
i i

A Time Efficient Delaunay Refinement Algorithm ∗

Gary L. Miller†

Abstract

In this paper we present a Delaunay refinement algorithm for

generating good aspect ratio and optimal size triangulations.

This is the first algorithm known to have sub-quadratic

running time. The algorithm is based on the extremely

popular Delaunay refinement algorithm of Ruppert. We

know of no prior refinement algorithm with an analyzed sub-

quadratic time bound. For many natural classes of meshing

problems, our time bounds are comparable to know bounds

for quadtree methods.

1 Introduction

Generating good aspect ratio meshes from input con-
straints is possibly one of the most important applica-
tions in computational geometry. The goal is to find
a triangulation of the input domain satisfying the fol-
lowing three conditions: 1) Conforming: The trian-
gulation should conform to the input boundary con-
straints. 2) Good Aspect Ratio: No triangle should
contain a small angle. 3) Size Optimal: It should
contain a minimum number of triangles. There are sev-
eral different approaches to the fundamental problems
that are used both in theory and in practice. The ap-
proaches include advancing front, quad-tree, and Delau-
nay refinement [BE92]. At the present time the small-
est meshes come from Delaunay refinement especially
for complicated input boundaries. On the other hand,
quadtree methods are the only methods known to have
sub-quadratic algorithms and optimal size up to con-
stants. In this paper we shall show that we can have the
best of both: There are Delaunay refinement algorithms
that are asymptotically faster than known quadtree al-
gorithms but with smaller size meshes for a very natural
class of meshing problems.

Having a timing analysis for a Delaunay refinement
algorithm is important. One, at the present time De-
launay refinement gives substantially smaller meshes for
the same input and thus is the preferred method. Two,

∗A complete version can be found at
http://www.cs.cmu.edu/ glmiller

†Department of Computer Science, Carnegie Mellon Univer-
sity, Pittsburgh, Pennsylvania 15213 (glmiller@cs.cmu.edu). Sup-
ported in part by NSF Grants CCR–9902091, CCR-9706572, and
ACI-0086093.

Delaunay refinement is widely used in practice and has
been reimplemented may times. The Delaunay refine-
ment package “Triangle” has thousands of users [She95]
from Graphics, the Sciences, and Engineering. Triangle
is a careful implementation of Delaunay refinement and
is known to work very well in practice, [She96, She02a].
The worst cases for Triangle, as well as several other im-
plementations, are not known but believed to be worst
than that of, say, quadtree methods.

Delaunay refinement has been proposed by several
researchers. Two important works are those of Chew
and Ruppert [Che89, Rup95]. Ruppert was the first
to show size optimality [Rup95] but he required that
all input angles were at least 90 degrees. More recent
papers have addressed the small input angle condition
as well as other improvements [She97, She02b, She00,
BOG01, Kad01]. None of these improvements, however,
included a sub-quadratic running time analysis.

Ruppert [Rup95] proposed a general scheme for re-
fining a Delaunay triangulation of a 2D mesh. His
2D Delaunay refinement algorithm handles inputs that
include edges, namely, Planar Straight Line Graphs
(PSLG). His paper, as well as subsequent papers, do
not fully specify how important aspects of the refine-
ment algorithm should be implemented to get an effi-
cient algorithm. These aspects can dramatically effect
its efficiency. Naive implementations of the algorithm,
as presented by Ruppert, have quadratic worst-case run-
ning time. One important exception is the parallel algo-
rithm of Spielman, Teng, and Üngör who give a parallel
incremental algorithm that runs in O(log2(L/S)) par-
allel time, where L and S are the largest and smallest
input features [STÜ02]. But they do not give sequen-
tial time or work bounds for their algorithm. Ruppert’s
algorithm has quadratic worst-case running time even
when L/S is bounded by a polynomial in the input
size [Bar02]. The number L/S is often referred to a
grading of the input or mesh.

Given the dearth of timing analyses for Delau-
nay refinement, some have proposed we just implement
quadtree-based methods since they have timing anal-
yses and optimal size meshes[BEG94, BET99]. Bern,
Eppstein, and Teng give a quadtree algorithm with a
running time of O((n log n + m) log m) where n is the
input size and m is the output size[BET99]. But in prac-

i i

tice quadtree meshes are much larger for the same input
than Delaunay refinement meshes. We will show that
one can get a Delaunay quality mesh in the same asymp-
totic time bounds as those bounds known for quadtree
methods. Notice that the timing bounds for quadtree
and Delaunay are incomparable since one is in output
size and other is in grading. In order to compare these
different algorithm types we will need to set bounds on
these two terms.

The idea behind Delaunay refinement is very sim-
ple: Starting from a initial Delaunay triangulation,
whenever we have a triangle with a “bad” aspect ratio,
we either add the center of the circle that goes through
the vertices of the triangle, the triangle’s circum-center,
or add the center of a nearby boundary segment. The
main issue we try to address in this paper is how to
take this algorithm “specification” and make it into
an efficient algorithm with a provable timing analysis.
As a simple example, what order should the circum-
centers be added to the mesh to minimize the work
done? Even though all orderings have the same quality
guarantees[Rup95], if we add the circum-centers in the
wrong order, we may perform dramatically more work
than the optimal order. The main reason for the ex-
tra work is that the addition of each new circum-center
may require us to remove a constant fraction of the old
triangles and replace them with new triangles, giving
us an algorithm that has quadratic runtime in terms
of the size of the output even when the grading of the
mesh is polynomial on the input size. This is only one
of many algorithm design decisions that we made to get
an efficient algorithm.

We have designed our refinement algorithm to
change the algorithm only when we could find no other
way to get the analysis to work. We list here some of
the small but important changes we have made to the
refinement algorithm: First, we always add the circum-
center from the largest diameter first and we do not
necessarily split edges before adding the circum-centers
of triangles. We introduce a priority queue that in-
cludes both triangles and edges. Second, the interme-
diate meshes are constrained Delaunay triangulations.
Third, we changed when and under what conditions the
insertion of the circum-center of a skinny triangle yields
to the center of a segment. These changes required only
minor modifications our Delaunay refinement code at
CMU. 1

We state a weaker form of our main theorem 2.1
so that we may compare our time bound to those of

1The algorithm presented and analyzed here is simpler than
earlier versions of this paper and with better time bounds. This
algorithm does not include a messy preprocessing step needed for

in the prior analysis.

other algorithms. In the theorem below n is the number
of input points, m the number of points in the final
triangulation including the input points, and where Γ
is in some sense a localized version L/S as used by
Spielman, Teng, and Üngör [STÜ02], in particular, it
is as most L/S.

Theorem 1.1. The procedure DELAUNAY-
REFINEMENT (see Table 1) runs in time
O((n log Γ(G) + m) log m) where m is the total
number of points in the output. The function Γ is
defined in Definition 2.3

A very conservative estimate for Γ(G) is that it
is bounded by a polynomial in n, the input size.
If we make this assumption then we get the bound
O((n log n + m) log m) which is identical to the bound
for quadtree [BET99]. Theorem 2.1 states a strong form
of this theorem. In this case the dominate term in our
analysis is for the cost of the priority queue used to
find the next skinny triangle or edge to process. If
we ignore the priority queue cost our bound becomes
O(n log n + m) which would be optimal.

The outline of the paper is as follows: In Section 2
we introduce both the basic and critical definitions used
in both the algorithms and their analysis. This section
also includes the main theorem. In Section 3 we give
a high-level description of the algorithm, as well as,
pseudo-code for the major components. In Section 5
we present a several lemmas that we need to prove
that both the algorithm runs in the time claimed and is
size optimal. The timing analysis is in Section 4 while
the proof that the mesh is optimal size is in Section 6.
Finally, in Section 7 we give some concluding remarks
as well as open questions.

2 Preliminaries

Throughout this paper, unless explicitly stated other-
wise, all objects are in R

2. Given a set S, the convex
closure of S is the smallest convex set containing S,
while the convex hull is the boundary of the convex
closure of S. In our case the convex hull will always be
a cycle of edges in counter-clockwise order, CCW. All
disks are open and the boundary of a disk is called a
circle. We assume that all circles have a well-defined
interior. A simplex is the convex closure of an affine
independent set of points. Given a simplex (an edge
or a triangle) it has a well-defined circum-circle (the
minimum radius circle) containing its points. It in turn
has a well-defined circum-radius and circum-center.
The diameter of a compact set is the maximum dis-
tance between any pair of points in the set.

We say that a point p encroaches on a simplex S
if it is interior to the circum-circle of S. More generally,

i i

a simplex S encroaches on a simplex S′ if the circum-
center of S encroaches on S′.

A Planar Straight Line Graph (PSLG) is a set
of n points P and a collection of non-crossing straight-
line segments with end points in P , a one-dimensional
simplicial complex. A point p is visible to the point
q, with respect to a PSLG G, if the open edge segment
from p to q is disjoint from G or contained in an edge
of G. More generally, for a cell complex the open
edge must be contained in a cell from the complex.
Otherwise, we say that p is invisible to or occluded
from q. We will assume throughout that no four points
are co-circular. This restriction can be remove with the
use of Delaunay polygons.

A crucial definition is that of local feature size
as defined by Ruppert [Rup95]. Let lfsG(p) be the
minimum distance from p to two disjoint simplices in
G.

Most papers in the area give a discussion on how
to construct a bounding box for the PSLG input. For
simplicity and generality we will assume that the PSLG
includes its own “bounding box”. That is, a PSLG G is
said to be a PSLG with boundary if 1) G contains its
convex hull2, 2) no edge in the convex hull is encroached
by any point from G, and 3) G contains at least three
non-collinear points. Thus, we can view G as a 2D cell
complex where the interior of G is the union of 2D cells.
We say that the cell complex M ′ is a refinement of the
cell complex M if each cell in M can be written as the
union of cells from M ′. Given any point p in the convex
closure of G we consider the lowest dimensional cell
containing p. We call this the containing dimension
of p, denoted CD(p).

Given a PSLG G and a refinement M of G, an
edge of M that is contained in an edge of G is called a
segment or a constraining edge.

Given a set of points P , a triangulation M of P is
said to be Delaunay if no triangle of M is encroached
by any point from P . Given a PSLG G, triangulation
M , and triangle T of M , we shall say T is encroached
in the constrained sense (or simply encroached if
there is no confusion) by a point p if 1) p is interior to
the circum-circle of T and 2) p is visible to all three
vertices of T in G. More generally we say that a circle
C is encroached with respect to a point p if there
is a vertex from M interior to C and visible to p. If
no triangle of M is encroached, we say that M is a
constrained Delaunay triangulation.

We shall need to modify the definition of the radius
of a circle for our application. We shall call it the visible-

2The fact that the boundary is convex is most likely not crucial
and should be eliminated but we have not worked out the details
here.

p

E

C

q

c

c’

r’

Figure 1: The Visible-Radius of a circle C with respect
to a point p.

radius of a circle. Let G be PSLG, C a circle, and p
some point on C. We further assume that C is not
encroached by any vertex visible to p. In this case, the
visible-radius of C with respect to p is the radius if
the center is visible to p otherwise it is half the length
of the first cord occluding the center, i.e., its is half the
diameter of the region visible to p and interior to C, see
Figure 1. In general, p may have more than one visible
region each of which is contained in the interior of C.
In this case, its visible-radius will be the maximum over
these regions. We will only be interested in those regions
interior to the convex-hull of G. We make explicit the
definition of the visible-radius of a triangle.

Definition 2.1. The visible-radius of a triangle T in
a refinement M of a PSLG G is the minimum visible
radii of the vertices of T with respect to its circum-circle
denoted by vr(T).

We can now give a new definition of a spacing
function which we will need to give our new upper bound
on the time for Delaunay refinement as well as necessary
for the analysis. We call this new function the radial-
spacing function.

Definition 2.2. Let M be a refinement of G a PSLG
with boundary, and p be a point (not necessarily a vertex
of M) in the convex hull of G. The radial-spacing
RM (p) is the maximum visible-radius of any circle C
satisfying the following properties:

1. p lies on the circle C,

2. C is not encroached by any point in M with respect
to p.

3. We only consider visible regions interior to CH(G)

Definition 2.3. Let M be a refinement of G a PSLG
with boundary, and let p be a point (not necessarily a

i i

vertex of M) in the convex hull of G. The grading
ΓM (p) is:

ΓM (p) =
RM (p)

lfsM (p)
.

Further, let Γ(M) = maxp∈V (M) ΓM (p).

Observe that any mesh is also a PSLG and thus Γ
is well defined. We will apply Γ to intermediate meshes
to bound the running time.

We can now state the main theorem of the paper.

Theorem 2.1. The Delaunay refinement algorithm
Table 1 on input a PSLG G with boundary runs in time
O(m+

∑
p∈V (G) log ΓG(p)) where m is the total number

of points in the output.

The basic approach to Delaunay refinement is to
pick a constant angle α0 and whenever there is a triangle
T with angle smaller than α0 we attempt to add the
circum-center of T . This may in turn cause us to add
the circum-center (midpoint) of an input segment. But
in either case we are adding Steiner points to the mesh.
We shall say that a triangle is skinny if it contains an
angle less than α0. Otherwise we say the triangle is fat.

If M is a Delaunay Triangulation then the cavity
of a point p (not necessarily in M) is the union of
all the triangles of M that are encroached by p. The
introduction of the point p into M will form a set of
triangles all common to p. We call this configuration a
tent and the edges common to p the ridges. We also
refer to the triangles common to a point p as the star
of p denoted by Star(p).

We also need to pin down a few types of searches
for planar triangulations. Suppose that (x, y, z) are
the vertices of a triangle T in CCW order. Given
the ordered edge xEz we define Search(E) to be the
ordered pair of ordered edges [(x, y), (y, z)]. Given a
triangle T and a point p in the circum-circle of T .
We define the path from T to p be the sequence of
triangles T = T1, . . . , Tk such that 1) either p ∈ Tk

or the edge occluding p from the interior of Tk is a
constraining edge and 2) Ti+1 is the unique triangle
sharing an edge e of Ti such that e occludes the interior
of Ti from p for i < k. Observe that p encroaches each
of the triangles on the path.

3 Algorithm

In this section we give our Delaunay refinement algo-
rithm, Table 1. The runtime analysis of this algorithm
will be present in Section 4.

As we pointed out in the introduction this algorithm
follows very closely when possible to the known imple-
mentation of Delaunay refinement as proposed by Rup-

pert. There are several important and subtle changes
to make the timing analysis go through.

DELAUNAY-REFINEMENT(G, α0)
1 % G : PSLG with boundary, α0: critical angle
2 G′ = CONSTRAINED-DELAUNAY(interior(G))
3 Make a priority queue Q (tie: edges have priority).
4 Insert skinny triangles with priority diameters.
5 Insert each encroached edge e with priority

√
2|e|.

6 while Q not empty do
7 S = EXTRACT-MAX(Q)
8 INSERT-CIRCUM-CTR(G, S, circum-ctr(S))

Table 1: The Delaunay Refinement Algorithm.

The main procedure DELAUNAY-REFINEMENT
starts by computing the constrained Delaunay triangu-
lation of the input. There are several known algorithms
for computing the constrained Delaunay of a set of non-
crossing line segments and points. They all have run
time of O(m log m) where m is the number of points
and segments, [Che87, WS87, Sei88]. It would be inter-
esting to know if a simple incremental algorithm such
as the one by Kau and Mount could be used without
effecting the overall run time [KM92].

In steps 3-5 we setup a priority queue so that
edges are processed late enough that all the triangles
containing the center of an edge are not too big. We also
process them soon enough so that we discover at most
once that a circum-center encroaches on the segment as
described in step 5 of BFS-CAVITY-TO-90-DEGREES
below.

The bulk of the work is in procedure INSERT-
CIRCUM-CENTER. The procedure must first deter-
mine (in the case when the point p is a circum-center
of a triangle) if p encroaches on a segment and do this
in such a way that all the work can be charged back
to the edge if we decide not to add p. Second, if we
decide to add p then the cost will be charged to the
edges out of p. It will be important that we add p in
some cases even if it encroaches on the edge. Call this
strong-encroachment.

Definition 3.1. Let S be a simplex, E a segment, and
E1 and E2 the two subsegments obtained by splitting E
at its midpoint. We say that S strongly-encroaches
E if 1) S encroaches E and 2) either E encroaches S,
S encroaches E1, or S encroaches E2.

We next describe our procedure INSERT-CIRCUM-
CENTER for inserting the circum-center of an edge or
a triangle into the mesh, see Table 2.

i i

INSERT-CIRCUM-CENTER(G, S, p)
1 % G : PSLG, S : Simplex, p : circum-center(S)
2 S′ ← CONTAINING-OR-OCCLUDING(G, S, p)
3 if S′ is occluding then
4 Queue(Q, S′); EXIT
5 BFS-CAVITY-TO-90-DEGREES(G, S′, S, p)
6 Boundary← REMOVE-CAVITY(G, S′, p)
7 FORM-TENT(G, Boundary, p)
8 Queue(Q, skinny triangles in Star(p))

Table 2: Procedure repeatedly adds circum-center of
skinny triangles and encroached segments.

If S is a segment of G then p is contained in S and
procedure CONTAINING-OR-OCCLUDING simply re-
turns S. Otherwise the procedure simply traverses the
path from S to the simplex containing p and if it finds
a segment e in G which occludes S from p it return this
segment instead.

Procedure BFS-CAVITY-TO-90-DEGREES search
for any segments in G which p encroaches. It must
perform the search in such a way that all the work can
be charged to the encroached edge in the case when
the simplex S must yield to the strongly-encroached
edge. One critical point and reason for the term “90-
DEGREES” is that if p encroaches on an edge at step 5
the the angle formed at p by the endpoints of E and p
must be at least 90 degrees. Also recall, that the convex-
hull of a simplex is its boundary in counterclockwise
order. The procedure BFS-CAVITY-TO-90-DEGREES
is given in Table 3.

BFS-CAVITY-TO-90-DEGREES(G, S, S′, p)
1 % G : PSLG, S, S′ : Simplex, p : circum-center(S)
2 Init a FIFO queue with CONVEX-HULL(S′)
3 while FIFO 6= ∅ do
4 xEy ← POP(FIFO)
5 if ENCROACH(p, E) then
6 if E is segment of G then
7 Queue(Q, E)
8 if 2 = dim(S) and
9 STRONGLY-ENCROACH(S, E) then

10 EXIT(INSERT-CIRCUM-CENTER)
11 PUSH(FIFO,SEARCH(E))

Table 3: Procedure searches the cavity looking for an
encroached edge.

4 Timing Analysis

In this section we analyze the time for procedure
DELAUNAY-REFINEMENT.

The algorithm consists of two major stages: 1)
computing a constrained Delaunay triangulation, step

2, and 2) the refinement step, the while loop in line 6.
The time for constrained Delaunay is O(n log n) as
previously mentioned.

The refinement has three major costs 1) determin-
ing strong-encroachments (yield), 2) actually work to
insert the points, and 3) maintaining the priority queue.
We first consider the cost to yield.

4.1 Paying for the Yields If we insert a point p
into the mesh we shall charge the ridges out of p for all
the work performed to insert p. On the other hand,
in the case when the circum-center of a triangle is
not added but instead yields to a strongly-encroached
segment, we will charge all the work to discover the
strong-encroached segment to the segment.

Lemma 4.1. If T is a triangle with circum-center p
then all the triangles on the path from T to p belong
to the chain containing T . Each triangle is encroached
by p. If T is a maximum diameter skinny triangle then
they are all fat triangles.

Proof. The triangles on the path except for possibly
the last one are obtuse and thus strictly increasing in
diameter. The fact that each triangle is encroached by
p follows by induction on the number of triangles in the
chain. �

Since all the triangles on the path are in the
cavity of p and thus by Lemma 5.2 there is at most
a constant number of triangle on the path. Therefore
procedure CONTAINING-OR-OCCLUDING takes at
most a constant amount of work per call.

We next analyzes the cost for procedure BFS-
CAVITY-TO-90-DEGREES(G, S, S′, p) in the case
when p is not added to the mesh.

Lemma 4.2. If T is a triangle and E is a segment such
that E encroaches T , then any triangle on the path from
T to the midpoint of E is encroached by E.

Proof. The proof is by induction on the number of
triangles on the path. �

Thus, if a point yields due to condition 1) of the
definition of strong-encroachment, the cost to search all
the triangles on the path can be charged to the segment
since when adding the segment’s circum-center all these
triangles will be removed. The searching is done in a
BFS manor with a queue of size at most four. Thus,
we can charge all the triangles search to the segment as
well. This charge will be made at most once when the
segment is added to the queue. We claim that at most
one triangle will be found to encroach on an edge E since
a triangle that encroaches on E must have priority less

i i

than that of E. But, we process edges and triangles
highest priority first.

We next consider condition 2) of the definition of
strong-encroachment. Here we will show that there is
at most a constant number of triangles searched and
thus we charge this work to the segment. It will suffice
to prove the following lemma:

Lemma 4.3. If T is a triangle, T ′ is the triangle con-
taining the circum-center of T , and E a segment such
that T encroaches E, T encroaches on a subsegment
E1 of E, and E does not encroach T then any triangle
on the path from T ′ to the midpoint of E has diameter
> dia(T)

Proof. Let C and p be the circum-circle and circum-
center of T . Let C′, p′, and r′ be the circum-circle,
circum-center, and circum-radius of E respectively. Any
triangle from T ′ to E must have an edge intersecting the
line p − p′. This edge cannot have an endpoint in the
interior of either C or C′. We claim that the length of
such an edge is > 2r.

The proof of the claim follows by observing that line
segment between the points C ∩ C′ does not occlude p
from p′ and that r < r′. It follows that the shortest
such edge is a chord of C′ with midpoint p. Therefore
it must be longer than 2r. �

4.2 The cost of Insertion Using Subsection 4.1 the
cost of all the calls to INSERT-CIRCUM-CENTER,
step 8 of DELAUNAY-REFINEMENT, can be upper
bounded by the number of ridges in the directed graph
G as defined in Subsection 5.1. We bound the number
of ridges by bounding the indegree of G. We state this
as a theorem:

Theorem 4.1. Let p be a point either in the input
graph G or added to G. Suppose that M is G if
p ∈ V (G) otherwise let M be the triangulation just
after adding p. Then the indegree of p in G is at most
C4.1 · log ΓM (p) for some constant C4.1

Proof. Let q be a point with a ridge to p. By Lemma 5.8
we know that the distance from p to q is between
C5.8 lfsM (p) and 2RM (p). Let A(p, ρ, 2ρ) be an annulus
centered at p of radius from ρ to 2ρ. Therefore if we
show that there can be at most a constant number of
points q in A(p, ρ, 2ρ), we will be done.

We count the number points midpoints of segment
separately from circum-centers of triangles in the annu-
lus. The case for midpoints of segments was done in
Lemma 5.13.

In the triangle case, let q a point in the annulus,
be the circum-center of T with visible-radius vr. We
know that the ρ ≤ d(p, q) ≤ 2RM (q) ≤ C5.7 · vr by
Lemma 5.7. By Lemma 5.9 we know that the ball

B(q, vr/
√

2) is empty at the time we inserted q. Thus,
if there are two such points q and q′ in A, it follows
that the distance from q to q′ must be at least ρ/(

√
2C).

Therefore the ball of radius ρ/(2
√

2C) around each such
point is disjoint. It follows by area arguments that there
are at most a constant number of such points. �

The last lemma gives us an upper bound on our
running time. We can improve our analysis by giving
a better bound on the indegree for points added by
procedure INSERT-CIRCUM-CENTER. First observe
that ΓM (p) is at most a constant for circum-centers of
triangles. It is not true that ΓM (p) is a constant for
segment midpoints. But on average it is.

Lemma 4.4. Let E be an edge in G, the input PSLG,
then the average indegree in the graph G of the midpoints
added to E is a constant.

Proof. Let E be an input segment and let P =
p1, . . . , pk be the points added to E during the life of
the algorithm. Further let Ei be the segment with cen-
ter pi. We know by Theorem 4.1 that the indegree of
each point pi in G is at most C4.1 · log ΓMi

(pi) where Mi

is the mesh just after inserting pi. By Lemma 5.7 we
know that each ridge out of pi can have length bounded
by C5.7. On the other hand, up to a constant lfs(pi)
does not change throughout the life of the algorithm.
Thus ΓMi

(pi) ≤ C|Ei|/ lfsG(pi).
We next define a DAG H with vertices P . We add

a directed edge from pi to pj if pi is an endpoint of Ej .
Observe that the indegree is at most two.

Claim 4.1. The out degree in H of pi is bounded below

by C log |Ei|
lfsG(pi)

for some constant C > 0.

The Claim follows by observing that when the graph
G is finally refined R(pi) must be approximately lfs(pi).

Note that |Ei|
lfsG(pi)

is a constant for nodes in H
with out-degree zero, sinks. By a standard charging
argument, each non-sink charges its indegree in G to
its children in H. Thus each node will only pay for its
indegree in H which is at most two. �

5 Structural Properties

In this section we present a collection of results that
describe the types of configuration that can occur during
the run of the procedure DELAUNAY-REFINEMENT.
These results will then be used in Section 4 to obtain
our upper bounds.

We first observe that, by assuming that the input
is a PSLG with boundary, and the boundary will not
change during the refinement, and boundary segments
may be split into smaller segments. This is true because
our search will never cross an input segment.

i i

Throughout this section we assume that G is PSLG
with boundary, M a constrained Delaunay triangulation
of the interior of G, α0 is the cutoff for skinny triangles.
Let Dα0

equal the diameter of the maximum diameter
skinny triangle in M .

The first set of lemmas show that in the case
when the point added comes from our priority queue
in procedure DELAUNAY-REFINEMENT, the circum-
radii of all triangles in a cavity or a tent are bounded.

Lemma 5.1. Let G be a PSLG with boundary, M a
constrained Delaunay triangulation of the interior of G,
and p a point of M .

RM (p) = max{ vr(T) | T ∈ Star(p)},

where vr(T) is the visible-radius of the triangle T.

Proof. The proof follows by observing that the maximal
empty circles containing p with respect to the visible-
radius metric are precisely the circum-circles of the
triangles in Star(p) �

We next need to bound the number of fat triangles
in any cavity or tent.

Lemma 5.2. Let p be a point not in M . Then the
number of fat Delaunay triangles in the triangulation
of the cavity before and after insertion of p is at most
2π
α0

− 2 and 2π
α0

, respectively

Proof. See full paper.
�

Lemma 5.3. If triangles T1 and T2 share an edge e and
T1 is fat then

vr(T1)

vr(T2)
≤ 2vr(T1)

dia(T2)
≤ 2rad(T1)

dia(T2)
≤ 1

sin α0
,

Proof. See full paper.

We next show that the maximum skinny triangles
have small visible-radius.

Lemma 5.4. Let T be maximum diameter skinny tri-
angle then vr(T) ≤ C5.4dia(T) where the constant C5.4

only depends on α0.

Proof. By Lemma 4.2 all the triangles in M from T to
either the circum-center p or the edge which obscures p
are fat and in the cavity of p. Let Tk be the triangle
last triangle on the path. Consider the following chain
of inequalities:

vr(T)

dia(T)
≤ vr(Tk)

dia(T)
≤ (1/ sinα0)

k

The last inequality follows from Lemma 5.3. By
Lemma 5.2 we know that k ≤ π/α0 − 2. �

We next show that if a triangle has almost maxi-
mum diameter then no skinny triangle has large visible-
radius.

Lemma 5.5. If T is skinny triangle in M then vr(T) ≤
C5.5Dα0

Proof. The lemma follows by observing that the visible
radius is nondecreasing as we move up the chain of
obtuse triangles. Thus we may assume that T is a
maximal skinny triangle and simply apply Lemma 5.4.
�

Lemma 5.6. If S is a simplex, dia(S) ≥ αDα0
, and S

encroaches on a triangle T then vr(T) ≤ C5.6αdia(S)

Proof. If T is skinny, we are done by Lemma 5.5. We
may assume that T is fat. By Lemma 5.2 we know that
number of fat triangles in the cavity is bounded and
by Lemma 5.3 their visible radii can only grow by a
constant for each fat triangle. �

Lemma 5.7. Let S be a simplex in M , dia(S) ≥ αDα0
,

and p the circum-center of S. If E is an edge from p to
q adding p to M then |p− q| ≤ 2C5.7αdia(S)

Proof. Let T be a triangle in the cavity of p in M . Now
|p− q| ≤ 2vr(T) ≤ 2C5.6αdia(S) �

5.1 Parents in an Annulus In this subsection and
the next subsection we show that the number of Steiner
points in an annulus of radius from r to 2r that have
an edge to some earlier generated point, is at most
a constant. This will be crucial in showing an upper
bound on the work performed.

Define the following directed graph G on the
set of all output points procedure DELAUNAY-
REFINEMENT: Add a directed edge, called a ridge,
from each Steiner vertex p in the output mesh to each
of the vertices that appear on the boundary of the cav-
ity at the time immediately after inserting the vertex p.
By definition, no edges in our graph G emanate out of
vertices of the initial mesh, but edges can point to them.
Also note that an edge can only travel in the reverse di-
rection of time, i.e. it can only connect a Steiner vertex
to a vertex that already existed in the mesh at the time
of inserting the Steiner vertex. This means that there
are no cycles in our graph G. The number of directed
edges in our graph G is precisely the total number of tri-
angles created during Ruppert’s refinement algorithm,
excluding the triangles created for the purpose of com-
puting initial constrained Delaunay triangulation. On
the other hand, the number of directed edges equals the
sum of in-degrees of all vertices in the graph G. We
will now provide an upper bound to the in-degrees of a
vertex, which will later be used to establish the upper
bound for the run-time of the algorithm.

i i

We first give an upper and lower bound on the
length of the edge into a point.

Lemma 5.8. Let p be a point in the output mesh
produced by procedure DELAUNAY-REFINEMENT(G)
and q be a point with an edge to p in the graph G then

C5.8 lfsG(p) ≤ lfsM (p) ≤ dist(q, p) ≤ 2RM ′(p) ≤ 2RG(p),

where M is the output mesh, M ′ is the mesh just prior
to adding q, and C5.8 is some constant determine by a
mesh size analysis of Delaunay refinement.

Proof. The first inequality comes from Ruppert’s orig-
inal analysis of Delaunay refinement [Rup95]. There
have been many analyses with better bounds that have
appeared since [She00, MPW02]. Since we have slightly
changed the algorithm we have included a proof of this
inequality in Section 6.

To see the second inequality, first note that q has
to be a Steiner vertex. Clearly the interior of the disk
centered at p of size lfsM (p) is free of other vertices,
including q.

Let us now establish the third bound. At the time
of insertion of Steiner vertex q, the point p is on the
boundary of the cavity of q. Hence, p is a vertex of
some triangle T that disappears from the triangulation
as a result of adding the Steiner vertex q. Let C be the
circum-circle of T . Since q is visible to p the distance
from p to q must be at most the diameter of the visible
part of the interior of C to p. This diameter is at most
2vrp(C). Thus dist(p, q) ≤ RM ′(p).

To see the last inequality simply observe that the
radial spacing function is a non-increasing function. As
we add points to G, we can only decrease the radial
spacing function. �

The next lemma shows that when we add the
circum-center p of a triangle to the mesh and p does
not yield to an encroached edge then there is a large
empty ball around the point p.

Lemma 5.9. Let p be the circum-center of a triangle
T with circum-radius r that is added to the mesh
by procedure DELAUNAY-REFINEMENT(G) then the
following are true:

1. No edge of G intersects the ball B(p, r/
√

2).

2. There is no mesh point in the ball B(p, r/
√

2) at
the time that p is added.

Proof. To prove the first claim suppose the that some
edge segment e of G intersects the ball B(p, r/

√
2).

Since p did not yield to the segment e, the midpoint
of e must not belong to the ball B(p, r). It follows that

� �

Rx

e q

p

θ φ

Figure 2: A Slanted-Tee.

p must encroach on one of the two subsegments of e.
Thus p should have yielded to e, a contradiction.

The second claim follows by observing that all of
B(p, r/

√
2) is visible to p and thus there can be no mesh

point in B(p, r/
√

2). �

It is not true that the midpoint of a segment
added by procedure DELAUNAY-REFINEMENT(G)
will have a large empty ball around it at the time it was
added. In the next subsection we address this issue.

5.2 Slanted-Tees and Their Critical Angle In
this section we develop definitions and properties we
will need to bound the work performed by inserting
midpoints of edges.

Throughout let e be a segment of an input edge and
q its midpoint. Suppose that, on adding q to the mesh,
we introduce a ridge R from q to a point p.

Definition 5.1. The pair consisting of the segment e
and the ridge R is called a slanted-tee, with base p and
midpoint q. Let x be the endpoint of e that is closer to
p, breaking ties arbitrarily. We call the triangle x−q−p
the critical triangle and the angle x−p−q the critical
angle. The triangle q − y − p is the acute triangle.
See Figure 2.

We will need a simple technical lemma about a
triangle.

Lemma 5.10. Let A, B, C be the angles and a, b, c be
the opposite sides of a triangle and 0 < α be some fixed
constant. If |a| ≥ α|c| and B ≥ π/2 then there exists
constants 0 < β and 1 < γ such that either A ≥ β or
γ|c| ≤ |b|.

Proof. See full paper.
�

Definition 5.2. We say a slanted-tee is skinny if its
critical angle θ satisfies sin θ ≤ 1/(2

√
2C5.7). Otherwise

it is fat. Thus a tee is skinny if the circum-radius r of
the critical triangle satisfies

√
2|R| ≤ r.

i i

x

x′q

p

R R′

Figure 3: Two skinny Tees facing to the right.

We next show that there is at most a constant
number of slanted-tees with midpoints in a constant
ratio annulus with ridges to a point p, the center of
the annulus. We first need a technical lemma about the
distance between slanted-tees.

We say a tee is right-facing if the critical triangle
is to the left of the ridge otherwise we say it is left-
facing. We say two tees face(away from) each other
if the angle between them is < π and the left tees is
left(right) facing and the right is right(left) facing.

Lemma 5.11. If T and T ′ are two fat slanted-tees with
ridges R and R′ that do not face each other then either
the angle formed by R and R′ is at least C5.11, |R| ≥
C′

5.11|R′|, or |R′| ≥ C′
5.11|R| for constants C5.11 > 0 and

C′
5.11 > 1.

Proof. It will suffice to handle the case when T ′ is right-
facing and to the right of T . We are done if T is left-
facing. Thus we may assume that T is also right-facing.
If the midpoint q of T is not in the critical triangle of T ′

then the angle between R and R′ must be at least C5.2.
On the other hand, if q is in the critical triangle of T ′

then the distance from p to q′ is at least the distance
from p to y, where y is the far point on e and the angle
between R and R′ is bounded below by the acute angle
of T . Applying Lemma 5.10 to the acute triangle of T ,
we are done. �

Lemma 5.12. If T and T ′ are two skinny slanted-tees
with ridges R and R′ that do not face away from each
other then one of the following hold 1) there is an input
edge between R and R′, 2) the angle formed by R and R′

is at least C5.12 or 3) |R| ≥ C′
5.12|R′| or |R′| ≥ C′

5.12|R|
for constants C5.12 > 0 and C′

5.12 > 1.

Proof. We first consider the case that T and T ′ are both
right-facing. We may assume that R is to the left of R′.
If there is an input edge between R and R′ we are done.
Otherwise we assume there is none. Since there is no
input edge between R and R′ it follows that the point
x′, see Figure 3, cannot be interior to the circum-circle
of critical triangle of T . Thus either the angle formed
by R and R′ is big or |R| ≤ C|R′| for some C > 1.

Finally we consider the case where T and T ′ are
facing each other. See full paper and Figure 4.

�

� �

x

x′

q

p

R
R′

c

Figure 4: Two skinny Tees facing each other
.

Lemma 5.13. If A(p, ρ, 2ρ) is an annulus centered at p
then the number of slanted-tees with base p and midpoint
in A is at most a constant.

Proof. We count the fat slanted-tees separately from the
skinny ones.

We first consider the fat tees. If we write R for a
right-facing tee and L for a left-facing one then all the
tees in the annulus form a cyclically ordered sequence of
R’s and L’s. We partition the annulus into a constant
number of annuli of ratio C5.11 and count the number
in each annuli separately.

By Lemma 5.11 and the fact that the ratio between
the outer radius and inner radius is at most C5.11, the
angle between two tees is bounded below, except if the
tees face each other. But the number of consecutive tees
that face each other is just the number of consecutive
tees that face away from each other, which is a constant.

The case for skinny tees is symmetric to the fat tee
case. �

6 Output Size

The proof that our modifications to known Delaunay
refinement algorithms does not effect the size optimality
can be found in the full paper. The proof uses relatively
standard and known techniques. The only change is
to replace the nearest neighbor function with a nearest
visible neighbor function.

7 Conclusion and Open Questions

It is interesting that several very simple incremental al-
gorithm specifications in computational geometry have
run times that are not known. On the positive side,
it is well known how to construct an algorithm for in-
serting n points into a Delaunay triangulation in ran-
dom order gives an expected run time of O(n log n)
when we start with a fixed constant-size initial trian-
gulation [dBvKOS00]. It is open how to construct a
provably efficient incremental algorithm when we start
with a large initial configuration? Our Delaunay re-
finement is a more constrained version of the problem
since we can only add the circum-centers of the triangles
that are present at the time. As we add these circum-

i i

centers other circum-centers become available for inser-
tion, where as the corresponding insertion problems for
sorting are much easier and well studied [CLRS01].

8 Acknowledgments

I would like to thank Hal Burch and Noel Walkington
for their contribution to an earlier manuscript which
considered the case of inputs consisting of points only
and Jernej Barbic for his Ω(n2) example of a bad
insertion order as well as enumerable discussions.

References

[Bar02] Jernej Barbic. Quadratic example for delaunay
refinement. 2002.

[BE92] Marshall Wayne Bern and David Eppstein. Mesh
generation and optimal triangulation. In Ding-Zhu Du
and Frank Kwang-Ming Hwang, editors, Computing in
Euclidean Geometry, number 1 in Lecture Notes Series
on Computing, pages 23–90. World Scientific, 1992.

[BEG94] Marshall Bern, David Eppstein, and John Gilbert.
Provably good mesh generation. J. Comput. System
Sci., 48(3):384–409, 1994. 31st Annual Symposium on
Foundations of Computer Science (FOCS) (St. Louis,
MO, 1990).

[BET99] Marshall W. Bern, David Eppstein, and Shang-
Hua Teng. Parallel construction of quadtrees and qual-
ity triangulations. International Journal of Computa-
tional Geometry and Applications, 9(6):517–532, 1999.

[BOG01] Charles Boivin and Carl F. Ollivier-Gooch.
Guaranteed-quality simplicial mesh generation with
cell size and grading control. Engineering with Com-
puters, 17(3):269–286, 2001.

[Che87] P. Chew. Constrained Delauany triangulation. In
in Proc. ACM Symposium on Comp. Geometry, pages
213–222, 1987.

[Che89] L. Paul Chew. Guaranteed-quality triangular
meshes. Technical Report 89-983, Computer Science
Department, Cornell University, 1989.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson,
Ronald L. Rivest, and Clifford Stein. Introduction to
Algorithms. MIT-press and McGraw-Hill, 2 edition,
2001.

[dBvKOS00] Mark de Berg, Marc van Kreveld, Mark Over-
mars, and Otfried Schwarzkopf. Computational geome-
try. Springer-Verlag, Berlin, revised edition, 2000. Al-
gorithms and applications.

[Ede01] H. Edelsbrunner. Geometry and Topology of Mesh
Generation. Cambridge Univ. Press, England, 2001.

[Kad01] Clemens Kadow. A fully incremental Delaunay re-
finement algorithm. Posterpresentation 10th Interna-
tional Meshing Roundtable, October 2001.

[KM92] T. C. Kau and David M. Mount. Incremental
construction and dynamic maintenance of constrained
delaunay triangulations. In Proc. 4th Canad. Conf.
Computational Geometry, pages 170–175, 1992.

[MPW02] Gary L. Miller, Steven E. Pav, and Noel J. Walk-
ington. A finer analysis of the Delaunay Refinement
Algorithm. in preparation, november 2002.

[Rup95] Jim Ruppert. A Delaunay refinement algorithm for
quality 2-dimensional mesh generation. J. Algorithms,
18(3):548–585, 1995. Fourth Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA) (Austin, TX,
1993).

[Sei88] R. Seidel. Constrained Delauany triangulation and
voronoi diagrams with obstacles. Technical Report Rep
260, IIG-TU Graz, 1988.

[She95] J. R. Shewchuck. Triangle: A two-dimensional
quality mesh generator and Delaunay triangulator.
1995.

[She96] Jonathan Richard Shewchuk. Triangle: Engineering
a 2D Quality Mesh Generator and Delaunay Triangu-
lator. In Ming C. Lin and Dinesh Manocha, editors,
Applied Computational Geometry: Towards Geometric
Engineering, volume 1148 of Lecture Notes in Computer
Science, pages 203–222. Springer-Verlag, May 1996.
From the First ACM Workshop on Applied Compu-
tational Geometry.

[She97] Jonathan Richard Shewchuk. Delaunay Refinement
Mesh Generation. PhD thesis, School of Computer Sci-
ence, Carnegie Mellon University, Pittsburgh, Pennsyl-
vania, May 1997. Available as Technical Report CMU-
CS-97-137.

[She00] Jonathan Richard Shewchuk. Mesh generation for
domains with small angles. In Proceedings of the Six-
teenth Annual Symposium on Computational Geometry
(Hong Kong, 2000), pages 1–10 (electronic), New York,
2000. ACM.

[She02a] Jonathan Richard Shewchuk. Delaunay refinement
algorithms for triangular mesh generation. Computa-
tional Geometry: Theory and Applications, 22(1-3):21–
74, May 2002.

[She02b] Jonathan Richard Shewchuk. Delaunay refinement
algorithms for triangular mesh generation. Comput.
Geom., 22(1-3):21–74, 2002. 16th ACM Symposium on
Computational Geometry (Hong Kong, 2000).

[STÜ02] Daniel Spielman, Shang-Hua Teng, and Alper
Üngör. Parallel delaunay refinement:algorithms and
analyses. In Proceedings, 11th International Meshing
Roundtable, pages 205–218. Sandia National Laborato-
ries, September 15-18 2002.

[WS87] C. Wang and L. Schubert. An optimal algorithm
for constructing the Delauany triangulation of a set of
line segments. In in Proc. ACM Symposium on Comp.
Geometry, pages 223–232, 1987.

