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Abstract

We optimize over the set of corrected laplacians (CL) as-
sociated with a weighted graph to improve the average case
normalized cut (NCut) of a graph. Unlike edge-relaxation
SDPs, optimizing over the set CL naturally exploits the ma-
trix sparsity by operating solely on the diagonal. This struc-
ture is critical to image segmentation applications because
the number of vertices is generally proportional to the num-
ber of pixels in the image. CL optimization provides a guid-
ing principle for improving the combinatorial solution over
the spectral relaxation, which is important because small
improvements in the cut cost often result in significant im-
provements in the perceptual relevance of the segmenta-
tion. We develop an optimization procedure to accommo-
date prior information in the form of statistical shape mod-
els, resulting in a segmentation method that produces fore-
ground regions which are consistent with a parameterized
family of shapes. We validate our technique with ground
truth on MRI medical images, providing a quantitative com-
parison against results produced by current spectral relax-
ation approaches to graph partitioning.

1 Introduction

The normalized cut (NCut), proposed by Shi and Malik
[9], provides a rigorous computational foundation for im-
age segmentation problems. A graph is constructed from
the image such that the pixels constitute the vertex set, con-
nected by weighted edges representing similarity between
nearby pixels. This formulation allows the image segmen-
tation problem to be computed via graph partitioning. The
partition measure associated with the NCut seeks to si-
multaneously minimize the cross segment connectivity and
maximize the within segment association. Yet directly com-
puting the optimal partition under the NCut is an NP-hard
combinatorial problem.

The authors of [9] develop a spectral relaxation of the
normalized cut criterion to approximate their NP-hard ob-
jective function. This approximate solution, obtained from
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Figure 1. The eigenvector derived from the standard spectral relax-
ation to the normalized cut is shown on the top row. The eigenvec-
tor derived from the shape based Corrected Laplacian is shown on
the bottom row. We see that the result is a superior segmentation,
both visually and w.r.t. the cut criterion.

a standard eigencalculation, is optimal on the continuous
definition. Relaxations of this form were further extended
by Yu and Shi in [12, 13] to allow constraints to be included
in the cut function. They also derive multiway cuts. Ide-
ally, the spectral relaxation affords efficient computation
of nearly optimal combinatorial solutions. However, the
bound associated with this relaxation is loose. Moreover,
the approximation suffers from spurious structure intro-
duced by the constraints on the target eigenvectors (known
as the Fiedler space1). As a result the spectral algorithm
may generate poor solutions for apparently simple segmen-
tation problems (see Figure 1).

1The Fiedler space of a graph is the minimal p−eigenspace of a gen-
eralized graph laplacian. These vectors possess powerful properties, pre-
served by the NCut. For example, Fiedler vectors with minimal support
partition the graph into connected subgraphs [5]. In image processing this
result assures us that for most topologies, graph partitioning will result in
connected components in the image plane.



We propose an additional optimization over the particu-
lar matrix encoding of the graph. This optimization is per-
formed over a restricted class of generalized laplacians en-
coding the weighted graph known as corrected laplacians
(CL). The result is an efficient means of improving the
cut value aimed at image segmentation. By maximizing
the Feidler value (λ2) a tighter bound on the true optimal
value of the cut is achieved, resulting in NCut segmenta-
tions that are generally better than those achieved by the
standard spectral relaxation alone (Figure 2). The integra-
tion of model information allows the computationally in-
tensive eigenvalue optimization to be exchanged for an ef-
ficient alignment procedure. More importantly, model in-
formation provides a mechanism to impose domain-specific
shape constraints on the segmentation process (e.g. seg-
mentation of ventricle-shaped regions from MRI brain im-
ages).

When optimizing shape based segmentation eigenvec-
tor methods possess desirable properties compared to flow
based optimization. This is because the intermediate so-
lutions, in the form of the eigenvectors of the corrected
laplacians, contain a great deal of global information about
the geometry of the cut. Accordingly, they can be used
to update estimates of shape parameters. This differs from
the spatially coherent clustering method proposed by Zabih
[14], as the intermediate solutions in the flow optimization
are not necessarily geometrically meaningful.

2. Graph Based Image Segmentation

We begin by revisiting the statement of image segmen-
tation as a graph partitioning problem, that is, we construct
a graph from the image data. Typically this is done by as-
signing a vertex in the graph to each pixel in the image. The
connectivity of the graph is generally defined by local spa-
tial neighborhoods in the image plane. For any two neigh-
boring vertices an edge weight is assigned in proportion to
the level of feature agreement between their pixels. Typical
pairwise pixel features include color similarity, texture de-
scriptions, and the magnitude of intervening edges along the
path between two pixels. Given such a graph G = (V,E)
with a vertex set V and edge set E, a cut separates the
graph into p disjoint subsets such that V ⊇

⋃p
i=1 Vi and

∀(i, j) Vi ∩ Vj = ∅.
We focus on the normalized cut [9], as it is a principled

measure that partitions the graph into strongly connected
subgraphs that are roughly proportionate in size while being
only weakly connected to each other. The normalized cut
criterion is:

argmin
V1,..,Vp

:
1
p

p∑

i=1

|E(Vi, V \ Vi)|
vol(Vi)

(1)

where vol(Vi) is the sum of edge weights associated with

the vertices in Vi, and |E(Vi, V \Vi)| is the sum of the edge
weights connecting Vi to remainder of the graph.

The normalized cut graph partitioning criterion can be
expressed as a quadratic form on the matrix representation
of the graph. The combinatorial problem formulation leads
to an NP-hard quadratically constrained quadratic program
for the optimal p-way cut [12], expressed as:

nc(G) = min
Z

:
1
p

tr (ZT DZ)−1ZT LZ (2)

s.t. : Zij ∈ {0, 1} (3)

: ZT Z = diag(|V1|, ..., |Vp|]) (4)

where L
.= D−W , W is the weight matrix associated with

G, D is defined as D(i, i) =
∑n

j=1 W (i, j) = vol(vi), and
Z is the binary partition matrix. The constraints in Equation
3 and 4 insure that the partition matrix Z is binary and that
the partitions are disjoint.

The above program can be approximated in many ways.
In the vision community, the most common approximation
is the eigenvector relaxation (or spectral relaxation). This
entails relaxing the constraints on Z to a D−orthonormality
constraint on the generalized eigenvectors Y | Y T DY = I .
Under this relaxation Equation 2 is a Generalized Eigen-
value Problem (GEP). For computational stability, the sym-
metrized form (SEP) is used, where the minimization oc-
curs over X in min : tr (XT X)−1XTL(W )X and
L(W ) .= D−1/2(D − W )D−1/2. The solutions to SEP
can be mapped to solutions for GEP as Y = D−1/2X .

In the multi-cut spectral algorithms proposed by [8, 12]
the p−dimensional eigenspace minimizing Equation 2 as-
sociates a coordinate with each vertex in the graph. These
p−dimensional coordinates are then projected on the sphere
Sp. Heuristic geometric clustering on the sphere is then ap-
plied to partition the graph. We will use CZ(Y ) to denote
the final result of the clustering step in which Y is projected
onto a feasible solution Z. Unless stated otherwise, we em-
ploy Yu’s method from [12] for CZ .

2.1 Spectral Approximations for Partitioning

Applications of spectral relaxations for graph partition-
ing were first proposed in the field of domain decomposition
(surveyed in [10]). In domain decomposition the goal is the
construction of a divide-and-conquer algorithm that parti-
tions a large problem into several proportionate small prob-
lems with minimal communication. These techniques have
been applied to derive parallel algorithms for solving large
sparse linear systems, VLSI layout, and discrete PDEs.

The quality of the spectral relaxation has been analyzed
for the eqi-partitioning problem by Gauttery and Miller [6],
and Spielman and Teng [10]. The former present a class
of graphs, with analysis, that result in arbitrarily poor parti-
tions under the spectral relaxation. These pathologies hold



for the spectral algorithms used to optimize the normalized
cut. The authors of [10] give a class of meshes that are
well partitioned under the spectral relaxation. In terms of
computer vision problems, it is unclear when the spectral
relaxation is effective or if near pathological cases exist in
common visual phenomena. Figure 2 demonstrates that the
straight eigenrelaxation is problematic even for simple seg-
mentation problems.

The common spectral algorithms for the NCut are in
fact equivalent to spectral algorithms for partitioning a
linearly normalized graph. Accordingly, it is not surprising
that the solutions reflect the oscillatory structure vital
to mesh partitioning, yet damaging to image processing
applications. We state the following simple comment on
the representations derived from the spectral algorithms.

Proposition 1 The geometric representation of the
graph derived from the generalized eigenproblem (GEP)
relaxation to the NCut used in [8, 12], is identical to that
derived from the normalized laplacian (SEP).

Proof: This reduces to showing that the GEP and the
SEP yield the same coordinates for each vertex in the graph.
First, the eigenvectors minimizing the GEP and the SEP are
related as follows: the solution Y to (D−W )Y = DY Λp is
related to X in L(W )X = XΛp as Y = D−1/2X . Second,
the embedding procedure employed in [8, 12] normalizes
the rows of Y , projecting the points onto the unit sphere.
This removes the effect of the normalizer D−1/2 since D is
positive and diagonal it only scales the rows of Y along a
ray. Therefore the multiclass spectral approximation algo-
rithms in [8, 12] for the NCut are equivalent to an approxi-
mation for the minimum multiway cut of D−1/2WD−1/2.
And so, we have an approximation upon an approxima-
tion. The corrected laplacians aid here, as we further opti-
mize over D−orthonormalized eigenspaces of nearby graph
laplacians.

3 Method

Geometric optimization approaches to graph partitioning
optimize over coordinate maps for the vertices of the graph.
These geometric representations construct a point-set em-
bedding of the graph such that the target cut metric may be
optimized by geometric clustering. Spectral algorithms fall
into this family, since the end result of the eigenspace com-
putation is a p−dimensional coordinate for each vertex in
the graph. By searching over the set of corrected laplacians
(CL) we maintain this feature; as the optimization is over
the eigenspaces of a family of positive semidefinite (PSD)
matrices encoding the graph.

Good geometric representations allow quality cuts to be
computed with high probability. For example vector pro-
grams approximating the maximum cut seek a geometry

such that strongly connected vertices possess coordinates
as near to antipodal as possible. Thus a random hyperplane
will, with high probability, yield a large cut. For the nor-
malized cut, the tightly connected vertices should be close
under the geometry, with roughly orthogonal mean coordi-
nate vectors between clusters.

3.1 Bound Optimization

We begin by recalling that the conductance of a graph
can be related to the normalized cut (NCut) of the graph
by a constant factor (as noted Shi and Malik in [9]). Given
this we can use the eigenvalue bound associated on conduc-
tance, Φ(G), of the graph G : Φ(G) ≥ c λ2(G) (see [5] for
further details on the bound and conductance). This sug-
gests a simple bound optimization for improving the qual-
ity of the NCut approximation. We do this by maximizing
λ2(L + C) as a function of trace zero diagonal matrices C,
subject to a semi-definite constraint on the sum, along the
lines of Bopanna’s MAX-CUT bound in [1].

We illustrate the effect of the bound optimization on the
image of an ellipse corrupted with structured noise shown
in Figure 2. This image demonstrates how spectral solu-
tions contain ancillary structure due to the graph topology.
The result obtained from the standard spectral algorithm is
shown on the top row. This segmentation is often explained
by the large-partition bias in the normalized cut. However,
the segmentation obtained from the corrected laplacian ex-
tracts the ellipse and has an improved cut value.

Upon detailed examination, we see that the Fiedler vec-
tor, used in the standard spectral algorithm, contains a pla-
nar sinusoidal structure. This structure leads to an ambigu-
ous embedding, as shown as the blue points in Figure 3. The
embedding obtained from the corrected laplacian, L+C∗, is
shown in green and suggests a less ambiguous partitioning
of the vertices.

In essence the bound optimization minimizes the effect
of the eigenmodes of the graph topology. That is, the eigen-
vectors of the image even without the ellipse are highly
structured, due to the topology of the graph. This structure
appears visually as sinusoidal functions in the image plane,
evocative of the physical modes of a square mesh. We see
that a correction vector, applied to the diagonal of L, flat-
tens this oscillation out of the Fiedler vector, bottom row of
Figure 2.

This modification has a simple physical intuition. Imag-
ine the graph as a spring and mass system. The mass asso-
ciated with each vertex has been normalized to 1 by L(W ),
and is close to the total weighted degree of the vertex. The
effect of "u can be interpreted as either increasing or decreas-
ing the relative mass of vertex vi. If the mass is decreased
at vi, it is proportionally more strongly coupled to its neigh-
bors. If the mass is increased, vi can oscillate more freely
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Figure 2. The image of a corrupted ellipse motivates the use of an corrected laplacians for NCut based image segmentation. The top row
shows the solution obtained from the spectral algorithm for the NCut. Note that the Fiedler vector contains the ellipse, and a low frequency
sinusoid. The values of the pixels at the far right are close to those taken by the ellipse. The second row shows the Fiedler vector obtained
after adding the correction vector to the diagonal of the normalized laplacian. The discrete solutions, and NCut values are shown in the
right column. We see, the corrected solution is not only more aesthetically pleasing, but also improves the NCut value.

Initial Embedding CL   Embedding

Figure 3. The geometric representation derived for the noisy el-
lipse example in Figure 2. The initial embedding derived from
NCut eigenrelaxation is shown on the left. The Fiedler space de-
rived from the corrected laplacian is shown on the right. Note: the
effect of the graph topology has been suppressed, resulting in the
crisp embedding (green).

from its neighborhood. In terms of the cut, increases in
mass result in discounted cuts involving vi.

The SDP paradigm was applied to the normalized cut
by Xing and Jordan [11], however they worked with an
edge-relaxation. Edge-relaxations involve O(n2) new pa-
rameters, whereas the vertex-relaxation only requires n new
parameters. The application of image segmentation seems
to benefit from SDPs in a way that generic clustering may
not. This difference is explained as the graph linkage, in im-

age processing applications, is defined by both local spatial
neighborhoods and feature agreement. These spatial neigh-
borhoods introduce sinusoidal structure in the eigenspace.
Whereas in clustering problems, the graph linkage is deter-
mined entirely by the geometry of the feature space.

The proposed vertex-relaxation is advantageous as it di-
rectly exploits the sparsity of the problem, and provides
a simple physical intuition to motivate the introduction of
prior information into the optimization. To this end we
define a guided optimization using side information. The
source of this information can be user input, a parametric
shape model, or any other oracle capable of providing semi-
reliable pixel level information regarding the image.

3.2 Alignment as Guided Optimization

In many domains, such as medical image processing, we
know the type of structure we wish to segment in the image
or volume. Accordingly, a mechanism for guiding the opti-
mization of the graph cut with shape estimates improves the
accuracy of the segmentation. To incorporate model data
into the segmentation, we align the Fiedler space with a vec-
tor (or subspace) encoding the current estimate of the shape.
The shape estimate is then updated by fitting regions in the
Fiedler vector that are likely to contain the cut (see §3.1.1.)
This is done by iteratively minimizing the following simple
objective function:

O(YF , YS) .= 1 − (Y T
F YS)2 (5)

where YF is the normalized Fielder vector from §2, and YS

is a vector representation of the current shape model esti-
mate. Clearly O is minimized when YF and YS are aligned,



up to a sign. As YF is a continuous function of the entries of
the weight matrix, we determine values in "u with a gradient
update aligning YF to YS .

The following iterative scheme is used for simultaneous
shape and normalized cut segmentation.
Algorithm 1: Minimize O(YF , YS)

1: Fix YS , and minimize O on YF
.= D−1/2XF with

min : tr XT
F (L(W ) + diag(t "un))XF . Resulting in

a 1-parameter search on the norm of the correction "u.
2: Update the shape model by fitting to high magnitude

contours in the burn map, derived from YF , and create
a shape vector YS from the current shape estimate.

3: Compute the update vector "un that aligns YF to YS ,
and iterate until convergence.

The method is initialized with "u = 0, (i.e. the standard
spectral relaxation). Finally we note that an estimate on the
norm t can be determined from matrix perturbation relating
||YF − YS ||2 to |t|.

3.2.1 The Differentials of a Generalized Eigenproblem

To update the eigenspace of a matrix as a function of its en-
tries, we state the differentials of Y and λ, dY and dλ, with
respect to the entries of L. Our derivation closely follows
that of Magnus and Neudecker [7]. They employ the im-
plicit function theorem (IFT) to show the existence of the
differentials dY, dλ, and require that λ0 is simple. Further
we note that the authors of [3] previously used the same
tools to derive a gradient rule learning the graph structure
from training data in a NCut paradigm.

For the generalized eigenproblem we form the function
fGEP , such that fGEP (y0,λ0; L) = 0 for the eigenpair
(y0,λ0) as follows:

fGEP (y0,λ0; L) .=
(

A
b

)
.=

(
(L − λ0D)y0

yT
0 Dy0 − 1

)
(6)

as above the eigenpair y0,λ0 is a zero of the function fGEP .
To validate fGEP and insure that the smooth open ball
N (y0,λ0) exists we must meet the requirements of the IFT.
The first requirement that fGEP (y0,λ0; L) = 0 follows
from the definition; that a function gGEP = ḟGEP exists,
and that gGEP (0) = 0 is all that remains2. Given that the

2To show that gGEP exits, the Jacobian on (y, λ) of fGEP must be
non-singular. This fact is verified from the formula for the determinant of a
bordered matrix as follows: det JGEP = −yT D1/2(L − λD)!D1/2y,
where B! denotes the transpose of cofactor matrix of B. Recall that for a
non-singular matrix B, B−1 = 1

detB B!. As the (L−λD) is rank(n−
1), the cofactor matrix consists of scaled versions of its nullspace space,
therefore det JGEP > 0. This follows because (D1/2y)T y > 0, for a
positive diagonal operator D, and as y is in the nullspace of (L−λD). As
g = J−1f , gGEP (0) = 0 follows from the formula for the determinant
above. See Magnus and Neudecker [7] for details on the determinants of
bordered matrices.

conditions of the IFT are met by fGEP we arrive at explicit
expressions for dλ and dY . The explicit forms of the differ-
entials of the implicit functions λ(L) and Y (L) are obtained
by differentiating Ly = λDy as follows:

(dL)y + L(dy) = (dλ)Dy + λ(dD)y + λD(dy). (7)

Solving for dλ in 7 we obtain:

dλ = yT
0 (dL − λ0(dD))y0 (8)

by premultiplying with yT
0 ; noting that yT

0 D0y0 = 1, and
grouping the remaining terms (dx)T (L − λ0I)y0 = 0 as
(L − λI)y0 = 0. We now derive the explicit form of dY :

(L0 − λD0)dY = ((dλ)D0 + λ0(dD) − dL)Y0 (9)

where dY is clearly the solution a constrained linear sys-
tem, subject to dY ⊥ y, dD = I and dL = Adjacency(G).

3.2.2 The Gradient Update: a vertex formulation

The alignment of the eigenspace to the shape estimate vec-
tor can be accomplished through the additive correction "u in
Algorithm 1, step 1. The update "ui for each vertex vi ∈ V
is computed as the expected change in weighted degree.

∂ui = Ei

{
∂O
∂Xi

∂Xi

∂Lij

}
(10)

= −2
(
AZY + AT

ZY + λIZY + AY Y − 2λIY Y

)
i

where Z
.= (dY ), Aab

.= A(G)◦ (abT ), Iab = I ◦abT , and
◦ denotes the point-wise product.

3.3 Shape Subspace Model

We construct a statistical family of foreground shapes
using the point distribution model approach of Cootes
et.al. [2]. First, a training set of N hand-labeled shape
contours consisting of n corresponding 2D landmark points
{(xi, yi)|i = 1, . . . , n} is aligned by scaling, rotating and
translating each shape to minimize the sum of squared dis-
tances between corresponding points. Note that this is
equivalent to performing a Procrustes shape fitting proce-
dure to align the contours up to a similarity transformation
[4]. Forming a 2nx1 vector xj containing the aligned points
for the jth training example, the mean shape is computed as
x̄ = 1

N

∑N
1 xj , and the resulting ”shape” model of the set

of contours is defined by the residual variation of the xj

about the mean shape, captured by the 2nx2n covariance
matrix S = 1

N

∑N
1 (xj − x̄)(xj − x̄)T . The principle

directions of shape variation are defined by the eigenvec-
tors pi of S, with amount of variance along each direction
measured by the corresponding eigenvalue λi. As is com-
mon in PCA-type models, we select an m-dimensional sub-
space composed of the eigenvectors corresponding to the m



largest eigenvalues, with m chosen such that the resulting
subspace accounts for 95% of the total shape variance. The
mean shape and the principal axes of shape variation allow
a shape x to be described by m shape parameters bi, as

x = x̄ +
m∑

i=1

bipi.

Given parameters bi of a proposed foreground shape x̂, we
can compute the likelihood of that shape with respect to our
training distribution by assuming a Gaussian process de-
fined by the mean shape and variances along the principal
axes

P (x̂) ∝ exp{−
m∑

i=1

b2
i

λ2
i

} . (11)

The key, therefore, is to find an efficient mechanism for es-
timating the shape parameters bi for the foreground region
implied by a current segmentation, and to adjust the cur-
rent segmentation in a way that favors shapes with higher
likelihood.

3.3.1 Energy Term for the Model Optimization

The shape parameters are estimated by explaining vertices
of the Fiedler vector that are likely to be adjacent to the cut.
Drawing on the analogy of the graph to an electrical circuit,
we can think of such vertices as those with high voltage
burn. These burn maps are obtained by applying the lapla-
cian of the prior graph topology to the vector. This results
in a new vector that measures the level of discord in val-
ues taken in the neighborhood of each vertex. Accordingly,
vertices that are likely adjacent to the cut will possess high
value in the burn map. In this way, the Fiedler space of the
graph laplacian can be interpreted as a collection of edge
preserving smoothers of the image. We include in this space
all minimizing vectors with minimal support [5]. The shape
parameters are estimated by fitting the areas of high burn in
the Fiedler space. We assign a discrete monotonic proba-
bility function such that P (data|x̂) = 1

Z 1 if all the energy
in the burn map is explained by the contour shape x̂. The
contour shape score is calculated as P (data|x̂)P (x̂) where
P (x̂) was defined in Equation 11. Multiple samples are fit
by perturbed restarts under the transform and parameter dis-
tributions followed by gradient ascent maximization on the
shape score.

3.3.2 Deriving Guiding Vectors from Shape Models

The sum of the scores, P (data|x̂k)P (x̂k), of the sample
fits of the model is normalized to 1. The interior of the
shape region is set to 1, the exterior 0, for each sample fit.
A combined estimate is then computed as the weighted av-
erage of the shape sample regions. Uniform negative values

are added to the zero entries to create a vector c|cT D1 = 0.
The shape alignment target vector is then YS = c/(cT c)1/2.
This vector is then used in step 3 of Algorithm 1 to calculate
the update to the Fiedler space.

4 Empirical Evaluation

The parameters for weight matrix construction were
fixed for all the presented segmentation results. The neigh-
borhood radius was set to 10 pixels with 20% of the pixels
being sampled in a regular radial pattern. The intervening
contour, described in [9], was used as the pixel affinity cue.
This cue decouples vertices that are on opposite sides of a
strong edge in the image plane.

4.1 Model Integration: Ventrical Segmentation

We evaluate our method on a collection of 200 MRI im-
ages containing the left ventricle. The collection was built
by taking 5 images from scans of 40 individuals drawn from
two populations : {normal,Alzheimers}. The images
were selected randomly from slices that contain the left ven-
tricle. As shown in Figure 4 these images contain substan-
tial variation in shape and size. The shape model used to
guide the optimization was trained on 40 images taken from
2 subjects whose scan did not appear in the evaluation set.

The results of the comparison are shown in Table 1. The
proposed method is compared to the NCut [9], and NCut
with bias [13]. For the NCut with bias, a background con-
straint mask of 3 pixels was set along the image border.
The top two rows contain the frequency of foreground pixel
differences between the algorithm and ground truth with
standard deviations. For the CL-Shape results, error gen-
erally occurs along the border of the foreground region. For
the nc(BIAS) results, the errors are generally small fore-
ground regions, while the variance is due to images in which
mask pixels were tightly coupled to the foreground pixels.
The bottom two rows contain the average compute time for
the solutions. The feasible space projection Z = CS(Y )
finds the best total correlation foreground partition with the
model estimate as a 1-parameter search along the value of
the Fielder vector. This is presented for the bias and stan-
dard NCut to illustrate the improvement due to joint estima-
tion of shape and segmentation.

5 Summary and Conclusions

We have shown that corrected laplacians improve the
average case normalized cut, and can be used to encode
shape information into the eigenvectors of the graph lapla-
cian. Unlike edge-relaxation SDPs, the formulation directly
exploits the sparse structure of graphs derived from im-
age data. This provides an avenue for efficient techniques
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Figure 4. Examples of ventrical shape and size variation in the MRI image population. The upper row contains three columns of: input
image, spectral relaxation vector, and partition. The bottom row contains: the correction vector for L, the corrected Fiedler vector Y , and
the resulting partition. The fourth column contains the original edge map (a), and burn maps at the first (b), third (c), and the fifth and final
iteration (d) of Algorithm 1

NCut(EIG) NCut(BIAS) NCut(CL-Shape)
CZ .72 ± .10 .36 ± .17 .10 ± .04
CS .61 ± .15 .28 ± .11 .07 ± .01
CZ 1.0s ± .01s 1.1s ± .01s 8.1s ± .11s
CS 1.1s ± .01s 1.2s ± .01s 8.2s ± .13s

Table 1. A comparison of segmentations derived from the spectral
relaxation of [12], the biased NCut [13] and the shape corrected
laplacians (CL-Shape).

for optimizing the bound and the cut. For segmentation
with prior models corrected laplacians provide a scaffold-
ing upon which coupled shape and data segmentation may
be optimized.

The proposed technique was validated experimentally on
real imagery using a collection of MRI images of the left
ventricle in 40 human subjects. This concrete segmentation
task afforded a quantitative comparison with current tech-
niques.

In future work, we intend to analyze the computational
properties of the correction vector approach. For example,
conditions in which the optimal normalized cut value dis-
agrees with our desired segmentation are bound to occur.
In such cases, it would be useful to provide a quality nor-
malized cut and yet bias more toward model consistency.
At this time we have not yet analyzed the degree to which
the model fidelity versus NCut partition score trade-off can
be controlled. Finally, we are evaluating the vertex-SDP
method on problems requiring robust clustering such as op-
tical flow segmentation.

References

[1] R. Bopanna. Eigenvalues and graph bisection: an average-
case analysis. FOCS, pages 280–285, 1987.

[2] T. Cootes, C. Taylor, D. Cooper, and J. Graham. Active shape
models – their training and application. CVIU, 61(1):38–59,
January 1995.

[3] T. Cour, N. Gogin, and J. Shi. Learning spectral graph seg-
mentation. AISTATS, 2005.

[4] I. Dryden and K. Mardia. Statistical Shape Analysis. John
Wiley and Sons, New York, 1998.

[5] C. Godsil and R. Gordon. Algebriac Graph Theory. Springer,
2001.

[6] S. Guattery and G. L. Miller. On the quality of spectral sep-
arators. Matrix Analysis & Applications, 19(3), 1998.

[7] J. R. Magnus and H. Neudecker. Matrix differential calculus:
with applications in statistics and econometrics. 1999.

[8] A. Ng, M. Jordan, and Y. Weiss. On spectral clustering:
Analysis and an algorithm. In NIPS, 2002.

[9] J. Shi and J. Malik. Normalized cuts and image segmenta-
tion. In PAMI, 2000.

[10] D. Spielman and S. Teng. Spectral partitioning works: Planar
graphs and finite element meshes. FOCS, 1996.

[11] E. P. Xing and M. I. Jordan. On semidefinte relaxtion for
normalized k-cut and connections to spectral clustering. TR-
CSD-03-1265, University of California Berkeley, 2003.

[12] S. Yu and J. Shi. Multiclass spectral clustering. In ICCV,
October 2003.

[13] S. X. Yu and J. Shi. Grouping with bias. In NIPS, 2002.
[14] R. Zabih and V. Kolmogorov. Spatially coherent clustering

with graph cuts. CVPR, 2:437–444, 2004.


