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Abstract. Triangle counting is an important problem in graph min-
ing. Clustering coefficients of vertices and the transitivity ratio of the
graph are two metrics often used in complex network analysis. Further-
more, triangles have been used successfully in several real-world appli-
cations. However, exact triangle counting is an expensive computation.
In this paper we present the analysis of a practical sampling algorithm
for counting triangles in graphs. Our analysis yields optimal values for
the sampling rate, thus resulting in tremendous speedups ranging from
2800x to 70000x when applied to real-world networks. At the same time
the accuracy of the estimation is excellent.
Our contributions include experimentation on graphs with several mil-
lions of nodes and edges, where we show how practical our proposed
method is. Finally, our algorithm’s implementation is a part of the Pe-
GaSus library 3 a Peta-Graph Mining library implemented in Hadoop,
the open source version of Mapreduce.

1 Introduction

Graphs are ubiquitous: the Internet, the World Wide Web (WWW), social net-
works, protein interaction networks and many other complicated structures are
modelled as graphs. The problem of counting subgraphs is one of the typical
graph mining tasks that has attracted a lot of attention ([13], [14], [15] ) due to
the wealth of applications related to it. Indicatively we report the following: a)
Frequent small subgraphs are considered as a “basis”, i.e., building blocks, for
constructing classes of real-world networks [21],[3]. b) In complex network anal-
ysis, computation of the transitivity ratio and the clustering coefficients requires
computing the number of triangles in the graph [23]. c) Community detection is a
significant problem in many different scientific fields, e.g., parallel computation,
computer vision([26]), linear algebra([17]), including graph mining [20,28,17].
3 Code and datasets are available at http://www.cs.cmu.edu/~ctsourak/.
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Subgraph patterns such as bipartite cores or nearly “bipartite cliques”, are used
to detect emerging communities in the WebGraph [18] d) Fraudsters in online
auction networks reportedly [25] seem to form specific patterns of connections,
e.g., dense bipartite subgraphs.

The most basic, non-trivial subgraph, is the triangle. More formally, given
a simple, undirected graph G(V,E), a triangle is a three node fully connected
subgraph. Many social networks have abundant triangles, since typically friends
of friends tend to become friends themselves [36]. This phenomenon is observed
in other types of networks as well (biological, online networks etc.) and is one of
the main factors that gave rise to the definitions of the transitivity ratio and the
clustering coefficients of a graph [23]. Triangles have also been used in several
applications. Namely, they have been used by Eckmann and Moses in [10] to
uncover the hidden thematic structure of the web and as a feature to assist the
classification of web activity as spamming or not, by Becchetti, Boldi, Castillo
and Gionis in [5].

In this paper we analyze a recent sampling algorithm for counting triangles
which appeared in [34]. In [34] only constant values of the sparsification param-
eter, i.e., sampling rate, were tested. A natural question to ask is how small can
the sample be? If p could be for example O( 1√

n
) while having guarantees that

the estimate is concentrated around the true value of the number of triangles
in G, then the speedup would grow linearly with the number of nodes using an
algorithm as the node iterator [34], giving tremendous speedups. Our main con-
tribution is the rigorous analysis of Doulion [34], which yields optimal values for
the sparsification parameter p. We run our proposed method on large networks,
showing speedups that reach the scale of about 70000 faster performance with
respect to the triangle counting task.

The paper is organized as follows: Section 2 presents briefly the existing
work and the theoretical background, Section 3 presents our proposed optimal
sampling method and Section 4 presents the experimental results on several
large graphs. Section 5 presents two theoretical ramifications and in Section 6
we conclude.

2 Preliminaries

In this section, we briefly present the existing work on the triangle counting
problem and the necessary theoretical background of our analysis. Table 1 lists
the symbols used in this paper.

2.1 Existing work

There exist two general categories of triangle counting algorithms, the exact and
the approximating counting algorithms.

Exact Counting The fastest exact counting methods use matrix-matrix multi-
plication and therefore the overall time complexity is O(n2.371), which is the



Symbol Definition

G a graph
n number of nodes in G
m number of edges in G
t number of triangles in G

∆(e) # triangles
that edge e participates

∆ max∆(e)
p sparsification parameter
p∗ a p value which gives concentration
p∗I ideal p value, p∗I=min(p∗)
T random variable,

estimate of t

Table 1. Table of symbols

state of the art complexity for matrix multiplication [8]. The space complexity
is O(n2). This category of algorithms are not used in practice due to the high
memory requirements. Even for medium sized networks, matrix-multiplication
based algorithms are not applicable.

Listing algorithms, even if they solve a more general problem than the count-
ing one, are preferred in practice for large graphs, due to the smaller memory re-
quirements. Simple representative algorithms are the node- and the edge-iterator
algorithms. In the former, at each iteration the algorithm considers the neigh-
borhood of each node and counts the number of edges among the neighbors,
whereas the latter at each iteration considers and edge and counts the common
neighbors of the endpoints. Both have the same asymptotic complexity O(mn),
which in dense graphs results in O(n3) time, the complexity of the naive count-
ing algorithm. Practical improvements over this family of algorithms have been
achieved using various techniques, such as hashing to check if two nodes are
neighborhood or not in constant time or sorting by the degree to avoid unnec-
essary comparisons of neighborhoods of nodes ([19,29]).

In planar graphs, Itai and Rodeh [11] and also Papadimitriou and Yannakakis
[24] showed that triangles can be found in O(n) time. Itai and Rodeh in [11]
proposed an algorithm to find a triangle in any graph in O(m 3

2 ), which can be
extended to list the triangles in the graph with the same time complexity. Their
algorithm iteratively computes a spanning tree of the graph until there are no
edges left, checks for each edge (u, w) that does not belong to the spanning tree
whether it belongs to a triangle w.r.t the spanning tree and then removes the
edges of the spanning tree.

The state of the art counting algorithm is due to Alon, Yuster and Zwick in [2]
and runs in O(m

2ω
ω+1 ), where ω=2.371, the fast matrix multiplication exponent

([8]). Thus, the Alon et al. algorithm currently runs in O(m1.41) time.



Approximate Counting In many applications such as the ones mentioned in
Section 1 the exact number of triangles is not crucial. Thus approximating al-
gorithms that are faster and output a high quality estimate are desirable. Most
of the approximate triangle counting algorithms have been developed in the
streaming setting. In this scenario, the graph is represented as a stream. Two
main representations of a graph as a stream are the edge stream and the in-
cidence stream. In the former, edges are arriving one at a time. In the latter
scenario all edges incident to the same vertex appear successively in the stream.
The ordering of the vertices is assumed to be arbitrary. A streaming algorithm
produces a relative ε approximation of the number of triangles with high proba-
bility, making a constant number of passes over the stream. However, sampling
algorithms developed in the streaming literature can be applied in the setting
where the graph fits in the memory as well.

Monte Carlo sampling techniques have been proposed to give a fast estimate
of the number of triangles. According to such an approach, a.k.a. naive sampling,
we choose three nodes at random repetitively and check if they form a triangle
or not. If one makes

r = log(
1
δ
)

1
ε2

(1 +
T0 + T1 + T2

T3
)

independent trials where Ti = #triples with i edges and outputs as the estimate
of triangles the random variable T ′

3 =
(n
3

)Pr
i=1 Xi

r then

(1− ε)T3 < T ′
3 < (1 + ε)T3

with probability at least 1 − δ. For graphs that have T3 = o(n2) triangles this
approach is not suitable. This is the typical case, when dealing with real-world
networks. This sampling approach is presented in [30].

Yosseff, Kumar and Sivakumar in their seminal paper [4] reduce the prob-
lem of triangle counting efficiently to estimating moments for a stream of node
triples. Then they use the Alon-Matias-Szegedy algorithms [1] (a.k.a. AMS al-
gorithms) to proceed. The key is that the triangle computation reduces in es-
timating the zero-th, first and second frequency moments, which can be done
efficiently. Again, as in the naive sampling, the denser the graph the better the
approximation. The AMS algorithms are also used by [12], where simple sam-
pling techniques are used, such as choose an edge from the stream at random and
check how many common neighbors its two endpoints share considering the sub-
sequent edges in the stream. In the same lines, Buriol et al. in [7] proposed two
space-bounded sampling algorithms to estimate the number of triangles. Again,
the underlying sampling procedures are simple. E.g., for the case of the edge
stream representation, they sample randomly an edge and a node in the stream
and check if they form a triangle. Their algorithms are the state-of-the-art algo-
rithms to the best of our knowledge. In their three-pass algorithm, in the first
pass they count the number of edges, in the second pass they sample uniformly
at random an edge (i, j) and a node k ∈ V −{i, j} and in the third pass they test
whether the edges (i, k), (k, j) are present in the stream. The number of draws



that have to be done in order to get concentration (of course these draws are
done in parallel), is of the order

r = log(
1
δ
)

2
ε2

(3 +
T1 + 2T2

T3
)

Even if the term T0 is missing compared to the naive sampling, the graph has
still to be fairly dense with respect to the number of triangles in order to get an
ε approximation with high probability.

In the special case of “power-law” networks Tsourakakis [33] showed that
the spectral counting of triangles can be efficient due to the spectrum properties
of this category networks. This algorithm can be viewed as a special case of a
streaming algorithm, since there exist algorithms ([27]) that perform a constant
number of passes over the non-zero elements of the matrix to make a good w.r.t
the SVD, low rank approximation of a matrix. In [5] the semi-streaming model
for counting triangles is introduced. Becchetti et. al. observed that since counting
triangles reduces to computing the intersection of two sets, namely the induced
neighborhoods of two adjacent nodes, ideas from the locality sensitivity hashing
[6] are applicable to the problem of counting triangles. They relax the constraint
of a constant number of passes over the edges, by allowing log n passes.

DOULION Doulion, a recent algorithm which appeared in [34] proposed a new
sampling procedure. The algorithm tosses a coin independently for each edge
with probability p to keep the edge and probability q = 1− p to throw it away.
In case the edge “survives”, it gets reweighted with weight equal to 1

p . Then, any
triangle counting algorithm, such as the node- or edge- iterator, is used to count
the number of triangles t′ in G′. The estimate of the algorithm is the random
variable T = t′

p3 . The following facts -among others- were shown in [34]:

– The estimator T is unbiased, i.e., E [T ] = t.
– The expected speedup when a simple exact counting algorithm as the node

iterator is used, is 1/p2.

The authors however did not answer a critical question: how small can p be?
In [34] constant factor speedups were obtained leaving the question as a topic of
future research.

2.2 Concentration of boolean Polynomials

A common task in combinatorics is to show that if Y is a polynomial of indepen-
dent boolean random variables then Y is concentrated around its expected value.
In the following we state the necessary definitions and the main concentration
result which we will use in our method.

Let Y = Y (t1, . . . , tm) be a polynomial of m real variables. The following
definitions are from [32]. Y is totally positive if all of its coefficients are non-
negative variables, regular if all of its coefficients are between zero and one,
simplified if all of its monomials are square free and homogeneous if all of its



monomials have the same degree. Given any multi-index α = (α1, . . . ,αm) ∈ Zm
+ ,

define the partial derivative ∂αY = ( ∂
∂t1

)α1 . . . ( ∂
∂tm

)αmY (t1, . . . , tm) and denote
by |α| = α1 + · · ·αm the order of α. For any order d ≥ 0, define Ed(Y ) =
maxα:|α|=d E(∂αY ) and E≥d(Y ) = maxd′≥d Ed′(Y ).

Typically, when Y is smooth then it is strongly concentrated. By smoothness
one usually means a small Lipschitz coefficient. In other words, when one changes
the value of one variable tj , the value Y changes no more than a constant.
However, as stated in [35] this is restrictive in many cases. Thus one can demand
“average smoothness” as defined in [35]. For the purposes of this work, consider a
random variable Y = Y (t1, . . . , tm) which is a positive polynomial of m boolean
variables [ti]i=1..m which are independent. Observe that a boolean polynomial is
always regular and simplified.

Now, we refer to the main theorem of Kim and Vu of [16, §1.2] as phrased in
Theorem 1.1 of [35] or as Theorem 1.36 of [32].

Theorem 1. There is a constant ck depending on k such that the following
holds. Let Y (t1, . . . , tm) be a totally positive polynomial of degree k, where ti can
have arbitrary distribution on the interval [0, 1]. Assume that:

E [Y ] ≥ E≥1(Y ) (1)

Then for any λ ≥ 1:

Pr
[
|Y − E [Y ]| ≥ ckλk(E [Y ] E≥1(Y ))1/2

]
≤ e−λ+(k−1) log m. (2)

3 Proposed Method

3.1 Analysis

Now, we analyze a simple sparsification procedure which first appeared in [34]:
toss a coin for each edge with probability p to keep the edge and probability
q = 1 − p to throw it away. In case the edge “survives”, we reweigh it with
weight equal to 1

p . Observe that since the initial graph was unweighted, all edges
in the resulting sparsified graph G′ have weight equal to 1

p , thus we just have to
store a single number. Now, we count weighted triangles in the sparsified graph
G′. Our main result is the following theorem.

Theorem 2. Suppose G is an undirected graph with n vertices, m edges and t
triangles. Let also ∆ denote the size of the largest collection of triangles with a
common edge. Let G′ be the random graph that arises from G if we keep every
edge with probability p and write T for the number of triangles of G′. Suppose
that γ > 0 is a constant and

pt

∆
≥ log6+γ n, if p2∆ ≥ 1, (3)

and
p3t ≥ log6+γ n, if p2∆ < 1. (4)



for n ≥ n0 sufficiently large. Then

Pr [|T − E [T ]| ≥ εE [T ]] ≤ n−K

for any constants K, ε > 0 and all large enough n (depending on K, ε and n0).

Proof. Write Xe = 1 or 0 depending on whether the edge e of graph G survives in
G′. Then T =

∑
∆(e,f,g) XeXfXg where ∆(e, f, g) = 1 (edges e, f, g form a triangle).

Clearly E [T ] = p3t.
Refer to Theorem 1. We use T in place of Y , k = 3.
We have

E
[

∂T

∂Xe

]
=

∑

∆(e,f,g)

E [XfXg] = p2|∆(e)|,

where ∆(e) = to how many triangles edge e participates. We first estimate the
quantities Ej(T ), j = 0, 1, 2, 3, defined before Theorem 1. We get

E1(T ) = p2∆ (5)

where ∆ = maxe |∆(e)|.
We also have

E
[

∂2T

∂Xe∂Xf

]
= p1 (∃g : ∆(e, f, g)) ,

hence
E2(T ) ≤ p. (6)

Obviously E3(T ) ≤ 1.
Hence

E≥3(T ) ≤ 1, E≥2(T ) ≤ 1,

and
E≥1(T ) ≤ max

{
1, p2∆

}
, E≥0(T ) ≤ max

{
1, p2∆, p3t

}
.

• Case 1 (p2∆ < 1):
We get E≥1(T ) ≤ 1, and, from (4), E≥0(T ) = p3t.

• Case 2 (p2∆ ≥ 1):
We get E≥1(T ) ≤ p2∆, and, from (3), E≥0(T ) = p3t.

We get, for some constant c3 > 0, from Theorem 1:

Pr
[
|T − E [T ]| ≥ c3λ

3(E [T ] E≥1(T ))1/2
]
≤ e−λ+2 log n. (7)

Notice that in both cases we have E [T ] ≥ E≥1(T ).
We now select λ so that the lower bound inside the probability on the left-

hand side of (7) becomes εE [T ]. In Case 1 we pick

λ =
ε1/3

c1/3
3

(p3t)1/6



while in Case 2

λ =
ε1/3

c1/3
3

(
pt

∆

)1/6

to get

Pr [|T − E [T ]| ≥ εE [T ]] ≤ exp(−λ + 2 log n) (8)

Since λ ≥ (K+2) log n follows from our assumptions (3) and (4) if n is sufficiently
large, we get Pr [|T − E [T ]| ≥ εE [T ]] ≤ n−K , in both cases.

3.2 Remarks

This theorem states the important result that the estimator of the number of
triangles is concentrated around its expected value, which is equal to the actual
number of triangles t in the graph [34] under mild conditions on the triangle
density of the graph. The mildness comes from condition (3): picking p = 1,
given that our graph is not triangle-free, i.e., ∆ ≥ 1, gives that the number of
triangles t in the graph has to satisfy t ≥ ∆ log6+γ n. This is a mild condition
on t since ∆ ≤ n and thus it suffices that t ≥ n log6+γ n (after all, we can always
add two dummy connected nodes that connect to every other node, as in Figure
1, even if practically -experimentally speaking- ∆ is smaller than n). The critical
quantity besides the number of triangles t, is ∆. Intuitively, if the sparsification
procedure throws away the common edge of many triangles, the triangles in the
resulting graph may differ significantly from the original.

A significant problem is the choice of p for the sparsification. The conditions
(3) and (4) tell us how small we can afford to choose p, but the quantities
involved, namely t and ∆, are unknown. One way around this obstacle would
be to first estimate the order of magnitude of t and ∆ and then choose p a little
suboptimally. It may be possible to do this by running the algorithm a small
number of times and deduce concentration if the results are close to each other.
If they differ significantly then we sparsify less, say we double p, and so on, until
we observe stability in our results. This would increase the running time by a
small logarithmic factor at most. As we will describe in Section 4, in practice
the doubling p idea, works well.

From the theoretical point of view, this ambiguity of how to choose p to
be certain of concentration in our sparsification preprocessing does not however
render our result useless. Under very general assumptions on the nature of the
graph one should be able to get a decent value of p. For instance, if we we know
t ≥ n3/2+ε and ∆ ∼ n , we get p = n−1/2. This will result in a linear O(n)
expected speedup, as already mentioned in section 2. On the other hand, if one
wishes to make no assumptions on the nature of the graph, he/she can pick a
constant p, e.g., p = c, and obtain expected speedups of order 1

c2 as described
in [34].



4 Experiments

In this section we describe first the experimental setup, and then we present the
experimental results. We close the section by providing a practitioner’s guide
on how to use the analyzed triangle counting algorithm through the detailed
description of a specific experiment.

4.1 Experimental Setup

Datasets Table 2 describes in brief the real-world networks we used in our exper-
iments 4. All graphs were first made undirected, and all self-loops were removed.
The description of table 2 refers to the graphs after the preprocessing.

Algorithm We implemented the node iterator algorithm which was described in
Section 2 and was also used in [34]. The code is written in JAVA and in Hadoop,
the open source version of MapReduce [9].

Machines We used two machines to run our experiments. The experiments for
the three smallest graphs (Wikipedia 2005/9, Flickr, Youtube) were executed in
a 2GB RAM, Intel(R) Core(TM)2 Duo CPU at 2.4GHz Ubuntu Linux machine.
For the three larger graphs (WB-EDU, Wikipedia 2006, Wikipedia 2005), we
used the M45 supercomputer, one of the fifty most powerful supercomputers
in the world. M45 has 480 hosts (each with 2 quad-core Intel Xeon 1.86 GHz,
running RHEL5), with 3Tb aggregate RAM, and over 1.5 PetaByte aggregate
disk capacity. The cluster is running Hadoop on Demand (HOD). The number
of machines allocated by HOD was set equal to three (3), given the relative
small size of the graphs (≈ 600-700 MB). The sparsification triangle counting
algorithm Doulion, i.e., sparsification and counting in the sparsified graph were
executed for all datasets in the Ubuntu machine.

4.2 Experimental Results

Given that the majority of our datasets has n of order ≈ 106 we begin with a
sparsification value p = 0.005 which is≈ 1/

√
n. We tried even smaller values than

that (e.g, 0.001, 0.0005), but there was no concentration for any of the datasets.
We keep doubling the sparsification parameter until we deduce concentration
and stop. In table 3, we report the results. In more detail, each row corresponds
to the p∗ value, that we first deduced concentration using the doubling procedure
for each of the datasets we used (column 1). Ideally we would like to find p∗I ,
but we will settle with a p∗ value, since as already mentioned, doubling gives
at most an increase by a small logarithmic factor. Observe that p∗ is at most
2 times more than p∗I and upon its identification, if one is curious about p∗I for
4 Most of the datasets can be found on the web, http://www.cise.ufl.edu/
research/sparse/matrices/. The Youtube graph was made to us available upon
request, [22]

http://www.cise.ufl.edu/research/sparse/matrices/
http://www.cise.ufl.edu/research/sparse/matrices/


Name Nodes Edges Description

WB-EDU 9,845,725 46,236,105 Web Graph
(page to page)

Wikipedia 3,566,907 42,375,912 Web Graph
2007/2 (page to page)
Wikipedia 2,983,494 35,048,116 Web Graph
2006/6 (page to page)
Wikipedia 1,634,989 18,540,603 Web Graph
2005/9 (page to page)
Flickr 404,733 2,110,078 Person to Person
Youtube 1,157,822 4,945,382 Person to Person

Table 2. Description of datasets

some reason, he/she can just do a simple “binary” search. The third column of
table 3 described the quality of the estimator. Particularly, it contains values of
the ratio our estimate/#triangles. The next column contains the running time
of the sparsification code, i.e., how much time it takes to make one pass over the
data and generate a second file containing the edges of the sparsified graph. The
fourth column xfaster 1 contains the speedup of the node iterator vs. itself when
applied to the original graph and to the sparsified graph, i.e., the sample. The
last column, xfaster 2, contains the speedup of the whole procedure we suggest,
i.e., the doubling procedure, counting and repeat until concentration deduction,
vs. running node iterator on the original graph.

Some interesting points concerning these experimental results are the follow-
ing: a) The concentration we get is strong for small values of p, which implies
directly large speedups. b) The speedups typically are close to the expected ones,
i.e., 1

p2 for the experiments that we conducted in whole in the small (Ubuntu)
machine. For the three experiments that were conducted using Hadoop, the
speedups were larger than the expected ones. This was (at least partially) ex-
pected since the necessary time for the JVM (Java Virtual Machine) to load in
M45, the disk I/O and most importantly the network communication increase
the running time for the node iterator algorithm when executed in parallel. How-
ever, for larger graphs that would span several Gigabytes, this speedup excession
that we observed in our experiments should not show up as much. The most im-
portant point to keep besides the system details is that our theorem guarantees
concentration which implies that observing almost the same estimate in the spar-
sified graph multiple times is equivalent to being able to make a good estimate
for the true number of triangles. c) Even if the “doubling-and-checking for con-
centration” procedure may have to be repeated several times the sparsification
algorithm is still of high practical value. This is witnessed by the last column
of the table. d) The overall speedups in the last column can easily be increased
if one is willing to be less conservative in the following sense: we conducted six
experiments to deduct concentration. But in practice, one could conduct concen-



tration using e.g., four experiments. Typically, concentration is easy to deduce.
In the Wikipedia 2005/09 experiment, the first four experiments give 354, 349,
348 and 350 triangles in the sparsified graph which upon division with 0.023

result in high accuracy estimates. e) Finally, when concentration is deducted,
averaging the concentrated estimates, typically gives a reasonable estimator of
high accuracy.

Mean Accuracy Sparsify xfaster xfaster
G p∗ ( 6 experiments) (secs) 1 2

WB 0.005 95.8 8 70090 370.4
-EDU

Wiki- 0.01 97.7 17 21000 332
2007
Wiki- 0.02 94.9 14 4000 190.47
2006
Wiki- 0.02 96.8 8.6 2812 172.1
2005
Flickr 0.01 94.7 1.2 12799 45

You- 0.02 95.7 2.3 2769 56
tube

Table 3. Experimental results. Observe how small can p be, resulting in huge
savings during the triangle counting time. The “doubling-and-checking for con-
centration” procedure that one would employ in practice gives important savings
and high accuracy at the same time. The drop-off in the total speedup is mainly
due to the sparsification time.

4.3 A Practitioner’s guide

At first sight, according to theorem 2 in order to pick the optimal value for p we
have to know the quantity that we are trying to compute, i.e., t (and also ∆).
Even if one knows nothing about the triangle density of the graph of interest, or
wishes to make no assumptions, the proposed method is still of high practical
value. In this subsection our goal is to provide a practitioner’s guide. Specifically,
we describe in detail how one can apply the sampling algorithm to a real world
network, using our experimental experience as a guide, through an example.
Specifically, we describe how one can run the sampling algorithm in practice by
“zooming” in the Wikipedia 2005/9 experiment.

The Wikipedia 2005/9 graph after made undirected has n = 1, 634, 989 nodes
and 18, 540, 603. The total number of triangles in the graph is t = 45, 542, 697.
A simple computation gives that the triangle density t

(n
3)

is equal to 6.25 ∗



Average
Ratios Sparsifi- Speedup

p T
t cation (secs) (xfaster)

0.01 0.9442, 1.4499 8 7090
1.14, 1.37

0.02 0.9112, 1.0183 8.64 2880
0.8975, 0.9579
0.9716, 0.9771
0.9524, 0.9551
0.9606, 0.9716

0.03 1.0043, 1.0336, 1.0035 8.65 1500
0.9791, 1.0222
0.9865, 0.9816

0.04 0.9895, 1.018 8.58 825
0.05 0.9979, 0.9716 9.84 402

Table 4. Wikipedia 2005/09: In this example, one deduces concentration for
p = 0.02. The corresponding speedup (node iterator on G and on a small sample
of G) averaged over the ten experiments is 2880 times. Results for p greater than
0.02 show that above that value strong concentration is achieved.

10−11. This is a phenomenon that is observed with all the networks we used,
i.e., very low triangle density. This should not be surprising, since “real-world
networks” exhibit very skewed degree distributions. Roughly speaking, there
exist many nodes with degree one, often connected to degrees of low degree,
e.g., 2. Immediately those nodes, i.e. nodes of degree 1 and of degree 2 that are
connected with nodes of degree one, participate in no triangles. Furthermore,
many nodes are totally disconnected, having degree zero. Even if the triangle
density assumption (3) of our theorem is violated, the way to run the algorithm
is the same. The value of p will be necessarily bigger to have concentration (the
closer we get to a linear number of triangles, the larger p gets so as to have
concentration), but as Table 3 suggests, the method is of high practical value.
One can start with a small sparsification value for p = 0.01 5

For p = 0.01, running the sparsification code in a small machine with 2GB
RAM, Intel(R) Core(TM)2 Duo CPU at 2.4GHz Ubuntu Linux machine, the
sparsification takes ≈ 8seconds and the counting (excluding the time to read the
graph into the memory) procedure using the simple node iterator algorithm takes
0.35 seconds. We ran this experiment four times, to make sure that this specific
value of p gives us the desired concentration. The number of triangles in the
sparsified graph were found to be equal to 43, 66, 52 and 60. Thus the estimates
that the algorithm makes are respectively 4.3x107,6.6x107,5.2x107 and 6x107.
As one can observe, even if the average of those estimates gives an accuracy of

5 As described in the previous subsection we start with even smaller value, but for
brevity reasons, we begin here with 0.01 since concentration appears for p = 0.02.



Fig. 1. Linear number of triangles: If our biased coin decides to delete edge
(1, 2), then our sampling approach misses all triangles.

82.43%, the variance of those estimates is large. Thus, the value p = 0.01 is not to
be trusted. Doubling p, i.e., p = 0.02, and running the code 10 times results in the
following estimate of the number of triangles: 4.15x107, 4.25x107, 4.6375x107,
4.0875x107, 4.3625x107, 4.3375x107, 4.35x107, 4.375x107, 4.45x107, 4.25x107.
The sparsification procedure takes ≈ 9 seconds and the counting procedure in
average 2.46 seconds with variance equal to 0.1 second and can easily run in
a machine with insufficient memory. The speedup using p = 0.02 due to our
method is in average 2880, compared to running the node iterator in the initial
graph. And as shown in the previous subsection the doubling idea still results in
important speedups. If one tries slightly larger values for p, he/she would observe
a strong concentration suggesting that we have a good estimate.

The above are summarized in table 4. Each row corresponds to more than one
experiments for a specific value of p. The first column shows the sparsification
parameter, the second column contains the ratios T

t , and there are as many of
them as the number of experiments were conducted for p value in the same row,
the third column contains the running time of the sparsification procedure and
the last column the average speedup obtained when we run the node iterator
on the whole graph and on the small sample we obtain using the sparsification
procedure. In this example, one can deduce at p = 0.02 concentration and stop
running the algorithm. As we observe, given a graph G the sparsification time is
more or less the same (8-9sec), correlated positively with p, as more I/O write
operations are being done (writing edges to a new file). The speedup we get
averaged over the experiments we did compared to the expected one, can be
approximately the (e.g., p =0.05), can be larger (e.g., p =0.02) and can be also
smaller (e.g., p =0.01).

5 Theoretical Ramifications

5.1 Linear number of triangles

One may wonder how the algorithm performs in graphs where the number of
triangles is linear, i.e., O(n). Consider the graph of figure 1. If the coin decides
that the common edge should be removed then we lose all the triangles. Thus
the sparsification step may introduce an arbitrarily high error in our estimate.



5.2 Weighted graphs

Fig. 2. Weighted case: For w sufficiently large, our sampling approach can
perform badly if one of the weighted edges gets deleted.

Consider now the case of weighted graphs. The algorithm of [34] can be
extended to weighted graphs: each edge gets reweighted with weight equal to
the old weight times 1/p. However, one can come up with counterexamples that
show that this algorithm can perform badly on weighted graphs. Such an example
where the algorithm can perform badly is shown in figure 2. If w is large enough,
then the removal of one of the weighted edges will introduce a large error in the
final estimate.

6 Conclusions

We present an algorithm that under mild conditions on the triangle density of
the graph performs accurately, i.e., outputs a good estimate of the number of
triangles, with high probability.

Our main contributions are:

– The analysis of the sparsification algorithm, which leads to optimal values
of the sparsification parameter p. Thus, we can justify speedups rigorously
rather than the constant speedups of [34].

– A practitioner’s guide on how to run the algorithm in detail. Even if the
optimal values of p depend on unknown quantities, including the number of
triangles we wish to estimate, the algorithm is of high practical value. Few
executions until concentration is deduced, still result in huge speedups.

– Experimentation on large networks, with several millions of nodes and edges.

Finally, both cases presented in Section 5 require a sophisticated sampling
procedure (e.g., [31]), rather than a simple one and these are topics of future
research.
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