(N − 1)
N

(18)

Then the same from good probability is 1− pw.

We have λ good characters. Let kw denote the

number of the λ good characters that become

bad. Then, for 0 ≤ ω ≤ λ,

Pr[kw = ω] =
(

λ

ω

)
pω

w (1− pw)λ−ω

=
(

λ

ω

)(
μ(N − 1)

N

)ω

×
(

1− μ(N − 1)
N

)λ−ω

(19)

b) Define the probability of better from bad as

pb := Pr[B|ḡ]

= Pr[(B|ḡ|M ]Pr[M ] + Pr[B|ḡ|M̄ ]Pr[M̄ ]

=
1
N

μ + 0 =
μ

N
. (20)

Then the probability of same from bad is 1−pb.

We have L − λ bad characters. Let kb denote

the random variable of the number of L − λ
characters that become good. Then, for 0 ≤ β ≤
L− λ,

Pr[kb = β] =
(

L− λ

β

)
pβ

b (1− pb)
(L−λ)−β

=
(

L− λ

β

)( μ

N

)β (
1− μ

N

)(L−λ)−β

.

The change in Hamming distance is Δλ = kb−kw.
The probability that Δλ = κ is

fΔλ(κ) := Pr[Δλ = κ] =
∑

β−ω=κ

Pr[kb = β]Pr[kw = ω]

which, for −λ ≤ κ ≤ L− λ, can be written

fΔλ(κ) =
min(κ+λ,L−λ)∑

β=max(0,κ)

(
L− λ

β

)
(μπ)β

× (1− μπ)(L−λ)−β

×
(

λ

β − κ

)
(μ(1− π))β−κ

× (1− μ(1− π))λ−(β−κ)
(21)

where π = 1/N.
From (21) the cumulative distribution of Δλ, is

FΔλ(x) = Pr[Δλ ≤ x]

=

⎧⎨
⎩

0 ; x < −λ∑x
κ=−λ fΔλ(κ) ; −λ ≤ κ ≤ L− λ

1 ; x > L− λ.
(22)

• For K Children. For K kids, let the change in the

kth child be Δλk. The largest change is

Δλmax =
K

max
k=1

Δλk

and

FΔλmax(x) = Pr[Δλmax ≤ x] = [FΔλ(x)]K (23)

The corresponding probability mass function is

fΔλmax(x) = FΔλmax(x)− FΔλmax(x− 1). (24)

• Markov Matrix. The probability mass func-

tion in (24) can be explicitly parameterized

as fΔλmax(x, λ). For the mutation example, the

Markov matrix then has elements

pλ,k = fΔλmax(λ, k).

294



Fig. 2. Active information per query, I⊕ (in bits), for three evolutionary
strategies (A) single-mutation presented in Section III-C(A); (B) ratchet
evolutionary strategy discussed in Section III-C(B); and (C) fixed mutation
rate (μ = .05) in Section III-C(C). Continued in Figure 3.

• Results. As illustrated in Figure 2(C), this algo-

rithm has a slow decline in information per query

until it suddenly collapses when the mutation rate

becomes too high. If, for example, we are within a

single character of identifying a phrase, then a mu-

tation rate that gives on average, say, 10 mutations

will take a long time to take the final small step to

perfection.

(D) Optimizing the Mutating Schedule for K Children.
Rather than always using a constant mutation rate, we

can select the optimal mutation rate for each generation.

We can optimize the mutation rate by maximizing the

expected value of Δλmax as a function of μ. Using (23)

and (24)

Fig. 3. (D) Active information per query, I⊕ (in bits), for an evo-
lutionary strategy using optimally scheduled mutation rates presented in
Section III-C(D); and (E) Performance of the Frequency Hamming Oracle
Algorithm presented in Section IV. Continued from Figure 2.

E [Δλmax] =
L−λ+1∑
x=−λ

xfΔλmax(x)

=
L−λ+1∑
x=−λ

x [FΔλmax(x)− FΔλmax(x− 1)]

=
L−λ+1∑
x=−λ

x
[
FK

Δλ(x)− FK
Δλ(x− 1)

]
(25)

where FΔλ(x) is defined by (21) and (22).

Fig. 4. Determining the limits on the sum in (21). On the left is κ > 0 and
the right is κ < 0. The lines shown are kb − kw = κ.

295



• Results. For each value of L and N , we have

optimized4 the active information per query as a

function of mutation rate, μ for each value of λ.

The results are shown in Figure 3(D).

IV. FREQUENCY OF OCCURRENCE HAMMING ORACLE

ALGORITHM

The Markov models use only the current state to determine

the next step in the search. There is no attempt made to use

the history of the search. The frequency of occurrence (FOO)
Hamming oracle algorithm (FOOHOA) does. As one might

expect, the more knowledge a search procedure can effectively

use, the greater the resulting active information per query.

The FOOHOA is an efficient algorithm to find the hidden

string in a Hamming oracle which, unlike the previous stochas-

tic hill-climbing search methods, establishes and updates a

FOO [6] knowledge base. We begin by establishing the FOO

of the string. If a string containing all A’s is submitted

to a Hamming oracle, the oracle’s response will allow the

algorithm to determine how many A’s are in the hidden string.

By repeating this process with all of the letters in the chosen

alphabet, we determine the FOO for all of the letters. If there

are N characters in the alphabet, establishment of the FOO

requires, at most, N −1 queries.5 In rare instances, of course,

the target might be identified with the intially established FOO.

The remainder of the FOOHOA is best explained by ex-

ample. Consider a Hamming oracle using the English letters

as its alphabet and having a message length of 5. Under

this algorithm, we will already know the oracle’s response

to AAAAA, because we have already establish the FOO for all

letters. Consider the query ABAAA.

• If the second letter in the hidden string is A, the distance

will increase.

• If the second letter in the hidden string is B, the distance

will decrease.

• Otherwise, the distance will remain the same.

The query in question will actually test the second position

both for presence of A and B. The FOO Hamming oracle

algorithm uses this principle for all queries after establishing

the frequency of occurrence. It starts on the left side of the

string and works through the string, querying each letter in

order from the FOO list until it discovers the correct letter.

Letters are tested starting with the most frequent because they

have the largest probability of being in any unfilled position.

Once the correct value of a letter has been established, the

FOO table is updated by omitting the contribution of the

identified character.

4 An attempt at maximizing (25)) by differentiation with respect to μ and
setting to zero results in analytic difficulty. Numerical evaluation of (25) is
more straightforward.

5 An even more efficient procedure is to present letters in their frequency
of occurrence in the English language. The space would be first presented
followed by the most commonly used English letter, E. For shorter phrases,
infrequently used letters, like Q and Z, will not occur with high probability.
Knowing this letter ordering is additional knowledge that will on average
increase the per query active information. For our implementation, we do not
use this knowledge and, instead, simply proceed through the alphabet from
A to Z.

The average active information per query, I⊕, for the FOO

Hamming oracle algorithm is shown in Figure 3(E) as a

function of alphabet size, N , and message length, L. The

results are significantly better than the Markov results shown

in the other plots in Figures 2 and 3. Figure 5 shows the active

information per query average across different message lengths

for various alphabet sizes. The FOOHOA is the most effective

algorithm for information extraction measured by queries.

V. OPTIMAL HAMMING SEARCH: A SEARCH FOR THE

SEARCH

For a given oracle, there exists an algorithm that, on average,

extracts the maximum active information per query. For the

Hamming oracle, we are able to search for the optimal algo-

rithm. In general, a search for a search (S4S) is exponentially

more computationally demanding than a search itself [7], [8].

Using an exhaustive inspection of all possible search trees,

we generate an optimal tree search in the sense of maximum

extraction of per query active information from the oracle.

The maximum average active information is obtained when

the search tree has minimal average depth.

At each iteration of a search algorithm, there is some set

of possible hidden strings which have not been ruled out

by previous queries. The algorithm selects a query as some

function of this set. The resulting query and the response

will produce a new subset containing only the strings that

are compatible with the new query result. We want to find

the function mapping these sets to queries that will result in

the lowest average number of queries to determine the target.

We can do so by searching every possible function to find

the optimal one. This is an exhaustive S4S performed on the

original search space. It should not be surprising, therefore,

that the search is very expensive and can only be run for very

small problems.

Fig. 5. Averaged active information per query, I⊕ (in bits), for various
algorithms as a function of alphabet size, N . (A) single-mutation presented
in Section III-C(A); (B) ratcheted single mutation in Section III-C(B) for
one child. (D) Active information per query, I⊕, for an evolutionary strategy
using optimally scheduled mutation rates presented in Section III-C(D) for 100
children; (E) Performance of the FOO Hamming oracle algorithm presented
in Section IV operating on a single agent. These plots are obtained from
Figures 2 and 3 by averaging over 1 ≤ L ≤ 100. The plot in Figure 2(C) is
not included because the problem analysis becomes ill-conditioned in places
and not all data is available.

296



↓ L N → 1 2 3 4 5 6
1 0 1.000 1.667 2.250 2.800 3.333
2 0 1.500 2.337 3.125 3.281 4.611
3 0 2.250 2.889 3.822 - -
4 0 2.750 3.469 - - -
5 0 3.375 - - - -
6 0 3.875 - - - -

TABLE I
EXPECTED NUMBER OF QUERIES, Q, FROM THE SEARCH ALGORITHM

FOUND IN THE S4S OVER ALL SEARCH TREES.

↓ L N → 2 3 4 5 6
1 1.000 0.951 0.889 0.829 0.775
2 1.333 1.359 1.280 1.415 1.121
3 1.333 1.646 1.570 - -
4 1.454 1.827 - - -
5 1.481 - - - -
6 1.548 - - - -

TABLE II
ACTIVE INFORMATION PER QUERY, I⊕ , FROM THE SEARCH ALGORITHM

FOUND IN THE S4S OVER ALL SEARCH TREES.

Tables I and II shows the best possible active information

per query across different message lengths for various alphabet

sizes. On a per query basis, information cannot be extracted

more efficiently.

VI. CONCLUSIONS

By exploring a variety of algorithms we have demonstrated

that the simple Hamming oracle can be used with surprisingly

different degrees of efficiency as measured by query count.

The FOO Hamming oracle algorithm manages to extract

approximately one bit of information per query indicating

that the oracle can be a significant source of information.

In comparison, evolutionary search as modeled by Markov

processes uses the Hamming oracle inefficiently. The success

of a searches derives not from any intrinsic property of the

search algorithm, but from the information available from the

oracle as well as the efficiency of the search algorithm in the

extraction of that information.

A high level interactive simulation of algorithms show-

ing their varying effectiveness in extracting active infor-

mation using a Hamming oracle is available on line at

http://www.EvoInfo.org/.

REFERENCES

[1] Thomas Back, Evolutionary Algorithms in Theory and Practice: Evo-
lution Strategies, Evolutionary Programming, Genetic Algorithms,
Oxford University Press (1996)

[2] Michael Brusco and Stephanie Stahl, Branch-and-Bound Applications
in Combinatorial Data Analysis, Springer (2005)

[3] Gerald J. Burke, Numerical Electromagnetics Code NEC-4, Method
of Moments, Part I: Users Manual, Lawrence Livermore National
Laboratory, 1992

[4] Gerald J. Burke, Numerical Electromagnetics Code NEC-4, Method
of Moments, Part II: Program Description Theory, Lawrence Liver-
more National Laboratory, 1992

[5] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd
ed. New York: Wiley-Interscience, 2006.

[6] William A. Dembski and Robert J. Marks II, “Conservation of Infor-
mation in Search: Measuring the Cost of Success,” IEEE Transactions
on Systems, Man and Cybernetics A, Systems & Humans, vol.5, #5,
September 2009, pp.1051-1061

[7] William A. Dembski and R.J. Marks II, “Bernoulli’s Principle of Insuf-
ficient Reason and Conservation of Information in Computer Search,”
Proceedings of the 2009 IEEE International Conference on Systems,
Man, and Cybernetics. San Antonio, TX, USA - October 2009, pp.
2647-2652.

[8] William A. Dembski and Robert J. Marks II, “The Search for a Search:
Measuring the Information Cost of Higher Level Search,” (in review)

[9] Extended Transient Midterm Stability Program, Version 3.0, Palo Alto,
California, vol. 16, 1993.

[10] Winston Ewert, William A. Dembski and R.J. Marks II, “Evolutionary
Synthesis of Nand Logic: Dissecting a Digital Organism,” Proceedings
of the 2009 IEEE International Conference on Systems, Man, and
Cybernetics. San Antonio, TX, USA - October 2009, pp. 3047-3053.

[11] J.N. Hwang, J.J. Choi, S. Oh, R.J. Marks II, “Query learning based
on boundary search and gradient computation of trained multilayer
perceptrons”, Proceedings of the International Joint Conference on
Neural Networks, San Diego, June, 1990, 17-21 June 1990, vol. III,
pp.III57-III62. c©

[12] J.N. Hwang, J.J. Choi, S. Oh and R.J. Marks II, “Query based learning
applied to partially trained multilayer perceptrons”, IEEE Transactions
on Neural Networks, Vol. 2, pp.131-136, (1991).

[13] C.A. Jensen, M.A. El-Sharkawi and R.J. Marks II, “Power Security
Boundary Enhancement Using Evolutionary-Based Query Learning”,
Engineering Intelligent Systems, vol.7, no.9, pp.215-218 (December
1999).

[14] C.A. Jensen, R.D. Reed, R.J. Marks II, M.A. El-Sharkawi, Jae-Byung
Jung; R.T. Miyamoto, G.M. Anderson, C.J.Eggen, “Inversion of feed-
forward neural networks: algorithms and applications,” Proceedings of
the IEEE, Volume 87, # 9, Sept. 1999, pp. 1536 -1549

[15] C.A. Jensen, M.A. El-Sharkawi and R.J. Marks II, “Power System Secu-
rity Assessment Using Neural Networks: Feature Selection Using Fisher
Discrimination,” IEEE Transactions on Energy Conversion, vol.16, no.4,
pp.757-763 (November, 2001).

[16] J.D. Lohn, D.S. Linden, G.S. Hornby, A. Rodriguez-Arroyo, S.E.
Seufert, B. Blevins, T. Greenling. “Evolutionary design of an X-band
antenna for NASA’s Space Technology 5 mission,” 2004 IEEE Antennas
and Propagation Society International Symposium, Volume 3, 20-25
June 2004 pp.2313 - 2316

[17] J.D. Lohn, D.S. Linden, G.S. Hornby, W.F. Kraus. “Evolutionary design
of a single-wire circularly-polarized X-band antenna for NASA’s Space
Technology 5 mission,” 2005 IEEE International Symposium Antennas
and Propagation Society, Volume 2B, 3-8 July 2005 pp.267 - 270

[18] J. Kittler, A. Etemadi, and N. Choakjarernwanit, “Feature selection and
extraction in pattern recognition,” in Pattern Recognition and Image
Processing in Physics, R. A Vaughan, Ed., 1990, Proceedings of the
37th Scottish University summer school in physics.

[19] D. J. C. MacKay, Information Theory, Inference and Learning
Algorithms. Cambridge, U.K.: Cambridge Univ. Press, 2002.

[20] R.J. Marks II, Handbook of Fourier Analysis and Its Applications,
Oxford University Press, (2009).

[21] S.Oh, R.J. Marks II and M.A. El-Sharkawi, “Query based learning in a
multilayered perceptron in the presence of data jitter”, Applications of
Neural Networks to Power Systems, (Proceedings of the First Interna-
tional Forum on Applications of Neural Networks to Power Systems),
July 23-26, 1991, Seattle, WA, (IEEE Press, pp.72-75).

[22] Russell D. Reed and R.J. Marks II. Neural Smithing: Supervised
Learning in Feedforward Artificial Neural Networks, (MIT Press,
Cambridge, MA, 1999.)

[23] T. D. Schneider, “Evolution of biological information,” Nucleic Acids
Res., vol. 28, no. 14, pp. 27942799, Jul. 2000.

[24] William M. Spears, Evolutionary Algorithms: The Role of Mutation
and Recombination, Springer (2004)

[25] William J. Stewart, Probability, Markov Chains, Queues, and Simu-
lation: The Mathematical Basis of Performance Modeling, Princeton
University Press (2009)

−�−

297


