Meshing in Fixed Dimension in near Optimal Work and Time
Sequential and Parallel

Benoit Hudson
Gary Miller
Todd Phillips

Carnegie Mellon University

Ohio
November 15, 2007
Meshing Problem Introduction

Introduction
Shape Guarantees and Conformity
Output Size and Runtime
Remaining Overview

Meshing Algorithms and SVR
Delaunay and Voronoi Meshing
Main Ideas of SVR
SVR Description
Conforming to Higher Dimensional Features
Communication and Point Location Data Structures.

SVR Runtime Guarantees
Quality Invariants
Refinement Timing
Point Location Timing
Early Implementation

Conclusions, Future Work
What is Meshing?

Begin with a geometric domain (Features)
What is Meshing?

- Begin with a geometric domain (Features)
- Decompose into Simple Pieces
 Quadrilaterals, Triangles, Hexahedra, Tetrahedra
What is Meshing?

- Begin with a geometric domain (Features)
- Decompose into Simple Pieces
 Quadrilaterals, Triangles, Hexahedra, Tetrahedra
- Applications for Physical Simulation or Graphics
What is Meshing?

- Begin with a geometric domain (Features)
- Decompose into Simple Pieces
 - Quadrilaterals, **Triangles**, Hexahedra, **Tetrahedra**
- Applications for Physical Simulation or Graphics
What good are meshes?

They are used to represent functions

- Temperature, pressure, and velocity
What good are meshes?

They are used to represent functions

- Temperature, pressure, and velocity
- A surface – Mickey Mouse
What good are meshes?

They are used to represent functions

- Temperature, pressure, and velocity
- A surface – Mickey Mouse
- Continuous or better and discontinuous at boundaries
What good are meshes?

They are used to represent functions

- Temperature, pressure, and velocity
- A surface – Mickey Mouse
- Continuous or better and discontinuous at boundaries
- Geometric data structure – Intel chip
Who Uses Meshes?

- Everyone uses meshes!
Who Uses Meshes?

- Everyone uses meshes!
- No One uses meshes!
Who Uses Meshes?

- Everyone uses meshes!
- No One uses meshes!
- Meshes are missing in many physical simulations
Who Uses Meshes?

- Everyone uses meshes!
- No One uses meshes!
- Meshes are missing in many physical simulations
- Many people go to amazing ends not to mesh.
What do People say about the meshing problem?

- Half the people say the problem is solved.
What do People say about the meshing problem?

- Half the people say the problem is solved.
- The other half say the problem is impossible.
The Static Meshing Problem

Meshing Algorithm Requirements:
- Guarantees on Element Quality
The Static Meshing Problem

Meshing Algorithm Requirements:
- Guarantees on Element Quality
- Conform to Input Features
The Static Meshing Problem

Meshing Algorithm Requirements:

- Guarantees on Element Quality
- Conform to Input Features
- Guarantees on Output Size
The Static Meshing Problem

Meshing Algorithm Requirements:

- Guarantees on Element Quality
- Conform to Input Features
- Guarantees on Output Size
- Efficient Runtime and Space Usage
A Simple Example
Skinny Elements Bad, Round Elements Better
Skinny Elements Bad, Round Elements Better
Skinny Elements Bad, Round Elements Better
Determining Element Quality

- What does it mean to be round?
Determining Element Quality

- What does it mean to be round?
- Bounded Aspect Ratio
Determining Element Quality

- What does it mean to be round?
- Bounded Aspect Ratio
- Bounded Radius-Edge Ratio
Determining Element Quality

- What does it mean to be round?
- Bounded Aspect Ratio
- Bounded Radius-Edge Ratio
- Input Parameter Determines “Good”
Topologically Conforming Meshes

- In 2 Dimensions, Features are Vertices and Edges
Topologically Conforming Meshes

- In 2 Dimensions, Features are Vertices and Edges
- Mesh Must Contain Features (Topologically Conform)
Local Feature Size (lfs)

\[\text{lfs}(x) = \text{distance to second nearest disjoint feature} \]
Local Feature Size (lfs)

- $lfs(x) = \text{distance to second nearest disjoint feature}$
Local Feature Size (lfs)

$lfs(x) = \text{distance to second nearest disjoint feature}$
Local Feature Size (lfs)

- $lfs(x) = \text{distance to second nearest disjoint feature}$
- For feature sets of only vertices, we can ignore “disjoint”
Local Feature Size (lfs)

- \(lfs(x) = \text{distance to second nearest disjoint feature} \)
- For feature sets of only vertices, we can ignore “disjoint”
- If \(v \) is a Vertex?
Local Feature Size (lfs)

- $lfs(x) =$ distance to second nearest disjoint feature
- For feature sets of only vertices, we can ignore “disjoint”
- If v is a Vertex? $NN(v)$
Geometrically Conforming Mesh

- We could think of just conforming to the l_{fs}
Geometrically Conforming Mesh

- We could think of just conforming to the |lfs|
- $|E| \in O(lfs(V_1)), O(lfs(V_2))$ or perhaps just $|E| \in O(lfs)$
Geometrically Conforming Mesh

- We could think of just conforming to the lfs
- $|E| \in O(lfs(V_1)), O(lfs(V_2))$ or perhaps just $|E| \in O(lfs)$
- Critical definition for analysis.
Mesh Size Lower Bound

Theorem: Given a set of input features, any geometrically conforming mesh with good with bounded aspect ratio elements, the number of vertices must be:

\[\Omega \left(\int_{D} \frac{1}{lfs^d(x)} dx \right) \]

Note: A bounded radius-edge mesh maybe smaller
$O(1)$-Approximations to Optimal Size

In general, if we guarantee that:

$$|E| \in \Omega(lfs)$$

then the number of vertices is:

$$O\left(\int_D \frac{1}{lfs^d(x)} d\mathbf{x}\right)$$

So we have a constant factor approximation to an Optimal Size Mesh.
O(1)-Approximations to Optimal Size

In general, if we guarantee that:

\[|E| \in \Omega(lfs) \]

then the number of vertices is:

\[O\left(\int_{D} \frac{1}{lfs^d(x)} dx\right) \]

So we have a constant factor approximation to an Optimal Size Mesh.

After post processing to remove slivers (Li & Teng)
Notations and Runtime

Size of Input (Number of Features): \(n \)

Size of Output (Points): \(m \)

Constant Dimension: \(d \)

Spread of Input: \(L/s \)
Notations and Runtime

Size of Input (Number of Features): \(n \)
Size of Output (Points): \(m \)
Constant Dimension: \(d \)
Spread of Input: \(\frac{L}{s} \)
Notations and Runtime

Size of Input (Number of Features): n

Size of Output (Points): m

Constant Dimension: d

Spread of Input: L/s
Notations and Runtime

Size of Input (Number of Features): \(n \)
Size of Output (Points): \(m \)
Constant Dimension: \(d \)
Spread of Input: \(L/s \)

- Optimal Runtime is \(O(n \log n + m) \) (Sorting Lower Bound)
Notations and Runtime

- Size of Input (Number of Features): n
- Size of Output (Points): m
- Constant Dimension: d
- Spread of Input: L/s

- Optimal Runtime is $O(n \log n + m)$ (Sorting Lower Bound)
- We can obtain is $O(n \log \frac{L}{s} + m)$
 Optimal if Spread $\in O(n^k)$
Notations and Runtime

Size of Input (Number of Features): n
Size of Output (Points): m
Constant Dimension: d
Spread of Input: L/s

- Optimal Runtime is $O(n \log n + m)$ (Sorting Lower Bound)
- We can obtain is $O(n \log L/s + m)$
 Optimal if Spread $\in O(n^k)$
- More like $O(d!(n \log L/s + m))$, maybe $O(k^d(n \log L/s + m))$
Remainder of Talk

- Review existing algorithms with size/shape/conformal guarantees
Remainder of Talk

- Review existing algorithms with size/shape/conformal guarantees
- A New Algorithm: **Sparse Voronoi Refinement** (SVR)
Remainder of Talk

- Review existing algorithms with size/shape/conformal guarantees
- A New Algorithm: **Sparse Voronoi Refinement** (SVR)
 - Size and Quality Guaranteed
Remainder of Talk

- Review existing algorithms with size/shape/conformal guarantees
- A New Algorithm: **Sparse Voronoi Refinement** (SVR)
 - Size and Quality Guaranteed
 - Near-Optimal Runtime
Remainder of Talk

- Review existing algorithms with size/shape/conformal guarantees
- A New Algorithm: **Sparse Voronoi Refinement (SVR)**
 - Size and Quality Guaranteed
 - Near-Optimal Runtime
 - Conforms to Features
Remainder of Talk

- Review existing algorithms with size/shape/conformal guarantees
- A New Algorithm: **Sparse Voronoi Refinement** (SVR)
 - Size and Quality Guaranteed
 - Near-Optimal Runtime
 - Conforms to Features
- Bird’s-Eye View of Runtime Proof
Runtime Efficient Meshing Algorithms

- Quadtree 2D points $O(n \log n + m)$ \cite{BEG93} (edges??)
Runtime Efficient Meshing Algorithms

- Quadtree 2D points $O(n \log n + m)$ [BEG93] (edges??)
- Parallel 2D Refinement [STU02] $O(\log^2 n)$
Runtime Efficient Meshing Algorithms

- Quadtree 2D points $O(n \log n + m)$ \cite{BEG93} (edges??)
- Parallel 2D Refinement \cite{STU02} $O(\log^2 n)$
- 3D Structured Octrees \cite{MV99} $O(n \cdot m)$
Runtime Efficient Meshing Algorithms

- Quadtree 2D points $O(n \log n + m)$ \cite{BEG93} (edges??)
- Parallel 2D Refinement \cite{STU02} $O(\log^2 n)$
- 3D Structured Octrees \cite{MV99} $O(n \cdot m)$
- 2D \cite{M04} $O((n \log n + m) \log n)$
Runtime Efficient Meshing Algorithms

- Quadtree 2D points $O(n \log n + m)$ \[BEG93\] (edges??)
- Parallel 2D Refinement \[STU02\] $O(\log^2 n)$
- 3D Structured Octrees \[MV99\] $O(n \cdot m)$
- 2D \[M04\] $O((n \log n + m) \log n)$
- 2D points \[HU05\] $O(n \log n + m)$–Off-Centers
Runtime Efficient Meshing Algorithms

- Quadtree 2D points $O(n \log n + m)$ \cite{BEG93} (edges??)
- Parallel 2D Refinement \cite{STU02} $O(\log^2 n)$
- 3D Structured Octrees \cite{MV99} $O(n \cdot m)$
- 2D \cite{M04} $O((n \log n + m) \log n)$
- 2D points \cite{HU05} $O(n \log n + m)$–Off-Centers
- This is all assuming $L/s \in poly(n)$
Main Result

Theorem

Bounded aspect ratio meshing in any fixed dimension in $O(n \log L/s + m)$ *work and parallel time* $O(\log n \log L/s)$.

The Delaunay Mesh
The Delaunay Mesh

► Empty Circumball Property
The Delaunay Mesh

- Empty Circumball Property
The Delaunay Mesh

- Empty Circumball Property
- Delaunay Triangles Give a Triangulation (Tetrahedralization)
The Delaunay Mesh

- Empty Circumball Property
- Delaunay Triangles Give a Triangulation (Tetrahedralization)
- By keeping balls empty we can insure conformity.
The Delaunay Mesh

- Empty Circumball Property
- Delaunay Triangles Give a Triangulation (Tetrahedralization)
- By keeping balls empty we can insure conformity.
The Delaunay Mesh

- Empty Circumball Property
- Delaunay Triangles Give a Triangulation (Tetrahedralization)
- By keeping balls empty we can insure conformity.
Voronoi Diagrams
Voronoi Diagrams
Voronoi Diagrams

- Nearest Neighbor Partition
Voronoi Diagrams

- Nearest Neighbor Partition
- Dual to the Delaunay Triangulation
Delaunay Refinement Algorithm

- Obtain the Delaunay Triangulation
- **While** there are poor elements (**Clean** move)
 - Destroy a Poor Quality Element by Inserting the Circumcenter
 - Update the Delaunay
Delaunay Refinement Algorithm

- Obtain the Delaunay Triangulation
- **While** there are poor elements (**Clean** move)
 - Destroy a Poor Quality Element by Inserting the Circumcenter
 - Update the Delaunay
Delaunay Refinement Algorithm

- Obtain the Delaunay Triangulation
- **While** there are poor elements (*Clean* move)
 - Destroy a Poor Quality Element by Inserting the Circumcenter
 - Update the Delaunay
Delaunay Refinement Algorithm

- Obtain the Delaunay Triangulation
- **While** there are poor elements (**Clean** move)
 - Destroy a Poor Quality Element by Inserting the Circumcenter
 - Update the Delaunay
Delaunay Refinement Algorithm

- Obtain the Delaunay Triangulation
- **While** there are poor elements *(Clean move)*
 - Destroy a Poor Quality Element by Inserting the Circumcenter
 - Update the Delaunay
Delaunay Refinement Algorithm

- Obtain the Delaunay Triangulation
- **While** there are poor elements (**Clean** move)
 - Destroy a Poor Quality Element by Inserting the Circumcenter
 - Update the Delaunay
Incremental Delaunay Refinement Algorithms

- Skinny triangles really happen in real examples!
Ruppert’s Algorithm Guarantees

- Theorem (Ruppert): This terminates with

\[|E| \in \Omega(lfs) \]
Ruppert’s Algorithm Guarantees

- Theorem (Ruppert): This terminates with

 \[|E| \in \Omega(lfs) \]

- By Design: All output elements have quality guarantees
Ruppert’s Algorithm Guarantees

- Theorem (Ruppert): This terminates with

$$|E| \in \Omega(lfs)$$

- By Design: All output elements have quality guarantees
- Nontrivial Fact: The output size is $O(1)$-Optimal.
Runtime Concerns

- Good Average-Case Runtime Maybe?
Runtime Concerns

- Good Average-Case Runtime Maybe?
- Bounded below by time to obtain the Delaunay triangulation. Therefore: worst case is: $\Omega(n^{\lceil d/2 \rceil})$
Runtime Concerns

- Good Average-Case Runtime Maybe?
- Bounded below by time to obtain the Delaunay triangulation. Therefore: worst case is: $\Omega(n^{\lceil d/2 \rceil})$
- Thus 3-D space/time is $\Omega(n^2)$
\(\Theta(n^2)\) Configurations Can Happen in Practice

- Arises due to skew edges
$\Theta(n^2)$ Configurations Can Happen in Practice

- Arises due to skew edges
- Delaunay Connectivity has all Vertical/Horizontal pairs: \((n/2)^2\)
$\Theta(n^2)$ Configurations Can Happen in Practice

- Arises due to skew edges
- Delaunay Connectivity has all Vertical/Horizontal pairs: $(n/2)^2$
- Never actually contained in Final Output Mesh
$\Theta(n^2)$ Configurations Can Happen in Practice

- Arises due to skew edges
- Delaunay Connectivity has all Vertical/Horizontal pairs: $(n/2)^2$
- Never actually contained in Final Output Mesh
 - How can we avoid creating such intermediate structures?
Two Competing Goals

- Opposing Goals of Quality and Conformity Create Work
Two Competing Goals

- Opposing Goals of Quality and Conformity Create Work
Two Competing Goals

- Opposing Goals of Quality and Conformity Create Work

Delaunay and Voronoi Meshing
Main Ideas of SVR
SVR Description
Conforming to Higher Dimensional Features
Communication and Point Location Data Structures.
Two Competing Goals

- Opposing Goals of Quality and Conformity Create Work
- Ruppert’s Algorithm: Always Conforming, Gradually Quality
Two Competing Goals

- Opposing Goals of Quality and Conformity Create Work
- Ruppert’s Algorithm: Always Conforming, Gradually Quality
Two Competing Goals

- Opposing Goals of Quality and Conformity Create Work
- Ruppert’s Algorithm: Always Conforming, Gradually Quality
- **SVR Main Idea:** Always Quality, Gradually Conforming
SVR in Abstract

- **Outer Loop Invariant**: Mesh Is Quality
- **While** Mesh is not Conforming
 - Try to Conform a Little Bit More
 - **While** Mesh is not Quality
 - Destroy Poor Quality Element (Insert it’s CC, Update Delaunay)
SVR in Action

Maintaining Quality, Gradually Conform
Gradual Mesh Size Decrease
Try to Conform a Little Bit More . . .

- Break
 - Move
Try to Conform a Little Bit More . . .

- **Break** Move
- Pick some cell that contains uninserted points still doesn’t conform
Try to Conform a Little Bit More . . .

- **Break** Move
- Pick some cell that contains uninserted points still doesn’t conform
- Try to insert furthest corner of the cell
Try to Conform a Little Bit More . . .

- **Break** Move
- Pick some cell that contains uninserted points still doesn’t conform
- Try to insert furthest corner of the cell
- **Eagerly** keep track of where I still need to conform:
The Priority Queue for SVR

- Cell-Queue (Tet)
The Priority Queue for SVR

- Cell-Queue (Tet)
- Cells in Queue
The Priority Queue for SVR

- Cell-Queue (Tet)
- Cells in Queue
 - Bad-Aspect-Ratio Cells (Clean Move)
The Priority Queue for SVR

- Cell-Queue (Tet)
- Cells in Queue
 - Bad-Aspect-Ratio Cells (Clean Move)
 - Cells containing uninserted points (Break Move)
The Priority Queue for SVR

- Cell-Queue (Tet)
- Cells in Queue
 - Bad-Aspect-Ratio Cells (Clean Move)
 - Cells containing uninserted points (Break Move)
- Process Cell in Cell-Queue with
 TRY-TO-INSERT(furthest point of Cell)
The Priority Queue for SVR

- Cell-Queue (Tet)
- Cells in Queue
 - Bad-Aspect-Ratio Cells (Clean Move)
 - Cells containing uninserted points (Break Move)
- Process Cell in Cell-Queue with
 TRY-TO-INSERT(furthest point of Cell)
- Priority clean moves first
Inserting Points

TRY-TO-INSERT\((P) \) IF \(\exists \) “nearby” uninserted point \(Q \) THEN add \(Q \) ELSE \(P \)
Priority Queue: Clean before Breaks
Conflicts Between Goals

- Notice the Break Move need not do any conforming!
Conflicts Between Goals

- Notice the Break Move need not do any conforming!
- Whenever we *Destroy Element*, we might need to \texttt{yield}
Conflicts Between Goals

- Notice the Break Move need not do any conforming!
- Whenever we Destroy Element, we might need to yield
- If a Queue Point is relatively close, insert that instead
Conflicts Between Goals

- Notice the Break Move need not do any conforming!
- Whenever we *Destroy Element*, we might need to **yield**
- If a Queue Point is *relatively close*, insert that instead
Conflicts Between Goals

- Notice the Break Move need not do any conforming!
- Whenever we Destroy Element, we might need to **yield**
- If a Queue Point is relatively close, insert that instead
Conflicts Between Goals

- Notice the Break Move need not do any conforming!
- Whenever we *Destroy Element*, we might need to *yield*
- If a Queue Point is *relatively close*, insert that instead
- Reasoning behind the Eagerness of the Conformity Queue
Termination Guarantee

This yielding is enough to give us termination with

$$|E| \in \Omega(\text{lfs})$$

By design, we have output with quality elements and conforming, hence we output an $O(1)$-Optimal Mesh.
Termination Guarantee

This yielding is enough to give us termination with

\[|E| \in \Omega(lfs) \]

By design, we have output with quality elements and conforming, hence we output an \(O(1) \)-Optimal Mesh.

Were we successful in avoiding the bad intermediate stages?
Sparse Voronoi Refinement

- A Re-Scheduled Version of a Traditional Incremental Meshing Algorithm.
Sparse Voronoi Refinement

- A Re-Scheduled Version of a Traditional Incremental Meshing Algorithm.
- Yielding procedure can be varied
Sparse Voronoi Refinement

- A Re-Scheduled Version of a Traditional Incremental Meshing Algorithm.
- Yielding procedure can be varied
 - Yielding less often is faster
Sparse Voronoi Refinement

- A Re-Scheduled Version of a Traditional Incremental Meshing Algorithm.
- Yielding procedure can be varied
 - Yielding less often is faster
 - Yielding more often is closer to original schedule (better mesh size guarantee).
Insuring Conforming by Maintaining empty Balls

- Each Edge is meshed into segments and protective balls.
Insuring Conforming by Maintaining empty Balls

- Each Edge is meshed into segments and protective balls.
- Each Face is meshed into triangles and protective balls.
Insuring Conforming by Maintaining empty Balls

- Each Edge is meshed into segments and protective balls.
- Each Face is meshed into triangles and protective balls.
Balls and Multiple Meshes

- In the Queue, we add protective *Balls* around each feature.
Balls and Multiple Meshes

- In the Queue, we add protective *Balls* around each feature.
- These get handled just like conforming to points (0-dimensional balls)
Balls and Multiple Meshes

- In the Queue, we add protective *Balls* around each feature.
- These get handled just like conforming to points (0-dimensional balls)
- Add one operation, to subdivide a Ball
Balls and Multiple Meshes

- In the Queue, we add protective *Balls* around each feature.
- These get handled just like conforming to points (0-dimensional balls)
- Add one operation, to subdivide a Ball
- Maintain a Lower-Dimensional Mesh/Subdivision of Each Feature
Balls and Multiple Meshes

- In the Queue, we add protective \textit{Balls} around each feature.
- These get handled just like conforming to points (0-dimensional balls)
- Add one operation, to subdivide a Ball
- Maintain a Lower-Dimensional Mesh/Subdivision of Each Feature
- Lower Dimensional Meshes Recursively have their own conformity queues.
Handling Features

3D Mesh, Queue of Uninserted Features, 2D Mesh
Handling Features

3D Mesh Wants to Insert a Point
Handling Features

Does it Encroach on Any Balls on the Queue?
Handling Features

Yield to a lower Dimensional Insertion
Handling Features

Perform an Insertion in the Lower Dimensional Mesh
Handling Features

Update the Higher Dimensional Queue
Handling Features

Try Again
Handling Features

In General, Meshes and Queues at Every Level
Cells Points and Balls

Abstract Objects:

- **Cell**: A Voronoi cell of an inserted point

Structures:
Cells Points and Balls

Abstract Objects:

- **Cell**: A Voronoi cell of an inserted point
- **Point**: An uninserted input or Steiner point

Structures:
Cells Points and Balls

Abstract Objects:
- **Cell**: A Voronoi cell of an inserted point
- **Point**: An uninserted input or Steiner point
- **Ball**: A protective Voronoi ball

Structures:
Cells Points and Balls

Abstract Objects:

- **Cell**: A Voronoi cell of an inserted point
- **Point**: An uninserted input or Steiner point
- **Ball**: A protective Voronoi ball

Structures:

- For each Cell a list of Points in it
Cells Points and Balls

Abstract Objects:

- Cell: A Voronoi cell of an inserted point
- Point: An uninserted input or Steiner point
- Ball: A protective Voronoi ball

Structures:

- For each Cell a list of Points in it
- For each Cell a list of Balls intersecting it.
Cells Points and Balls

Abstract Objects:
- Cell: A Voronoi cell of an inserted point
- Point: An uninserted input or Steiner point
- Ball: A protective Voronoi ball

Structures:
- For each Cell a list of Points in it
- For each Cell a list of Balls intersecting it.
- For each Ball a list of Cells intersecting it.
Cells Points and Balls

Abstract Objects:

- **Cell**: A Voronoi cell of an inserted point
- **Point**: An uninserted input or Steiner point
- **Ball**: A protective Voronoi ball

Structures:

- For each Cell a list of Points in it
- For each Cell a list of Balls intersecting it.
- For each Ball a list of Cells intersecting it.
- For each Point a list of Cells containing it.
Always Quality Mesh

- Outer Loop Invariant: Mesh Is Quality
- Until Mesh is Conforming
 - Try to Conform a Little Bit More
 - Until Mesh is Quality
 - Destroy Poor Quality Element (Insert it’s CC)
Always Quality Mesh

- Outer Loop Invariant: Mesh Is Quality
- Until Mesh is Conforming
 - Try to Conform a Little Bit More
 - Until Mesh is Quality
 - Destroy Poor Quality Element (Insert it’s CC)

- Always Have Quality at the Outer Loop
Always Quality Mesh

- Outer Loop Invariant: Mesh Is Quality
- Until Mesh is Conforming
 - Try to Conform a Little Bit More
 - Until Mesh is Quality
 - Destroy Poor Quality Element (Insert it’s CC)

- Always Have Quality at the Outer Loop
- Our worry is that sometime during the Inner Loop, we could reach a poor state
Always Quality Mesh

- Outer Loop Invariant: Mesh Is Quality
- Until Mesh is Conforming
 - Try to Conform a Little Bit More
 - Until Mesh is Quality
 - Destroy Poor Quality Element (Insert it’s CC)

- Always Have Quality at the Outer Loop
- Our worry is that sometime during the Inner Loop, we could reach a poor state
- In Fact, we always have a “Weak-Quality” bound.
Overall Runtime

- We have the Weak-Quality Invariant
Overall Runtime

- We have the Weak-Quality Invariant
- Want to get $O(n \log L/s + m)$ runtime
Overall Runtime

- We have the Weak-Quality Invariant
- Want to get $O(n \log L/s + m)$ runtime
- Split:
 - $O(m)$ time Building/Maintaining the mesh
 - $O(n \log L/s)$ time maintaining the Conformity Queue
Quality Gives Degree Bound

- **Theorem:** [MTTW96] Every vertex in a good radius-edge mesh has constant degree.
Quality Gives Degree Bound

- **Theorem:** [MTTW96] Every vertex in a good radius-edge mesh has constant degree.
- SVR is always updating a **Sparse** Mesh.
Quality Gives Degree Bound

- **Theorem:** [MTTW96] Every vertex in a good radius-edge mesh has constant degree.
- SVR is always updating a **Sparse** Mesh.
Sparse Mesh Updating

- New Vertices Are Constant Degree After Insertion
Sparse Mesh Updating

- New Vertices Are Constant Degree After Insertion
- Each Insertion Took Constant Work
Sparse Mesh Updating

- New Vertices Are Constant Degree After Insertion
- Each Insertion Took Constant Work
- Total mesh construction work is $O(m)$.
Point Location Events

- Two types of Events:
 - Look for Someone to Yield To
Point Location Events

- Two types of Events:
 - Look for Someone to Yield To
 - Relocation after a mesh insertion
- Cost is Queue points handled
Point Location Events

- Two types of Events:
 - Look for Someone to Yield To
 - Relocation after a mesh insertion

- Cost is Queue points handled

- Two types happen at the “same time” with the “same cost”
Work Per Event

- One Event could take large work, many queue points handled. (Naively $O(mn)$)
Work Per Event

- One Event could take large work, many queue points handled. (Naively $O(mn)$)
Work Per Event

- One Event could take large work, many queue points handled. (Naively $O(mn)$)
- Amortized Analysis
Work Per Event

- One Event could take large work, many queue points handled. (Naively $O(mn)$)
- **Amortized Analysis**
- Charge Event Work to the queue points involved (k events per queue point)
Work Per Event

- One Event could take large work, many queue points handled. (Naively $O(mn)$)
- **Amortized Analysis**
- Charge Event Work to the queue points involved (k events per queue point)
- Total Work: $O(nk)$
Bounding k

- Geometric “Scale” r of the insertion of some vertex v
Bounding \(k \)

- Geometric “Scale” \(r \) of the insertion of some vertex \(v \)

- **Theorem:** In a quality mesh, if an insertion affects a queue point \(q \), then:

\[
r \in \Omega(||v, q||)
\]
Bounding k

- Geometric “Scale” r of the insertion of some vertex v
- **Theorem:** In a quality mesh, if an insertion affects a queue point q, then:

$$r \in \Omega(||v, q||)$$
Bounding k

- Geometric “Scale” r of the insertion of some vertex v

- **Theorem:** In a quality mesh, if an insertion affects a queue point q, then:

$$r \in \Omega(||v, q||)$$
Bounding k

- Geometric "Scale" r of the insertion of some vertex v
- **Theorem:** In a quality mesh, if an insertion affects a queue point q, then:

$$r \in \Omega(||v, q||)$$
A Packing Argument

- Radius Doubling Annulus around q

\[
R \leq d \leq 2R
\]

\[
r \in \Omega(R)
\]
A Packing Argument

- Radius Doubling Annulus around q
- Balls in Each Annulus are $\Omega(R)$, Essentially Disjoint
A Packing Argument

- Radius Doubling Annulus around q
- Balls in Each Annulus are $\Omega(R)$, Essentially Disjoint
- Volume of Annulus is $O(R^d)$, Volume of Event is $\Omega(R^d)$
A Packing Argument

- Radius Doubling Annulus around q
- Balls in Each Annulus are $\Omega(R)$, Essentially Disjoint
- Volume of Annulus is $O(R^d)$, Volume of Event is $\Omega(R^d)$
- $O(1)$ Events per Annulus affecting q
Total Point Location Time

- How many total annulii around q? Largest is L, smallest?
Total Point Location Time

- How many total annulii around q? Largest is L, smallest?
- $|E| \in \Omega(1fs)$, thus $|E| \in \Omega(s)$
Total Point Location Time

- How many total annuli around q? Largest is L, smallest?
- $|E| \in \Omega(\text{lfs})$, thus $|E| \in \Omega(s)$
- $\log L/s$
Total Point Location Time

- How many total annulii around q? Largest is L, smallest?
- $|E| \in \Omega(lfs)$, thus $|E| \in \Omega(s)$
- $\log L/s$
- $O(n \log L/s)$ total work to maintain Conformity Queue
Intersection Sizes

Theorem

Suppose \mathcal{V} bded aspect ratio Voronoi diagram and B is a ball with no points of \mathcal{V} in its interior then B intersects a bded number cells.

False: Need center of B is in convex closure of points of \mathcal{V}.
Intersection Sizes
Intersection Sizes

Theorem

Over life of SVR \#cells containing an input point \(O(\log L/s) \).
Intersection Sizes

Theorem

Over life of SVR \#cells containing an input point \(O(\log L/s). \)
Intersection Sizes

- **Theorem**

 Over life of SVR $\#$ cells containing an input point $O(\log L/s)$.

- **Theorem**

 Over life of SVR $\#$ cells containing an Steiner point $O(1)$.
Intersection Sizes

- **Theorem**

 Over life of SVR the number of cells containing an input point $O(\log L/s)$.

- **Theorem**

 Over life of SVR the number of cells containing a Steiner point $O(1)$.
Intersection Sizes

- **Theorem**

 Over life of SVR \#cells containing an input point \(O(\log L/s) \).

- **Theorem**

 Over life of SVR \#cells containing an Steiner point \(O(1) \).

- **Theorem**

 Over life of SVR \#cells intersecting an original ball \(O(\log L/s) \).
Intersection Sizes

- **Theorem**

 Over life of SVR #cells containing an input point $O(\log L/s)$.

- **Theorem**

 Over life of SVR #cells containing an Steiner point $O(1)$.

- **Theorem**

 Over life of SVR #cells intersecting an original ball $O(\log L/s)$.
Intersection Sizes

- **Theorem**

 Over life of SVR \#cells containing an input point \(O(\log L/s) \).

- **Theorem**

 Over life of SVR \#cells containing an Steiner point \(O(1) \).

- **Theorem**

 Over life of SVR \#cells intersecting an original ball \(O(\log L/s) \).

- **Theorem**

 Over life of SVR \#cells intersecting a created ball \(O(1) \).
Overall Runtime Bound

\[O(n \log L/s + m) \]
Overall Runtime Bound

- $O(n \log L/s + m)$
- Notice: $O(m)$ Optimal Space Usage because of Sparsity
Research Implementation (3D Point Sets)

Quadratic Delaunay Example
Problem Size: $n = 1000$
Research Implementation (3D Point Sets)

Quadratic Delaunay Example
Problem Size: $n = 1000$

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Lifetime</th>
<th>MaxTets</th>
<th>Worst Degree</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyramid</td>
<td>1.3M Tets</td>
<td>1.0M</td>
<td>1000 (84 avg.)</td>
<td>14K V, 87K Tets</td>
</tr>
<tr>
<td>SVR</td>
<td>308K Tets</td>
<td>81K</td>
<td>39 (24 avg.)</td>
<td>13K V, 81K Tets</td>
</tr>
</tbody>
</table>
Research Implementation (3D Point Sets)

Quadratic Delaunay Example
Problem Size: \(n = 1000 \)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Lifetime</th>
<th>MaxTets</th>
<th>Worst Degree</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyramid</td>
<td>1.3M Tets</td>
<td>1.0M</td>
<td>1000 (84 avg.)</td>
<td>14K V, 87K Tets</td>
</tr>
<tr>
<td>SVR</td>
<td>308K Tets</td>
<td>81K</td>
<td>39 (24 avg.)</td>
<td>13K V, 81K Tets</td>
</tr>
</tbody>
</table>

\(n = 10000 \), Pyramid runs out of Memory (1.25 Gig Laptop)
SVR outputs 774K Tets, sees 2.7M Lifetime, worst case degree is 41
Research Implementation (3D Point Sets)

Quadratic Delaunay Example
Problem Size: \(n = 1000 \)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Lifetime</th>
<th>MaxTets</th>
<th>Worst Degree</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyramid</td>
<td>1.3M Tets</td>
<td>1.0M</td>
<td>1000 (84 avg.)</td>
<td>14K V, 87K Tets</td>
</tr>
<tr>
<td>SVR</td>
<td>308K Tets</td>
<td>81K</td>
<td>39 (24 avg.)</td>
<td>13K V, 81K Tets</td>
</tr>
</tbody>
</table>

\(n = 10000 \), Pyramid runs out of Memory (1.25 Gig Laptop)
SVR outputs 774K Tets, sees 2.7M Lifetime, worst case degree is 41
Conclusions

- New Meshing Algorithm
 - Element Shape / Output Size / Conformity Guarantees.
Conclusions

- New Meshing Algorithm
 Element Shape / Output Size / Conformity Guarantees.
- Runtime Analysis: $O(n \log L/s + m)$
Conclusions

▸ New Meshing Algorithm
 Element Shape / Output Size / Conformity Guarantees.
▸ Runtime Analysis: $O(n \log L/s + m)$
▸ Reasonable to Implement
Future Work

- Better language to handle 3D geometry, eg, Trimmed Nurbs
Future Work

- Better language to handle 3D geometry, eg, Trimmed Nurbs
- Competitive output size algorithms for small input angles
Future Work

- Better language to handle 3D geometry, eg, Trimmed Nurbs
- Competitive output size algorithms for small input angles
- Meshing for dirty geometries
Future Work

- Better language to handle 3D geometry, eg, Trimmed Nurbs
- Competitive output size algorithms for small input angles
- Meshing for dirty geometries
- Settle Tet verses Hex meshing issues
Future Work

- Better language to handle 3D geometry, eg, Trimmed Nurbs
- Competitive output size algorithms for small input angles
- Meshing for dirty geometries
- Settle Tet verses Hex meshing issues
- Better handling of slivers
Future Work

- Better language to handle 3D geometry, e.g., Trimmed Nurbs
- Competitive output size algorithms for small input angles
- Meshing for dirty geometries
- Settle Tet versus Hex meshing issues
- Better handling of slivers
- Replacing runtime term $\log \frac{L}{s}$ with $\log n$
Thanks!