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We show that every 2-connected triangulated planar graph with » vertices has a simple
cycle C of length at most 2 /2 - n'which separates the interior vertices A from the exterior ver-
tices B such that neither A4 nor B contain more than 2/3n vertices. The method also gives a
linear time sequential algorithm for finding this simple cycle and an NC parallel algorithm. In
general, if the maximum face size is d then we exhibit a cycle C as above of size at most
2./d-n. © 1986 Academic Press, Inc.

1. INTRODUCTION

Many computationally efficient algorithms are known for both trees and planar
graphs which do not seem to generalize to all graphs. One basic technique in the
design of these algorithms is “divide-and-conquer.” For both - trees and planar
graphs one uses the fact that there exists a small subset of vertices which separates
the graph into roughly two equal pieces. For trees one can easily see that there
must exist a single vertex which separates the remaining vertices into at worst a
“}-%" split. I _

Formally, we say G with n vertices has an f(n)-vertex separator if there exists a
partition of the vertices into three sets 4, B, and C such that the size of C<f(n),
the size of 4 and B are <2n/3, and no edge exists between 4 and B. Thus, a tree
has 1-vertex separator. Lipton and Tarjan [16] showed that planar graphs have

2./2-n vertex separators and Djidjev [6] improved this to \/—6- n vertex

separators. Two now classic applications of the vertex separator theorems for

planar graphs are planar graph layouts for VLSI [23,20] and nested dissection in
numerical analysis [15].

It can be easily shown that a simple cycle in an embedded planar graph will par-
tition the faces and the remaining vertices and edges into two sets, ithose in the
interior and those in the exterior. In this paper we shall construct a small separator
which forms a simple cycle, called, a simple cycle separator. In the special case when
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the embedded graph is triangulated we shall find a simple cycle separator of size
2 ../2-n. We next motivate a stronger theorem.

Some applications of the “divide-and-conquer” technique for planar graphs
require separators with more structure. As an example, the planar flow algorithm of -
Johnson and Venhatesan [12] first constructs a planar separator which consists of
a collection of nonnesting cycles. Their algorithm can be simplified if a small simple
cycle separator were first found as described in this paper.

A subset C of edges is an edge separator if there exists a partition 4, B of the ver-
tices such that any edge between 4 and B is in C and the size of 4 and B are at
most 2n/3. Note that even trees may have only large edge separators. As an exam-
ple, the star graph which consists of a single vertex connected to n other vertices
requires an edge separator to have n/3 edges. We may want to capture the intuitive
notion that an edge separator corresponds to a simple incision. Formally, we ask
for a simple cycle in the geometric dual of the embedded planar graph which
separates faces of the embedded dual graph. Recall that the geometric dual of an
embedded graph consists of a vertex for every face and two dual vertices share a
dual edge for each edge they share as faces, see Fig. 1. This motivates a natural
generalization.

DErFINITION. Let G be an embedded planar graph and # an assignment of non-
negative weights to the vertices, edges and faces of G which sums to 1. We say that
a simple cycle C of G is a weighted separator if both the weight of the interior of C
and the weight of the exterior <3%.

As another example suppose we want a simple cycle separator for the graph con-
sisting of a simple cycle. Since we must return with a simple cycle and there is but
one cycle we are forced to pick this cycle. Thus, any estimate for the minimum size
of a simple cycle separator must include some other parameter. Let the size of a
face be the number of vertices on its boundary counting multiple visits when traver-
sing the boundary. Further, let d be the maximum face size for an embedded graph
G then infinitely often ¢ ./d-n edges will be required for a simple cycle separator
for some constant c. One can see this fact by taking any triangulated planar graph
which requires .Q(ﬁ) size vertex separators and replacing each edge by a path of
length d. We next show that this bound is also achievable for some constant, c’, the
main theorem of the paper.

1 2 3

FiG. 1. An embedded graph, its geometric dual, and its face incidence graph.
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THEOREM 1. If G is an embedded 2-connected planar graph, # is an assignment
of weights which sums to 1, and no face has weight > % then there exists a simple cycle
weighted separator of size 2 \/2|.d/2 | n, where d is the maximum face size. Further,
this cycle is constructible in linear sequential time or ponloganthmzc parallel time
with a polynomial number of processors.

Note that in the special case when the graph is triangulated, i.e., d=3, we con-
struct separators of size \/8; which agrees with Lipton-Tarjan result but is slightly
larger than the separators of Djidjev whose size are ./6n.' If we want a vertex
separator which forms a simple incision for a graph which may not be triangulated
we simply triangulate without adding new vertices and ask for a simple cycle
separator of size at most ./8n.

Theorem 1 is false if the hypothesis that G is 2-connected is dropped. A tree is a
simple example of a planar graph with no simple cycle separator. We next observe a
simple generalization of the previous theorem for the case when the face weights are
zero but the 2-connected hypothesis is dropped.

THEOREM 2. If G is an embedded planar graph and # is an assignment of weights
to the edges and vertices which sums to 1, then either there exists a vertex which is a
weighted separator or there exists a simple cycle separator of size at most

2d2 |n.

The theorem is only true if we are allowed to modify the embedding of G by
rearranging the 2-connected components. See the exampie in Fig. 2. As in Theorem
1 the separator is constructible in linear time and polylog parallel time. We first
show that Theorem 1 implies Theorem 2. Let G be an embedded graph as in the
hypothesis of Theorem 2. We first construct a tree T from G, see [7], consisting of
the cut vertices of G plus a new vertex for each 2-connected component of G. We
connect a cut vertex to a component vertex if it is contained in the corresponding
component. The weight of a cut vertex will be its weight in G. While a component
vertex will have the weight of the component minus the weight of the cut vertices it

contains.

1/2 1/2

V2 1/2

FIG. 2. A graph with no weighted simple cycle separator as embedded.

! This bound has recently been improved to 7/3 ﬁs 551 [8]
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We now find the weighted vertex separator x for T. If x is a cut vertex of G then
x is a weighted separator of G. Thus we must only deal with the case when a vertex
separaor x of T is a component vertex. In this case the weight of each subtree
obtained from T by removing x has weight <4. Let G,,..., G, be the subgraphs of G
corresponding to these subtrees of T and let H be the 2-connected component of G
corresponding to x. Further, let w; be the weight of G, minus the weight of the
attachment vertex to H. For each G, we add the weight w; to the face of H which G;
is embedded. Except for the case when some face of H now has weight >4%, we
simply use Theorem 1 to find a simple cycle separator of H. This cycle will be a
separator of G as required in Theorem 2. In the case when some face F of H has
weight >3 we pick F as our simple cycle separator and pick a subset of G, embed-
ded in F-whose combined weight is between 4 and % to be one of the pieces. Note
that in either case the maximum face size of H is at most that of G.

In Section 5 we discuss in detail both sequential and parallel implementation of
the simple cycle separator theorem. For sequential implementation we will use the
random access machine model (RAM) as described in- [1]. The parallel implemen-
tation will use a computation model consisting of a collection of synchronized
processors (RAMs) with a common memory. The processors are allowed to access
this memory using concurrent reads and writes in unit time, see [18]. In the
parallel model we will also estimate the number of processors used since we feel this
is an important parameter in the design of an efficient parallel algorithm. At the
present time breath-first search on a graph can be implemented in O(log n) time but
the number of processors is very large, O(n®) using classic matrix multiplication
methods. All other steps will be performed in O(log ») time using O(n) processors.
Thus Theorem 1 can be implemented in O(log n) time using O(n?) processors when
the planar embedding is also given. In the reduction of Theorem 2 to theorem 1 we
needed to compute the 2-connected components. Hopcroft gives a linear time
sequential algorithm [1] and Tarjan and Vishken give an O(log n) time O(n)
processor parallel algorithm [19] for computing the 2-connected components.’
Thus the time and processor count for Theorem 1 also applies to Theorem 2.

2. PRELIMINARIES

There are many formal definitions and many intuitive definitions of graphs
“drawn” or embedded in or on the plane. Following Edmonds, Lehman, Tutte, and
many others, we make the following formal definition; Let G be an undirected
graph. We view each edge of G as two directed edges or darts. An embedding will
simply be a description of the cyclic orderings of the darts radiating from each ver-
tex. Formally, let Sym(E) denote all permutations of the darts of G. An embedding
is defined as follows:

2 For randomized algorithms working on embedded graphs all steps except breath first search can be
performed in O(log n) steps using only O(n/log n) processors [17].
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DEFINITION.  The permutation ¢ € Sym(E) is an embedding of G if:

1. Tail(e) = Tail(¢(e)) for each dart ec E. |
2. ¢ restricted to the darts with tail at ve V is a cyclic permutation.

To specify the faces of this embedding consider the permutation R such that R(e)
is the reflection of the dart e. Now, successive application of ¢ will traverse the darts
radiating from a vertex, in say, a clockwise order. On the other hand, the per-
mutation ¢* = ¢ - R will traverse the darts forming the boundary of a face in coun-
terclockwise order. We say that ¢ is a planar embedding if the number of faces f of
the embedding satisfies Euler’s formula:

f—e+v=2

where e is the number of edges and v is the number of vertices of the graph.

We shall not distinguish between a face and its boundary of counterclockwise
oriented darts. In general a region, the union of a collection of faces, will also be
represented by its darts traversing the boundary in a counterclockwise order. The
boundary may not be connected so in general the boundary will be a collection of
traversals. We shall view all regions as closed. That is, a region contains the coun-
terclockwise oriented darts appearing on its boundary. Thus, e and R(e) cannot
both belong to the boundary of the same region. In particular, if F and F are the
boundaries of two distinct faces then the darts on the boundary of their union will
be equal to F+ F, where e+ R(e)=0. It will be understood that when adding
boundaries, sets of darts, that e + R(e)=0. By a path (cycle) C we shall mean the
darts on the path (cycle). Since the indegree and the outdegree are equal at any ver-
tex of F+ F, the set of darts F+ F' can be decomposed into a dart disjoint simple
cycles.

In this model, the natural unique decomposition of F+ F' into cycles which
corresponds to the counterclockwise traversal of the boundary of F+ F can be
defined as follows: If e is a dart in F+ F" with its head at vertex x then we leave x
on the first dart after R(e) given by the ordering ¢(R(e)), #*(R(e)),.... On the other
hand, any simple cycle C has a well-defined interior int(C) (the faces, vertices, and
edges to the left of C) and a well-defined exterior ext(C) (the faces, vertices, and
edges to the right of C). The int(C) and the ext(C) do not contain the darts of C or
C’s reverse, R(C).

3. BREATH-FIRST SEARCH FOR PLANAR GRAPHS

We need a breath-first search for planar graphs such that the frontier of the
search has a nice form. We would like the frontier to be a simple cycle but this is
not always possible. But we can describe a search such that the frontier is a collec-
tion of edge disjoint nonnesting simple cycles and the exterior of each simple cycle
is a disjoint unsearched region of the graph.



270 , GARY L. MILLER

We have given a very formal definition of an embedding.of a graph in the plane.
This definition or model is very useful for coding up the algorithms to follow but
may make it hard to understand the intuition behind them. One normally defines
an embedding of a planar graph as a drawing without crossing on the plane or a
sphere. These drawings in general will have the property that distance on the plane
or sphere will not correspond to distance in the graph. We have, at least for
intuition, considered drawing graphs ‘on 2-dimensional surfaces which are
topoxoglcaﬂy equivalent to the sphere. Further, we have assumed that they have
been drawn in such a way that distance on the surface is roughly proportional to
distance in the graph. One can also think of surfaces which have been triangulated
to a very good approximation to the surface. We have found that planar graphs
which have been drawn in a “dense” distance preserving way on a “real” tree seems
to best capture the spirit of the algorithms and exhibit the pitfalls in other
approaches. Most of the terminology has been motivated by this class of embed-
dings.. .

Supposc we execute breath first search on the. surfaoe of a “real” tree start. from a
point.. At first the frontler of the search. will be a simple cycle. But in gencral the
frontier will not. remain simple and it will decompose into a collection of simple
cycles which may share isolated vertices. Now, each simple cycle will correspond to
an unsearched subtree. We mimic this search on an embedded planar graph.

Suppose G.is an embedded planar graph with simple faces. We start our search
from. a face F. Thus, initially the frontier of the search is a simple cycle the boun-
dary of F. So, suppose that C is a simple cycle of-G.

We next define a natural breath first search into the exterior of C Let EF be the
faces of G in. the exterior of C which share a vertex or an edge with C, R(e) e.
Consider the sum C'=C+ Y F for Fe EF. We call C a leaf if C’ is empty; ie., all
faces exterior to C are in EF. Otherwise, we show that C’ can be written as an edge

disjoint sum of simple cycles such that their exteriors are also disjoint. Let ext(C’')* -

be the subgraph in the geometric dual of G induced by the facesin ext(C'’). Further,
let L be the faces in.a connected component of ext(C’')*. Consider. D the boundary
of the union of the faces of L,D =Y F for Fe L. It follows that R(D), the reflection
of all the darts of D, is contained in C'. They cannot belong to faces in ext(C’) since
L is connected component of ext(C’')*. We need only show that D is a simple cycle.

LEMMA 3. The subgraph D as described above is a simple cycle.

Proof. As noted in the preliminaries the boundary of a region consist of a
collection of simple cycles. We will show that if the boundary of L contains more
than one cycle then the underling surface that G is embedded on contains a “han-
dle.” By way of a contradiction suppose that D consists of 2 or more simple cycles.
Further, let ¢ and ¢’ be two darts of D on distinct simple cycles, say C,; and C,.
Since the regions defined by L and C’ are connected there are two vertex disjoint
paths, one in the interior of L and other in the interior of C’' which only share a
point on e and a point on ¢’. These two paths form a cycle T on the surface that

N
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crosses over C, in a fundamental way. Thus T and C, form an embedded graph of
genus 1, the underling surface contains a “handle.” This is a contradiction. Thus we
may conclude that D is simple. |}

Using Lemma 3 the unsearched region decomposes into a collection of connected
regions each with a boundary consisting of a simple cycle. We shall call C’ the next
level out from C and each R(D) a branch of C.

Note that this search is just regular breath first search on the face incidence
graph. The face incidence graph consists of the faces of G as vertices and two faces
are incident if they share an edge or a vertex as elements of G, see Fig. 1.

4. FINDING A SUBGRAPH OF SMALL DIAMETER

The proof of Theorem 1 consists of two phases. In the first phase, outlined in this
section, we find a subgraph H which has O(,/d-n) diameter and O(./d"n) face
size. While in the second phase, we will find a separator contained in H. The planar
embedding of H will be the one induced by the embedding of G, the original graph.
The weight on a vertex or an edge of H will equal the weight assigned in G. A face
F of H will have weight equal to the sum of the weights of faces, vertices, and edges
of G which are embedded in F, ie., # (int(F)) in G. This weight will be called the
induced weight on F. A face is a leaf with respect to a spanning tree if it contains
only one nontree edge on its boundary. We give the main theorem of this section.

THEOREM 4. If G is a 2-connected embedded planar graph with weights which
sums to 1, no face weight > 3% and the maximum face size is d, then there exists a
2-connected subgraph H with spanning tree T satisfying:

1. The diameter dia of T plus the maximum size h of any non-leaf face of H is at
most 2 /2| d/2 |n,ie., dia +h<2./2| d\2|n.

2. The maximum induced weight on any face of H is< 3.

Proof. Note that G is 2-connected if and only if every face of G is simple. Let G
satisfy the hypothesis of the theorem and F be some face of G. Further, let # be an
assignment of weights also satisfying the hypothesis.

We start by constructing a breath-first search of the levels from F as defined in
Section 3. Namely, we construct the next level out from F and decompose it into
branches. For each branch we again construct its branches. This gives us a tree of
branches with root F. Note that by starting from the leaves of this tree we can com-
pute the induced weight on the interior and exterior of each branch in linear time.
We discuss the parallel implementation in Section 6. We next pick a path of
branches F=C,,..., C, called a trunk by starting at F and picking at each stage a
branch on the next level whose exterior is of maximum size. That is, if C; is on the
trunk and B,,., B, are the branches of C; then we pick B; such that
# (ext(B;)) > # (ext(B,)), for 1<k<t
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Let C be the first branch on the trunk such that # (int(C)) >4, the interior of C
is the side containing F.

Of the branches of G consider those branches which are ancestors of C, including
C. Let n, be the number of vertices lying on these branches. Further, let d'=d/2]
We next exhibit a small size ancestor of C. The size of a cycle B is the number of
darts it contains which we denote by |B)|.

LEMMA 5. There exists an integer o, >0 such that the a,th ancestor of C, say B,
satisfies 2d'a, +|B} <2 /d' " n,. '

Proof. We show that B must exist by contradiction. If no such B exists then the
ith ancestor of C must have size > b;=2./d n,—2d i, for 0<i</n/d'" Since
the B/'s are vertex disjoint, the sum of the b/s must be <n,. That is, the sum

LV/m/d )
Y r2Jdn1-24"i
i=0

must be < n,. The sum can be rewritten as follows:
» LVm/d |
(L/m/d 1+ 1) 2/d n=2d )
im=1

= (L/m/@ J+ )2/ 1~ dL/m/d )
> (Jmld)2 ST —d m]d)=n,.

Thus the B;’s contain more than n, vertices, a contradiction. §

Let C= B,,..., B,,= B be the ancestors of C up to B. Consider the subgraph H'
obtained from G by (1) deleting the exterior of any branch of B, thru B, which is
distinct from B,,.., B, _, and (2) deleting the interior of B. Note that we have
deleted the exterior of C. Since the exterior of the branches deleted are not on the
trunk their weight must be <}. Thus this subgraph H' already satisfies the second
condition of the theorem. We next enlarge the graph so that it also satisfies the first
condition. Figure 3 gives a simple possible topological surface corresponding to H’
in the case when a, =4. Here, B, has two branches C and 4,, both have been
removed. B, has three branches By, 4,, and A4,. Again, A, and A, have been
removed. The subgraph H’ has induced face weights < §. As we shall see, it also has
small diameter. But, the face sizes may be too large.

Simultaneously for each face of H' except B construct the next level out until the
maximum number of levels constructed «, and the maximum branch size f satisfies
d -a,+f<2./d - n,, where n, is the number of vertices of G interiér to some face
of H except B. By similar arguments as used above this procedure will terminate.
The subgraph H will be G minus the exteriors of these branches. We call the por-
tion of G which is added onto the face of H' a cap. This H’ plus its caps has small
face size. We next construct the spanning tree 7. ' :
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FiG. 3. A topological picture of a possible subgraph H'.

The spanning tree T will consist of all the edges in B minus one edge plus the
edges from a breath first search spanning tree of H starting from B. Notice, we have
chosen 7 such that B is a leaf. The distance between levels is not too large since if D
is a simple cycle and x is a vertex on the next level out from D then x can be at
most a distance d’ from D since they must share a face of size <d. Thus, a breath
first search from any point on B in H' will generate paths of length at most
(d' - a, + | B|/2). By similar argument, any point in a cap is at most a distance of
d' - o, away from H'. Thus, H has a spanning tree of diameter 2d'(a, + a,) + | B|. We
need only show that T and H satisfy Condition 1) of Theorem 4. Since the
maximum non-leaf face size is f,-we need only estimate 2d'a, + | B| + 2d'a, + f which

is bounded by 2. /d -1, +2./d n, = 2./d(/n,+/n,). Since n, and n, are the
sizes of disjoint subsets of vertices in G the sum \/n, +,/n, is bounded by ﬁ ﬁ
Thus, the diameter of T plus the maximum face size (except B) is at most

2/2-dn |

5. FINDING THE SEPARATOR IN A GRAPH OF SMALL DIAMETER

By the last section we can find a subgraph of radius O(,/d-n). Here we find a
small simple cycle which is a separator. The main theorem of this section is:

THEOREM 6. If G is a 2-connected weighted and embedded planar graph with no
face weight > % and T is a spanning tree of G then there exists a weight separator of
size at most the diameter of T plus the maximum non-leaf face size..

Proof. The proof will comsist of a sequence of successive simple cycle
approximations that will converge to a cycle that is a weighted separator. We say a
dart e is a nontree dart if the edge containing e is not a tree edge. For each non-tree
dart e let C, be the induced simple cycle from the spanning tree T.

If C, is not a weighted separator then, without loss of generality, we may assume
that the weight of the interior of C,> 2. Let F be the face in G containing e, F will
be on the interior of C,. Further, let e,,.., e, be the non-tree darts on F distinct
from e as they appear on F starting at e. Note that k > 1. For, if k=0 then F would
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be the interior of C, since F is simple. This contradicts the facts:
3> #(F)= #(int(C,)) > % Thus, F is a non-leaf face. We now partition int(C.,).

For i=1 to k let C, be the cycle induced by R(e,), ie., int(C;) is contained in
int(C,). Thus the regions int(C,),., int(C,), int(F) form a partition of int(C,) up to
vertices and edges on their boundaries. We first reduce the problem to the case
when '

# (CXt(F))9 # (CXt(Cl))r,"a # (CXt( Ck)) > %: - (1 )

1. If #(int(C,))> % for some 1 <i<k then set e fo R(e;). Using this new e
recompute e, thru e, and repeat.

2. If #(ext(F))<#% then F is a weighted simple cycle separator of size <d.
Return F and quit.

3. If #(ext(C;))<% for some k<i<k then C; is a weighted simple cycle
separator of size <(diameter of T) + 1. Return C, and quit.

After step 3 if we have not found a simple cycle separator satisfying the theorem
then F, C,,..., C, must satisfy (1). For the rest of the proof we shall assume con-
dition (1) and we will use it to construct a separator whose interior will be a region
containing F plus some of the Cs. As we combine F with the interiors of some of
the Cs we must insure that the boundary is simple. For this end, we introduce a
partial order on the C;/s.

Let x and y be the end points of the edge e. Since F is a simple cycle, if we
remove e from F we obtain a simple path from x to y on F. Recall that the boun-
dary of Fis the darts and vertices in counterclockwise order. Let x = x,,.., x, =y be
the vertices on the path in the order they appear. Given any cycle C; it will contain
a vertex a, of minimum index and a vertex r; of maximum index in {x,,.., x, }. We
shall call these vertices the left-most and right-most vertices of C;, respectively.
Thus, associated with C, is an interval or path of darts on F from the vertex of
index a; to the vertex of index r,. We say C; dominates C; if the interval for C, con-
tains the interval for C;. We say C,; is left of C; if the darts on the interval of C,
come before those of C,. Since the embedding is planar these intervals must nest,
i.e., either one contains the other or they overlay by at most a single vertex. The C’s
can be viewed as vertices of a graph by adding a directed edge from C, to C; if C;
dominates C; and there is no k such that C; dominates C, and C, dominates C;. In
fact, we get a forest. In a natural way we let C, be a common root. Thus dominates
relation plus the left and right relation gives us a rooted ordered tree on C,= C,,
Cl gevsy Ck' ’ ‘ ’ ’

We associate with each region int(C,) the union of all regions dominated by it,
ie., C;=Y {C,|C, dominates C; for i#0} and Co= (X}, C;). Simijlar to the fact
that trees have a separator consisting-of a single vertex we get the folowing lemma:

LEMMA 7. = Either () there exists an i #0 such that F+ C, is a weighted separator
or (b) there exists an i such that # (int(F+C,))>% and for all j, such that Cisa
child of C,, #(ext(F+C;))>%.
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First, suppose that condition (a) in Lemma 7 is true. Clearly, F+ C,;is a weighted
separator. We must show that F+ C, is a simple cycle and determine its weights.
Note that C, forms a simple cycle which intersects F on some interval of F. Thus,
F + C, will consist of an interval of F plus an interval of. C; which are disjoint except
at their end points. Since this interval of C, is contained as a simple path in T the
size of F+ C is at most diameter of T plus maximum over non-leaf face sizes. Thus
it is a small simple cycle weighted separator. For the remainder of the proof of
Theorem 5 we may assume that C,; satisfies condition (b) of Lemma 7.

Let L,,.., L, be the children of C; which are left of C; ordered from right to left.
Similarly, let R,,..., R, be the children of C; which are right of C; ordered from left
to right. We shall successively add L, to F+ 3%}, L, while #ext(F+ 32 L) > %
If the weight of the left children is not large enough to form a separator we will suc-
cessively add the right children to the sum. Suppose that A4 is the union of some of
the regions and we want to add region B. Since int(4 + B) will also contain the
boundary between 4 and B both #(int(4)) and # (int(B)) may be < £ while
#(int(4 + B))>2 By using the fact that #(ext(4))>% we show that
#(int(4 + B)) <%

LeMMA 8. If G is an embedded graph, A and B are two face disjoint regions such
that # (ext(A4))>2, and # (int(B)) <} then # (int(A + B))<3.

Proof. Let A and B satisfy the hypothesis. The exterior of 4 decomposes into
the exterior of 4 + B, the interior of B, and that part of the boundary of B not in
the boundary of A. Setting b equal to the last term above we can express this as
# (ext(A4)) = # (ext(A + B))+ # (int(B) + #(b). By the hypothesis # (ext(4))>3
and # (int(B)) < {. Therefore, # (ext(4 + B)) + #(b) > 1. But both ext(4 + B) and b
are disjoint and not in the int(4 + B). Thus, # (int(4 +B))<% |

Using the last lemma we can simply pick D,,.., D, for some j such that
F=F+D,+ - + D, is a separator. We must show that F' is simple and of small
size. We state without proof the following simple lemma:

LeMMA 9. If D,,.,D; are consecutive and all left (right) of e; then
F+ D, +,.,+ D, is simple and consists of an interval from F plus a simple path in T,
the spanning tree.

Thus, the new region will consist of F plus consecutive elements from the left of e;
and consecutive elements from the right of e;. Its boundary will consist of two paths
from the tree plus 2 paths from F. Thus, the size of this region is at most twice the
diameter of T plus the maximum over the non-leaf face sizes, 2 dia + 5. Actually
these two paths in the tree can be joined to form one simple path in T. This gives
the desired result that the size <dia+S.
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6. SEQUENTIAL AND PARALLEL IMPLEMENTATION OF THE SEPARATOR THEOREM

So far we have only implicitly given an algorithm to find a simply cycle separator
for a planar graph. This algorithm naturally decomposes into 9 steps. We first
enumerate these steps and then discuss both sequential and parallel implemen-
tations of each of these steps:

A List of Computations Used to Find a Separator
1. Pick a face F and compute the branches derived from F.
2. Determine the weight of each branch.
3. Find the subgraph H and spanning tree T satisfying Theorem 4.
4

Determine the weight on the interior and exterir of each induced cycle of
- T.

5. Check if any face or induced cycle is a weighted simple cycle separator. If
not there must exist an edge e and a face F satisfying condition (1). Find it.

6. Compute the dominance tree associated with F and C and compute the
weight of each C;.

7. Find a C, satisfying either condition (a) or (b) of Lemma 6. If condition
(a) holds then we are done.

8. If condition (b) of Lemma 6 holds then compute the accumulativé wéights
of the left and right children of C,. ;

9. Pick an appropriate sum of left and right children of C;. Which forms the
separator.

It is assumed that the graph has all ready been embedded on the sphere or plane.
If not there are several linear time sequential algorithms which find the embedding
[10, 2], as well as, polylog parallel time parallel algorithms [11, 17]. In either case
we may assume the graph is embedded where the embedding is presented by a per-
mutation ¢ of the darts such that ¢ cyclically permutes the darts radiating from
each vertex. The permutation may be stored as a array by first assigning a number
to each dart, viewing ¢ as a permutation of these numbers, and storing ¢(i) in
location i. The permutation ¢* =¢R which traverses the boundary of the faces in
counterclockwise order can be computed by evaluating the product in linear
sequential time or constant parallel time.

We start by analyzing step 1 which seems to be the most costly step of the
algorithm especially in the parallel case. In the sequential case we implement a
breath-first search from the face F as described in the preliminaries. It is not hard to
see that this can be implemented only maintaining three permutations ¢, R, and B,
where initially B is F the boundary of the face F. Eventually either B(e)=e if e is
not in some successive branch of F or B(¢é) is the next dart in the branch con-
taining e. - ,

To implement step 1 in parallel we construct the face incidence graph storing it
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as an incidences matrix. Using an O(log n) parallel time matrix multiplication
algorithm where the two scalar operations are sum and minimum, we compute the
distance of each face from the face F in O(log? n) time. A dart belonging to some
branch of F will have a face of distance i on the left side and a face of distance i+ 1
on the right. To determine the image of B applied to a dart e with head x which
belongs to some branch of F we must determine the first dart leaving x scanning
clockwise from e at x, see Fig. 4. This can be done by standard doubling-up tricks.

“To implement step 2 we use the fact that the branches of F form a tree rooted at
F (Lemma 3). Thus, we compute the weight of the exterior of each branch starting
at the leaves. The sequential case is straight forward. We discuss in more detail the
parallel case.

We first present an O(log n) time O(n?) processor algorithm and then show how
to modify it to reduce the processor count to O(n). Let D be a simple cycle and
G*— D* be the geometric dual of G minus those edges dual to D. We saw in
Lemma 3 that the faces in the exterior of D form a connected component in
G* — D*. We can find this component in O(log n) time using O(n) processors [18].
Thus in O(log n) time and O(n) processors we can compute #ext(D). To compute
the weight of the exterior of n simple cycles will add a factor of n to the number of
processors. Since the cycles in our case form a tree we show how to reduce the
problem to the problem of evaluating all subexpressions of an arithmetic
expression. :

The weight # (ext(D)) of some- branch D with children D,,..., D, will equal:

k_ #(ext(D,))+ X%, #(D;)+ (the weight of the faces, edges and vertices
between D and D,,..., D;). To compute the last term t in the sum suppose that D is
between faces at level j— 1 and j. Note that the faces in the sum 7 are those faces at
level j which share a vertex or an edge with D. They form a connected component
in the geometric dual. While the edges and vertices in the sum are those elements
which are only common to the faces in this component. Notice that the 7 terms are
formed from disjoint sets of vertices, edges, and faces. By assigning a processor to
ecach vertex, edge, and face one can in O(logn) time determine to which branch
they belong using a connected components algorithm [18]. In O(log n) parallel

FiG. 4. The boundary of the region given by faces F;, F,, and F, will send e, to e, and e, to e,.
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additions we can compute the last two terms in the sum. If W, is the last two terms
in the sum then #(ext(D))=Wp+Xf., # (ext(D,)). We view the evaluation of
# (ext(D)) as simply the evaluation of an expression of size n. Brent [3] has shown
that expression can be evaluated in O(log n) time in parallel for a fixed expression.
Here we need to dynamically evaluate expressions in polylog parallel time. A simple
O(log n) time .P-RAM algorithm using O(n) processors is given in [17].

Step 3 is fairly straight forward in both the sequential and parallel case.

Step 4 is very similar to step 2. By the following lemma we view computing the

weights on all induced cycles as an expression evatuation problem.

LemMma 10. If G is a 2-connected embedded planar graph, G* its geometric dual, T
a spanning tree of G, and H the subgraph of G* consisting of those edge in G* whose
dual is not in T then H is a tree.

Thus step 4 for face weights.can be viewed as determining the induced weights on
the edges of H. As in step 2, we start at the leaves. Thus, we can compute the
weight of the faces interior to each induced cycle. We must also determine the con-
tribution from the vertices and the edges. It will suffice to determine the smallest
induced cycle containing a given edge. It is not hard to see this problem reduces to
the least common accessors problem for rooted trees. This last problem can be
preformed in O(log n) time using O(n/log n) processors for planar graphs [17].

Steps 5-9 are fairly straightforward. Note that step 6 uses ideas similar to steps 2
and 4.

7. CONCLUSIONS

In this paper we have concentrated on worst case separators. That is, we give an
algorithm which finds a relatively small separator when the smallest separator is
relative large. It is open whether there is<a polynomial time algorithm which finds
the optimal separator for planar graphs. It is easy to show that there is always an
optimal separator which consists of non-nesting simple cycles if the graph
is triangulated. We say a simple cycle C is a separator of ratio k if

size(C)/min{ # (int(C)), # (ext(C))} =F.

Questions. Is finding an optimal ratio separator for planar graphs polynomial
time computable? ‘

It seems that most divide-and-conquer algorithms only need separators with
small ratios. Thus optimal ratio separators may be a more natural or applicable
then “4-%" separators.
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