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Abstract

The mesh generation problem is to output a set of tetrahedra that discretize
an input geometry. The input is given as a piecewise linear complex (PLC), a set
of points, lines, and polygons to which the output tetrahedra must conform. Ad-
ditionally, a mesh generation algorithm must make guarantees on the quality and
number of output tetrahedra. Downstream applications in scientific computing
and visualization necessitate these guarantees on the mesh.

Recent advances have led to provably correct algorithms for a number of input
classes. Particular difficulties arise when the input contains creases, regions where
input segments or polygons meet at acute angles. When the input is without
creases, the mesh generation problem is better understood. Algorithms for such
inputs exist with near-optimal runtimes of O(n log ∆+m), where n and m are the
size of the input and output, and ∆ is the ratio of largest-to-smallest distances
in the input geometry. The principle result of this thesis is to extend this result
to the general case of piecewise linear complexes with creases.

Correct algorithms to handle inputs with creases involve explicitly construct-
ing a system of specially designed collars around the creases. These collars must
be specifically sized according to the input geometry. I give a new procedure to
compute the needed collar sizes in near-optimal O(n log ∆ + c), where c is the
description complexity of the collar system. Additionally, I give a procedure for
implicitly constructing a collar system on the fly, so that a complete meshing
algorithm for a PLC can be run in one pass with total work in O(n log ∆ + m)
and space usage in O(m).

Central to the analysis is the “Scaffold-Sizing Theorem”, a structural result
governing the number of vertices created during mesh generation. The theorem
is general enough to have an added benefit of retroactively improving the analysis
of almost all existing meshing algorithms.



4



Contents

1 Introduction 9

1.1 The Meshing Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Conforming Meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Quality Mesh Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.1 Quality Tetrahedra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.2 Delaunay and Voronoi . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.3 Computational Needs . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4 Mesh Sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5 Efficient Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5.1 Delaunay Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5.2 Point Location Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5.3 Related . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Preliminaries 23

2.1 Standard Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.1 Sizing Functions and Voronoi Diagrams . . . . . . . . . . . . . . . . . 24

2.1.2 Proximal Packing Lemma . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Structural Properties of Quality Voronoi Diagrams . . . . . . . . . . . . . . 27

2.2.1 Gap Ball Sizing Lemma . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.2 Degree Bound Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.3 Grading Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.4 Proximity in Well-Spaced Meshes . . . . . . . . . . . . . . . . . . . . 32

2.3 Scaffolding Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Surface Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5



2.4.1 Collar Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4.2 Restricted Delaunay and Voronoi . . . . . . . . . . . . . . . . . . . . 37

3 Algorithm SVRC 41

3.1 Algorithm Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.1 Sparse Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.2 Enhancements for handling Creases . . . . . . . . . . . . . . . . . . . 43

3.1.3 Correctness of SVRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Structures in SVRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.1 Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.2 Protective Balls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.3 Object Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Detailed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Termination and Sizing Analysis 61

4.1 Spacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1.1 Weak Spacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1.2 Mesh Quality Maintenance . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1.3 Crease Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1.4 Exterior Spacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1.5 Spacing Between Meshes . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Scaffolding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2.1 Scaffolding Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.2 Scaffold-Sizing Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 Runtime Analysis of SVRC 83

5.1 Linear Work Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1.1 Refinement Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1.2 Work Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1.3 Total Vertices Created . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Collar Sizing Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 Amortized Work Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3.1 Counting Location Work . . . . . . . . . . . . . . . . . . . . . . . . . 89

6



5.4 Counting the Proximal Event Sequences . . . . . . . . . . . . . . . . . . . . 91

6 Conclusions and Extensions 93

6.1 Other Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.1.1 Weighted Delaunay Refinement . . . . . . . . . . . . . . . . . . . . . 93

6.1.2 Two Pass Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2.1 Slivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2.2 Curved Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3 Improving log ∆ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7 Glossary 97

8 Bibliography 99

7



8



Chapter 1

Introduction

1.1 The Meshing Problem

Througout the last 60 years, problems in engineering and scientific computation continually
seek to ask questions about the physical properties of a given object: What is the airflow
past this airplane wing?, How does heat diffuse in this reactor bed? ; even questions as
simple as visualization: What does this scene look like from above? All of these problems
require calculations based on the geometry of the input being considered. Computations on
arbitrarily complex geometries quickly become arbitrarily lengthy, and so we arrive at the
science of mesh generation; approximating a geometry for computational needs.

One of the main difficulties in handling the problem of mesh generation is that it is by
nature a very interdisciplinary problem. Solutions must reach beyond traditional computer
science algorithms research to address concerns from discrete geometry, numerical analysis,
topology, engineering, and more. Accordingly, the literature is bereft of a unified answer to
the perennial question, What is the exact problem being solved?

The simplistic answer is the following: given a shape, a mesh generation algorithm seeks
to decompose it into some number of pieces that are suitable for future computations on
the shape. In any medium-sized group of meshing enthusiasts, one is hard-pressed to find
a less vague common denominator. But, working from this coarse problem description, I
quantify the meshing problem into four distinct subproblems that are addressed by meshing
solutions: conforming, element quality, sizing, and efficiency.

The problem of conforming asks first, “what is an input shape?”, and secondly, “what
is a decomposition of such a shape?”. This is tied to element quality, which must define
what is a “piece” in a decomposition, and what makes a piece suitable for the future com-
putation. The runtime cost of downstream these computations is undoubtedly tied to the
number of pieces in the decomposition, and so the problem of sizing presents itself. Beyond
these three subproblems, the most interest question from a computer science perspective
is that of efficiency, what guarantees do we have about the time and space usage of an
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algorithm? The central concern of this thesis is a new mesh generation algorithm, Sparse
Voronoi Refinement with Collars (SVRC), that contributes in all four areas, by increasing
the realm of inputs that can be handled by provably efficient algorithms, and by improving
the guarantees on sizing for a large class of algorithms. In the following exposition, I give
an introduction to the research questions of each subproblem, discuss the state of the art,
and state how SVRC and its analysis address each area.

This thesis is primarly concerned with meshing inputs drawn from R3. All of the results
generalize inputs to R2, and some of the results, particularly those on mesh sizing, can be
generalized to Rd for constant d. I will generally assume that meshing is needed in some
closed, bounded, convex domain Ω ⊂ R3.

For x, y ∈ Rd, |xy| denotes the Euclidean distance from x to y. If A is a set, then
|xA| := min{|xa| | a ∈ A}. The closed d-Ball centered at x of radius r is denoted Bd(x, r) :=
{y ∈ Rd | |xy| ≤ r}. The subscript d will normally be suppressed and all balls are 3-balls
unless otherwise noted. Somewhat less frequently, B◦ will refer to the corresponding open
ball and ∂B to the spherical boundary. The linear algebraic dimension of a set S is denoted
dim(S). For shorthand, the notation A ! B will be used to denote the existence of a
constant C such that A ≥ C · B. When using !, the constant will be independent of A
and B, but most likely dependent on other constants in the hypotheses. Similarly " will be
used and A ∼ B is taken to mean A " B and A ! B. Any notable (in)dependences are
mentioned. This notation provides brevity as long as care is taken with regards to combining
such statements.∗

.

1.2 Conforming Meshes

The principle questions posed when dealing with a conforming meshing algorithm are defining
an input class and defining a notion of a conformal mesh.

The simplest input for meshing is generally considered to be a finite set of input points
N ⊂ Ω. Often in this case, the domain is considered to be periodic, looping back on itself, in
order to avoid boundary concerns. When the input is a point-set, the notion of a conforming
mesh is the straightforward requirement that the output have a superset of vertices M so
that N ⊂ M . This stripped-down view of input often allows for fairly elegant algorithms
especially for high dimensions, but does not cover many practical inputs.

The next most interesting class of input is that of a planar straight line graph (PSLG)
in two dimensions. This consists of a set of a set of vertices and edges (closed line segments)
such that two edges only intersect at vertex. The PSLG generalizes to three and higher
dimensions via a piecewise linear complex [MTT+96].

∗In computer science research, the notations O(. . .) and Ω(. . .) are often abused when dealing with
quantities not tending toward infinity or zero. I abhor this practice, although I am not necessarily innocent.
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Definition 1 (Piecewise Linear Complex). A d-piecewise linear complex (d-PLC) is a
set P of closed features such that:

- ∀ F ∈ P, F is a closed subset of Rd+1.

- ∀ F ∈ P , dim(F ) ≤ d

- ∀ F ∈ P, the boundary of F is a union of features of P

- ∀ F, G ∈ P, F ∩G ∈ P

- If dim(F ∩G) = dim(F ), then F ⊂ G and dim(F ) < dim(G)

PLC will be taken to mean a 2-PLC by default.

The terms subfeature and superfeature are used to refer to set containment. Features of
dimension 0 . . . 2 may be called input vertices, segments, or facets. Note that any point set
is a PLC. With this definition in hand, define a conforming mesh.

The output T of a meshing algorithm is a 3-PLC. T is then a conforming mesh if it covers
the whole domain, and each feature from the input P appears as a union of subfeatures from
T . More precisely:

Definition 2 (Conforming Mesh). A 3-PLC T is a conforming mesh for 2-PLC P in
domain Ω ⊂ R3 if:

Ω = ∪ T

∀ F ∈ P , ∃ F ⊂ T , F = ∪F

This notion of conforming restricts attention to algorithms that generate a volume filling
mesh, since it must cover the three-dimensional Ω. Other algorithms may generate a a
surface-filling mesh that only covers the input 2-PLC.

Given an input PLC, an important measure of its complexity is the spread ∆ of the
geometry, sometimes called the aspect-ratio ratio of the input or (L/s) in other works.

Definition 3 (Spread ∆). Given a set of geometric objects P, define ∆, the spread of P,
as the ratio of the diameter of P to the smallest distance between two disjoint objects in P.

Another measure of difficulty in conforming to PSLGs and PLCs regards the angle be-
tween features. Define the angle between two intersecting linear features, following [MPW02a]:

Definition 4 (Angle Between Features). Consider a 2-PLC. Suppose two features F and G
intersect at a feature H, Define rays(H, F ) as the set of all rays emanating from a point in
H, orthogonal to H, and heading into F . Then the angle between features F and G is
the minimum angle subtended by any pair from rays(H, F ) and rays(H, G).
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The definition is as such to handle the interaction between a facet and a segment or two
facets intersecting at a vertex. The angle between two intersecting segments will be the
usual. Between two faces intersecting along a segment, it will be the dihedral angle they
subtend. This leads to the definition of α-creases:

Definition 5 (α-crease). Given a PLC P, F ∈ P is an α-crease if there exist G, H ∈ P
such that F ⊂ G∩H, and the angle between G and H is less than α. When α is suppressed
it is taken to be 90◦.

For PLCs without creases in two dimensions, the earliest conforming algorithms date to
Chew and Ruppert [Che89a, Rup95]†. It was later shown that their algorithms could handle
creases as small as 60◦, and variants on these algorithms exist to handle arbitrarily small
creases in two dimensions [She97a, Pav03].

The conforming algorithms for PLCs in three dimensions easily handle PLCs without
creases [She98, PW04]. The first correct conforming algorithm for arbitrary PLCs was given
by Cheng and Poon [CP06]. Other conforming algorithms have followed [PW05, RW08].
All of the algorithms for arbitrary PLCs in two and three dimensions have a similar flavor;
creases are protected by a system of collars (sometimes “intestines”), and special procedures
are explicitly utilized for meshing within and around the collars.

The SVRC algorithm conforms to an arbitrary PLC in three dimensions. For SVRC, a
collar system (defined precisely later), is a union of balls containing all of the creases. A
unique contribution of SVRC is the first procedure for generating a collar system with efficient
worst-case runtime O(N log ∆ + C), where C is the description complexity of the collar
system. This collar sizing could be easily extracted from SVRC as a subroutine. Previous
conforming algorithms either construct collars by brute force, requiring Ω(NC) ∈ Ω(N2), or
through other methods with worst case Ω(N2). A user could, if they choose, implement the
collar sizing procedure from SVRC and use it as a preprocess for some different conforming
algorithm.

There is a larger class of input for which conforming algorithms are known, namely
piecewise smooth complexes (PSCs). Here, the segments and polygons of the input may
be given as smooth manifold curves and surfaces. Analogous notions of creases may be
defined. Conforming algorithms must either output a PSC, or output a PLC and redefine
the notion of conforming to be approximate. Boivin and Ollivier-Gooch gave a conforming
algorithm for 1-PSCs without creases in two dimensions [BOG02] and suggest a method for
handling creases. Cheng et al. gave the first conforming algorithm for arbitrary PSCs in
three dimensions [CDR07].

†A note on citations: Unfortunately, in much of the meshing literature (and in other areas as well),
there is often a large time gap between the first publication of results in conferences and their subsequent
publication in peer-reviewed journals. The journal versions tend to be more authoritative, and I prefer to
cite these wherever possible. Of course, this muddles the chronology beyond repair when I try to give due
credit for first results. Caveat Lector.
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1.3 Quality Mesh Elements

If a mesh is to simplify the geometric description, there must be some limit on the allowable
complexity of mesh element. Given that an output mesh must by a 3-PLC made of features,
a natural choice is to limit the class of output features allowed. I restrict my attention to
algorithms that output simplicial complexes. For my purposes, a simplicial complex is a
PLC, all of whose features are simplices.

Definition 6 (Simplex). Given a set of affinely-independent vertices V , a simplex Sim(V )
is the convex closure of V . If |V | = i + 1, then Sim(V ) is an i-simplex.

Vertices, edges, triangles, and tetrahedra are {0, 1, 2, 3}-simplices respectively. A simpli-
cial complex covering a a three-dimensional domain Ω is a called tetrahedralization of Ω.
An i-simplex is called degenerate if any of its points lie in a common j-hyperplane for some
j < i. There are some natural definitions for non-degenerate simplices:

Definition 7 (Circumball, Circumcenter, Circumradius, and Diametral Ball). Given a non-
degenerate i-simplex S with vertices V , the circumball is the unique i-ball going through V
with circumcenter c and circumradius r. For points in Rd, if i ≤ d, then the Diametral
Ball of S is the d-Ball Bd(c, r).

1.3.1 Quality Tetrahedra

Any good meshing algorithm must provide some guarantee on the quality of the output
simplices. The strictest quality bound is given by tetrahedral aspect-ratio.

Definition 8 (Aspect-Ratio). Given a tetrahedron T , define the inradius rT as the radius
of the largest ball contained in t. Let RT be the circumradius of T . The aspect-ratio of t
is given by RT /rT .

Good quality is given by bounding the aspect-ratio from above by some constant. Aspect-
ratio can be defined similarly for triangles in two dimensions. It is clear that if a tetrahedron
has bounded aspect-ratio, then there is another constant bounding the aspect-ratio of its
triangular faces. Bounded aspect-ratio tetrahedra have dihedral angles between adjacent tri-
angles bounded from below, and additionally have no small angles between adjacent edges.
A frequently-employed, looser condition on a tetrahedron is given by the radius-edge con-
dition:

Definition 9. Given a tetrahedron T , let |e| be the length of the shortest edge of T , and let
RT be the cirumradius. The radius-edge ratio is given by RT /|e|.

Quality guarantees are given by bounding the radius-edge from above by some constant.
Bounded radius-edge tetrahedra have no small angles between edges. A tetrahedron with
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Figure 1.1: Several characteristic tetrahedra. Only the nice tetrahedron on the left has good
aspect-ratio. The right most tetrahedron is a sliver, its triangles are nice, but the points are
almost coplanar. The nice tetrahedron and the sliver are the only two with good radius-edge.
The three tetrahedra in the top-left are those with no large angles.

bad radius-edge is called skinny. Bounded aspect-ratio implies bounded radius-edge, but
not the converse. The exception to the converse is given by slivers, tetrahedra with good
radius-edge but poor aspect-ratio. (See Figure 1.3.1). Slivers are notoriously hazardous to
meshing algorithms, I discuss an approach in Section 6.2.1 that follows [Li03].

1.3.2 Delaunay and Voronoi

The most powerful tool for creating tetrahedralizations is the Delaunay diagram of a point
set [Del34]. The Delaunay diagram is the set of simplices that are contained in empty balls.

Definition 10 (Delaunay diagram). Let M be a point-set. Define the Delaunay diagram
as a set of non-degenerate simplices:

Del(M) := {Sim(S) | S ⊂ M ∃ ball B, S ⊂ B and B◦ ∩M = ∅}

Note that since the interior B◦ is disjoint from M , but S ⊂ M , then the vertices of S must
be on the boundary of the ball B. If the points in M are in general position, Del(M) forms
a tetrahedralization of the convex closure of M . SVRC primarily uses the Delaunay diagram
to define its mesh simplices. When this is the case, a mesh M can be considered as just a
set of vertices with an implicit simplical complex. This approach has slight problems with
degeneracy. When five points lie on a common sphere, the Delaunay diagram as defined is
not a tetrahedralization. Which subset of tetrahedra are chosen to give a tetrahedralization?
SVRC handles this with tie-breaking rules, as in previous literature [PW04]. As a post-process,
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SVRC abandons the Delaunay simplices in collars adjacent to creases, replacing these with a
manually constructed tetrahedralization (see Section 3.1.2.)

What makes the Delaunay so powerful a tool is the use of its dual, the Voronoi diagram.
The Voronoi diagram of a point set M is given by partitioning the whole domain into
Voronoi cells, regions with a common nearest-neighbor in M . More precisely:

Definition 11 (Voronoi Polytopes). Given a point set M and non-empty S ⊂ M , define
the Voronoi polytope of S with respect to M as

VM(S) := {x ∈ Ω | ∀ m′ ∈ M, ∀ s ∈ S, |xs| ≤ |xm′|}

If M is in general position in R3, then VM(S) = ∅ for |S| > 4.
For |S| ∈ 1 . . . 4, if VM(S) is nonempty, call it a Voronoi cell, facet, edge, or corner
respectively. If m, m′ ∈ M with m ,= m′, then m and m′ are Voronoi neighbors if VM(m)∩
VM(m′) ,= 0. Vor(M) is the Voronoi diagram of M , the set of all Voronoi polytopes.
Vor(M) covers Ω. M may be suppressed to write V (S) when the context is clear.

Given M , define the dual to a nonempty voronoi cell VM(S) as the simplex formed by
S, so Dual(V (S)) = Sim(S) and Dual(Sim(S)) = VM(S). The Voronoi cells are dual to the
Delaunay vertices; facets are dual to Delaunay edges; Voronoi edges are dual to Delaunay
triangles; and Voronoi corners are the circumcenters of their dual Delaunay tetrahedra. An
overview of Delaunay and Voronoi and this duality is in [Ede01].

Guarantees on the quality of the Voronoi diagram can be transferred to the Delaunay
diagram and back. Define the aspect-ratio of a Voronoi cell as follows:

Definition 12 (Voronoi Aspect-Ratio). Given a domain Ω, m ∈ M , define the inradius of
m, rM

m , as the radius of the largest m-centered ball contained in m’s Voronoi cell, that is:

rM
m := max{r ∈ (0,∞) | B(m, r) ⊂ VM(m)}

Symmetrically, define the outradius of m, RM
m , as the radius of the smallest m-centered ball

that contains m’s Voronoi cell:

RM
m := min{R ∈ (0,∞) | VM(m) ⊂ B(m, R)}

The aspect-ratio of the Voronoi cell VM(m) is given by RM
m /rM

m . M may be suppressed when
the context is clear.

Note that inradius, outradius, and aspect-ratio are overloaded to apply to either Voronoi
cells or tetrahedra, but the context will always be clear. Voronoi cells with bad aspect-ratio
will also be referred to as skinny.

I have only defined Voronoi aspect-ratio for bounded domains Ω, so that Rv is never
infinite. A typical extension of these definitions to infinite domains is the lesser requirement
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that the outradius of V (v) need merely be large enough to contain the Voronoi corners and
not the whole (possibly infinite) cell. In the case of an infinite domain, most of the structural
results on Voronoi Diagrams (for instance Section 2.2) that would hold for all x ∈ Ω will still
hold, but only for x in the convex closure of the point set M .

A point set M with the aspect-ratio of every Voronoi cell bounded above by some τ ∈
(1,∞) is said to be τ-Well-Spaced. This is more restrictive than the radius-edge condition,
since for any vertex, it upper bounds the ratio of the outradius of any adjacent tetrahedron to
any adjacent edge. More precisely, a point set that is τ -well-spaced has Delaunay tetrahedra
with radius-edge ratio bounded by τ/2. The converse is non-trivial; a Delaunay diagram
with tetrahedra that have radius-edge at most τ has vertices that are (K · τ)-well-spaced,
where K is a constant depending exponentially on dimension [MTT+96].

SVRC operates primarily on the Voronoi diagram (hence “Voronoi Refinement”). This
serves to provide cleaner analysis. Almost all of the operations in SVRC can be viewed as
operations on the dual Delaunay without any trouble. SVRC attempts to generate a well-
spaced point set M so that Del(M) conforms to input P . This is possible nearly everywhere
in the domain, except near sharp creases. To fit conforming tetrahedra in a crease, some
tetrahedra must have small edge angles, making well-spaced vertices impossible. Adjacent
to the creases, SVRC still makes some guarantee about the output tetrahedra.

The loosest guarantee on the quality of a tetrahedral element is given by the No-Large-
Angle (NLA) condition, an upper bound on the angle between any adjacent triangles‡.
Simplices output from SVRC adjacent to creases have an NLA guarantee. The problem of
NLA meshing in general is theoretically quite interesting. There are several algorithms for
NLA meshing in two dimensions [Tan96, MPS07]. In three dimensions the problem is not
as well-understood, there are some results for point-set inputs [BEG94, MPS08].

For the body of this thesis, a τ-quality mesh will simply refer to a τ -well-spaced set
of vertices. A τ -quality mesh is conforming to P if Del(M) conforms to P . Very strong
structural statements can be made about quality meshes, most notably that the Delaunay
diagram has bounded degree (Section 2.2.2).

1.3.3 Computational Needs

Dithering about quality guarantees on mesh elements is moot without reference to the needs
of downstream computations. Numerical methods are the chief application for meshes, and
such methods have two basic needs related to element quality: correctness (guaranteed con-
vergence to a solution), and efficiency (rate of convergence). Without delving into numerical
analysis, we can summarize a few necessities.

There are two classical results in the area. The first are the so called Ciarlet-Raviart
[Cia78] results in interpolation theory showing that bounded aspect-ratio tetrahedra are

‡This condition is not strictly loosest, as slivers satisfy good radius-edge but not NLA.
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sufficient for a wide variety of numerical methods. The second is Babǔska-Asiz [BA76],
showing that NLA tetrahedra are necessary and sufficient for correctness of most numerical
methods. Many simple downstream numerical methods will prove correct for NLA elements,
but the efficiency will be damaged by the worst aspect-ratio tetrahedron. Some state of the
art methods allow for efficiency only related to the largest dihedral angles [BHV04, MPV05].
Some control-volume methods can be run effectively with only a good-aspect ratio Voronoi
diagram [MTT+96].

1.4 Mesh Sizing

Also crucial to downstream numerical applications will be the size of the output mesh. In
this section, size is cleverly overloaded to refer to both the number of output elements as
well as their geometric size, since the two are intimately related. Elements must be few in
number to make future computations tractable, and must be small enough to approximate
the geometry and physics with accurate resolution.

Creating mesh elements small enough to capture the physics is a rather uninteresting
problem in mesh generation. Once a user has a quality conforming mesh, any number
of naive refinement methods for adding more vertices will suffice to create a mesh with
smaller elements for resolving physics. A typical method for PLCs without creases is given
in [BOG01]. The makes the more interesting question that of asking for the minimum
number of elements required to obtain a quality conforming mesh in the first place. This is
equivalent to asking for the largest elements possible, and the answer is given by the local
feature size as defined by Ruppert [Rup95]§.

Definition 13 (Local Feature Size f). Given a point set M , the local feature size fM : R3 →
(0,∞) is given by the distance to the second nearest neighbor:

fM(x) := argmin
r∈(0,∞)

[|B(x, r) ∩M | ≥ 2]

This extends to any set X of features as the shortest distance to two disjoint features:

fX (x) := argmin
r∈(0,∞)

[∃ F, G ∈ |B(x, r) ∩ X|, F ∩G = ∅]

Observe that f is bounded away from zero. The seminal result of [Rup95] was to use
this sizing as a lower-bound on the number of triangles in a quality mesh of a PSLG without
creases. This was later extended to PLCs without creases in three dimensions in [MV00].

§I will eschew the terminology “local feature size” and “lfs” as much as possible as it is unfortunately
overloaded in the computational geometry research community. Other works on meshing define variants as
the “mesh feature size”, “current feature size”, “lfs1”, “lfs0”, etc. Local feature size has another competing
and unfortunately similar definition relative to manifolds and the medial axis. The ambiguous overloading
from smooth surfaces to PLCs is most likely attributable to Ruppert’s original paper.
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Theorem 1 (Ruppert Lower Bound). In three dimensions, for any PLC P without creases,
any mesh M τ -aspect-ratio tetrahedra must have:

|M | !
∫

Ω

1

f 3
P

The bound is realized when tetrahedra in a mesh M have circumradii proportional to
fP , so then fM ∼ fP . Then the volume of an element is roughly f 3, making the density
of vertices 1/f3. Ruppert’s algorithm and many subsequent algorithms meet this bound
to within a constant, showing that the lower bound is tight. These algorithms are called
size-optimal, since they output an O(1)-approximation to the optimal output in terms of size
[Rup95, She98]. The algorithm SVRC is based on the earlier Sparse Voronoi Refinement (SVR)
alogrithm [HMP06] that handles PLCs without creases. SVR is a size-optimal algorithm, and
SVRC inherits this property if the input has no creases. This is apparent from the analysis
in Chapter 4 if one assumes the absence of creases.

The value of
∫

1/f3 can be unbounded relative to the input size N . It is particularly
related to the spread ∆. For general PLCs, the only upper bound is ∆3. However, for point
set inputs N , the integral can be easily bounded above by |N | log ∆. Of particular pertinance
is that in many specific cases, this integral can be upper bounded by |N |.

Cases where |M | " |N | occur when the input is essentially a quality mesh of some sub
domain (possibly in lower dimension). In this case, the additional vertices of M serve only
to fill out the domain and provide supporting structure to N . I codify this new result as the
“Scaffold-Sizing Theorem” of Chapter 4, and make use of it to prove efficiency bounds on
SVRC in Chapter 5.

Unforuntately, when handling PLCs with creases, the sizing analysis is not so clear. The
output mesh must be allowed some skinny elements near creases, but if skinny elements are
allowed throughout the domain then all bets are off; the lower bound vanishes entirely and
size-optimality is a withered concept.

To make some statement about mesh sizing, I employ the following definition of a sizing
function g following [CDR07]¶.

Definition 14 (Sizing g). Given a set of features X , the gap-size gX : (R3 → R) is defined
at x as the shortest distance to two features, one of which does not contain x:

gX (x) := argmin
r∈(0,∞)

[|B(x, r) ∩ X| ≥ 2 and ∃ F ∈ B(x, r) ∩ X , x ,∈ F ]

From the definitions it is clear that g < f in all circumstances. Observe that when P is
a point set, f = g. While f is fairly well behaved (Chapter 2), g is highly discontinuous as
x moves from feature to feature. See Figure 1.4.

¶Cheng et al. refer to this function as the “gap-size” which is an unfortunately overloaded name. This
function has other names as well [Üng04, RW08]. I will later employ a competing definition of gap-size
from[Mil04].

18



Figure 1.2: On the left, an PLC consisting of three vertices and two segments meeting at
a crease. Center, the arrows indicate the measurement of g(x) at their tails. Along the
segment, g will go to zero as x approaches the crease point, but then g is large again at the
crease vertex. At right, suppose the top segment is a crease between some unseen facets,
then the collar region is shown.

Despite its non-smooth behavior, the utility of g becomes apparent upon considering the
definition of following domain: the collar region defined as

Definition 15 (ε-Collar-Region). Let 0 < ε< 1/3. Suppose P is a PLC and let C be the
union of the creases of P, then the ε-collar-region is given by

Ĉ :=
⋃

x∈C

B(x, εg(x))

This region is nice in that locally (within one of the balls), it will only ever intersect a
crease and the features containing that crease, and it is roughly the largest region that will
isolate the creases. The choice of 1/3 as a maximum for ε is slightly arbitrary. It must be
a constant factor smaller than 1/2 to isolate creases and to prevent non-local interaction
between creases. This makes it attractive to designate as a special region where creases can
be treated separately. Accordingly, the collar system employed by SVRC(following previous
algorithms) will be an approximation to this collar region.

Since it is useful to consider P with the collar region removed, consider the following:

Definition 16 (ε-Clipped-Complex). Consider PLC P and its ε-collar-region R. The ε-
clipped-complex P ′ is the set of features with portions removed inside.

PR := {F −R | F ∈ P}

Note that the clipped complex is not in general a PLC.

Then consider the clipping the collar region to form PĈ. Although it is not a PLC, the
sizing functions f and g are still well defined with regards to PĈ. Since SVRC will generate
well-spaced elements in the exterior of the collar region (Ω − Ĉ), it makes some sense to
guarantee that the radii of these elements is proportional to fPĈ .

This is “optimal” in some sense with respect to PĈ, but not necessarily optimal with
respect to P . Lower bounds for meshes of PLCs with creases remains an open problem. The
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upper-bound on SVRCcould be shown for other conforming algorithms for PLCs with creases,
asymptotically, all of the collar-based algorithms generate asymptotically similarly output
[CP06, PW05, RW08]. There are other algorithms based on “constrained Delaunay” that
allow skinny elements in a larger region than simply adjacent to creases. Since they allow
worse elements, these typically achieve far fewer elements in practice[SG05], but no better
sizing bounds have been shown.

1.5 Efficient Algorithms

Conforming, element quality, and sizing are all issues of correctness for meshing algorithms,
but the principle contribution of this thesis is in the last subproblem, algorithm efficiency.
The question of runtime complexity for meshing algorithms is an ongoing area of research.
There are two primary caveats in this area, the complexity of the Delaunay diagram of a set
of points, and the costs of point location.

1.5.1 Delaunay Complexity

The traditional paradigm for Delaunay-based mesh generation algorithms has been to begin
with the Delaunay diagram of the vertices of the input PLC, and then add new vertices to
the mesh toward the goals of conforming and element quality, all the while updating the
Delaunay diagram [Che89b, Rup95, She97a, PW04]. This approach has a fatal flaw in the
realm of worst-case runtime. The number of edges in the Delaunay diagram of N vertices in
three dimensions can have complexity in Ω(N2), which is realized by very simple pathologies.
For many examples, there is a quality output mesh with M vertices and M ∈ O(N). This
quality mesh will always have complexity in O(M)[MTTW99], so any algorithm with a cost
Ω(N2) is ruined for worst-case efficiency. This is a problem for all the existing algorithms
that handle creases.

To avoid paying the unacceptable quadratic extra cost, this caveat was overcome for
Delaunay refinement algorithms in [HMP06] using the “Sparse Refinement” paradigm. As
in previous algorithms, new vertices are inserted to help reach the goals of element quality and
conforming to the input. Traditional Delaunay refinment algorithms first find a conforming
mesh, and then achieve quality. Sparse refinement algorithms put the cart before the horse;
always keeping a quality mesh and then working towards a conforming mesh.

This thesis and the SVRC algorithm are the first to extend the sparse refinement paradigm
to handle PLCs with creases. SVRC is the first meshing algorithm for PLCs with creases
that has an efficient worst-case runtime. Following sparse refinement, the SVRC algorithm
iteratively maintains a Delaunay diagram, but begins with a much coarser diagram not
conforming to any of the input. Then, SVRC maintains a strong invariant; the current
complexity (number of edges, triangles, tetrahedra) is forced to be only linear in the current
number of vertices. This invariant is achieved by maintaining a quality mesh at all times.
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Even though the quality may at times be much worse than the end product, no element is
ever arbitrarily skinny. This quality invariant gives a degree-bound (Section 2.2.2), ensuring
the complexity is linear in the number of vertices.

Another class of meshing algorithms are those based on quadtree or octree refinement
methods [BEG94, MV00]. These can also be viewed as sparse refinement algorithms. They
do not suffer the Delaunay complexity problem, however they suffer when handling the
second major cost in meshing: point location. None of these algorithms have non-trivial
runtime bounds for handling PLCs.

1.5.2 Point Location Costs

The classic problem of point location in computational geometry is as follows: given a
partition of the domain and a point, find the element of the partition containing the point.
This problem arises in mesh generation when an algorithm does not conform to the input.
When a meshing algorithm wishes to add some new input vertex to an existing mesh, the
algorithm must locate a set of current elements to modify. Similarly, a meshing algorithm
must track the locations of all the segments and facets that it must conform to.

The process of point location is analagous to the simple process of search in an ordered
set, and so expect the time to locate a point in N elements should be around O(log N). In
quality meshes, however, element radii will be graded, so that adjacent elements only differ
in size by a constant factor. Accordingly, search structures often have depth O(log ∆), since
∆ governs the ratio of largest to smallest elements. The point location structure in SVRC will
have this depth. For most practical inputs, ∆ ∈ Poly(N ), so the location costs become
O(log N) per location.

Tetrahedralization can be reduced to sorting, by setting up gadgets so that the sorted
input appears as an easily recoverable path in the output mesh [PS85]. For an input of
size N , in a comparison-based model, this gives a lower bound of Ω(N log N). If a meshing
algorithm produces an output of size N , then the lower bound becomes the output-sensitive
Ω(N log N + M).

1.5.3 Related

The quadtree based methods achieve O(N log ∆+M) when the input is a point set [BEG94,
MV00]. Unfortunately, these algorithms have trouble with location costs when the input
is a PLC, so the only analyzed bound is a trivial O(M3). A notable algorithm for point
sets is the fast offcenter algorithm described in [HPÜ05], which uses a hybrid of quadtree
and Delaunay refinement techniques. Spielman et al. gave an algorithm for PSLGs without
creases that runs in O(log2 ∆) parallel time, but without a work bound [STÜ07].

Miller provided the first sub-quadratic time bound for PSLGS without creases in 2D,
achieving O((N log Γ + M) log M), where Γ is a localized version of ∆ (in particular, Γ ≤
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∆)[Mil04]‖. The original SVR gave the first efficient algorithm for PLCs without creases of
O(N log ∆ + M)[HMP06]. This was extended to a parallel version with depth O(log ∆) and
the same work bound [HMP07]. SVRC is the first algorithm to achieve this bound for general
PLCs.

When run on a PLC P with size N and outputting T with size M , SVRC has worst case
runtime bounded by O(N log ∆ + M). This worst case bound is a vast improvement over
any previous algorithms for PLCs with creases. For most practical inputs, ∆ ∈ Poly(N ), so
this bound is becomes optimal O(N log N + M).

SVRC also has optimal space usage O(M). This is not generally difficult to achieve for
any meshing algorithm that avoids the Delaunay complexity.

‖The function Γ also plays a role in the runtime analysis of SVRC. It is defined in Section 2.2.3.
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Chapter 2

Preliminaries

In this chapter, I will cover useful background results in the area of mesh generation that
will be crucial to the analysis of SVRC. Nothing in this chapter is particularly new, although
in many cases I have rephrased well known results and definitions to suit my needs.

Section 2.1 covers simple, standard, and straightforward results. Variants on these lem-
mas appear in nearly all research on Delaunay-based mesh generation algorithms. The
lemmas in Section 2.1.1, particularly Lemmas 1 and 3 are heavily used throughout the
thesis. The Proximal Packing Lemma in Section 2.1.2 is a fairly straightforward volume-
packing result. This result is heavily used in the runtime analysis of Chapter 5. Accord-
ingly, most previous work on runtime-efficient meshing algorithms utilize similar results
[STÜ07, Mil04, HMP06]. I provide an elegant formulation of this lemma that is particularly
well-suited for future reuse.

Section 2.2 discusses structural properties of quality Voronoi diagrams, in particular the
degree-bound [MTTW99] that is the heart of the sparse refinement paradigm for efficient
meshing algorithms. A wonderfully thorough exposition containing most of the results in
this area appears in [Tal97]. For analyzing SVRC, I develop these results on the essentially
the same path as in [HMP06].

The Well-Pacing Theorem is presented with some other results on mesh size analysis in
Section 2.3. These results are needed to establishing the Scaffold-Sizing Theorem in Section
4.2.

The last section presents some background results in surface reconstruction that will be
used by SVRC for the implicit construction of the collar system. The full strength of this
groundwork is used for constructing meshes to approximate smooth manifolds, see [Dey06]
for a treatise. SVRC protects the collar region by a union of spheres, greatly simplified
lemmas suffice. I principally use the results of this section to show the correctness of SVRC,
with regards to conforming to the PLC near the creases and element quality within the collar
system.
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2.1 Standard Results

2.1.1 Sizing Functions and Voronoi Diagrams

It is of some use to define a function simpler than f and g, the nearest-neighbor function n.

Definition 17 (Nearest-Neighbor Distance). Consider a PLC P and x ∈ Ω be given. Define
the nearest-neighbor distance:

nP(x) := argmin
r∈[0,∞)

[B(x, r) ∩ P ,= ∅]

P may be suppressed.

A simple observation is that nP < fP for all P . If M is a point set with m ∈ M ,
then x ∈ VM(m) implies nM(x) = |xm|, in particular nM(m) = 0. If m is removed to get
M ′ = M − {m}, then fM(m) = nM ′(m).

Consider a PLC P and the sizing functions fP and gP . It is useful to make some standard
claims on the smoothness of f and g [Rup95, CDR07].

Definition 18 (Lipschitz). A function h is α-Lipschitz if:

∀ x, y, h(x) ≤ h(y) + α|xy|

A function is called Lipschitz if it is 1-Lipschitz.

Lemma 1 (f is Lipschitz). fP and nP are Lipschitz for any P.

Proof. Let x, y and consider B := B(x, n(y) + |xy|). Clearly B(y, n(y)) ⊂ B, so it follows
that B(y, n(y))∩P ⊂ B ∩P . Since by definition of n, B(y, n(y))∩P ,= ∅, then the superset
B∩P ,= ∅, so n(x) ≤ |xy|+n(y). The same argument holds for f , replacing “,= ∅” everywhere
with “intersects two disjoint features of P”.

Lemma 1 is the bread and butter of meshing analysis, and will be invoked an unimaginable
number of times in this thesis, often without reference. The function g is not as nice as f ,
but it is smooth in a localized sense. On restricting the domain to the interior of a single
feature, then g is indeed smooth:

Lemma 2 (g is Lipschitz on a feature). Let F be a feature in P, then gP(x) restricted to x
in the interior of F is Lipschitz.

Proof. Since the domain is restricted the interior of F , the definition of g is reduced to the
following, Let P ′ := P − {G ∈ P | F ,⊂ G} be the set of features that do not contain F , so
that g is just the nearest neighbor from P ′. In the restricted domain gP = nP ′ , so g inherits
the Lipschitz property from n.
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The following lemma codifies some simple but useful facts on f and n in relation to
Voronoi diagrams. Lemma 3 will be invoked countless times in later analysis.

Lemma 3. Consider any point set M and any v, w ∈ M . Consider any x ∈ VM(v), then:

nM(x) = |xv| ≤ fM(x)

rv =
fM(v)

2
≤ |vw|

2
rv ≤ fM(x) ≤ 3Rv

Proof. The first fact is trivial from definitions.

For the second fact, consider that by the definition of f , fM(v) is the distance to the
nearest neighbor of v in M − {v}, so the upper bound is trivial. To see that rv = f(v)/2,
let u be a nearest neighbor of v. Consider the ball B(v, |uv|/2). This ball is completely
contained in V (v), otherwise there would be some vertex closer to v than u. But any larger
ball intersects the interior of V (u) so is not contained in V (v), thus rv = |uv|/2 = f(v)/2.

The upper bound on f in the third fact is not difficult. By Lipschitz and the second fact:

f(x) ≤ |xv|+ f(v) = |xv|+ 2rv ≤ Rv + 2rv ≤ 3Rv

To see the lower bound on f in the third fact, consider two cases. First, if rv ≤ |xv|, then
immediately rv ≤ f(x) by the first fact. Second, if |xv| ≤ rv, then by Lipschitz on f and the
second fact,

f(x) ≥ f(v)− |xv| = 2rv − |xv| ≥ 2rv − rv = rv

2.1.2 Proximal Packing Lemma

In this section, I describe a straightforward packing lemma that will be used several times.
This lemma bounds the size of a sequence of disjoint events around a central origin, and will
be main tool for proving bounds of the form O(log ∆).

Definition 19 (Proximal Event Sequence). Define an event as a pair consisting of a ball
and a vertex, denoted 〈B(u, r), v〉. An event sequence U around v is an ordered set of
events 〈B(ui, ri), v〉 ∈ U with the following interior disjointness property:

∀ i, ∀ j < i, uj ,∈ B◦(ui, ri)

so that each event point u has a ball around it whose interior is empty of previous event
points.
An event sequence is a ν-proximal event sequence if there exists ν ∈ (0,∞) such that:

∀ i, ri ≥ ν|uiv|
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I now prove a bound on the size of a proximal event sequence around a vertex. Statements
of this form appear in many works, including [HMP06]. The framework here is written to
suit the needs of this thesis.

Lemma 4 (Proximal Event Packing). Suppose U is a ν-proximal event sequence around v
with distances from v bounded by r ≤ |uiv| < R, then:

|U | " log(R/r)

When R/r " ∆, this gives:
|U | " log ∆

If all the events are at roughly the same distance d, i.e. |uiv| ∼ d, then R/r " 1 so that:

|U | " 1

Proof. The proof is by packing events into a sequence a of size-doubling annuli around v.
Define the kth annulus around v as the difference of two balls given by Ak := B(v, 2k+1r)−
B(v, 2kr). Partition the events into sets Uk := {〈B(ui, ri), v〉 | ui ∈ Ak}.

All of the Uk are empty when k > log(R/r). To finish the lemma, I claim that Uk " 1
for all the non-empty annuli.

Consider the set Uk for some fixed k, and consider any pair of events i < j ∈ Uk. By
disjointness of the sequence, ui ,∈ B◦(uj, rj), so there are two smaller balls B(ui, rj/2) and
B(uj, rj/2) that are disjoint. Letting rk be the smallest radius of any event in Uk, there is a
family of disjoint balls Bk := ∪iB(ui, rk/2).

The small radius rk was the radius of some event j so it follows directly from assumptions
that rk ≥ ν|ujv| ≥ ν2kr. If rk > 2kr, then shrink the balls in Bk further by reducing rk := 2kr.
This now guarantees that rk ∼ 2kr. Then each ball in Bk has Vol(B) ∼ 23kr3. Since the
balls are disjoint, the volume of Bk is found by summing to get Vol(Bk) ∼ |Uk|23kr3, with
constant depending on ν.

This centers are in the annulus, but the entire balls may not be, so consider a fattening
of the annulus Ak by an additive factor of rk, to define:

Āk := B(v, 2k+1r + rk)−B(v, max(0, 2kr− rk))

so that Bk ⊂ Āk. Since rk ∼ r, this fattening does not much change the size of the annulus,
so it follows from simple geometry that Āk has volume Vol(Āk) ∼ 23kr3.

All of the balls in Bk are completely contained in Āk, so V ol(Bk) ≤ V ol(Āk). Summa-
rizing:

V ol(Āk) ∼ 23kr3 ∼ V ol(Bk)

|Uk|
≤ V ol(Āk)

|Uk|
thus |Uk| " 1, with constant depending only on ν.
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Figure 2.1: An illustration showing the intuition behind Lemma 4 and its later uses. A
quality Voronoi diagram packs vertices around the small central feature. There are only a
constant number of vertices in each radius-doubling annulus (shown in gray).

In Chapter 5, this lemma is utilized to show that all of the nonlinear point-location work
can be amortized as one proximal event sequences around each input feature. The analysis of
SVRC also uses this lemma to bound the work used to calculate the size of the collar region.

2.2 Structural Properties of Quality Voronoi Diagrams

In this section, I overview key structural properties of well-spaced points that will be im-
portant to the runtime analysis of SVRC in Chapter 5. I will first define the notion of a gap
ball, a notion originally defined for mesh coarsening [MTT99, Tal97]. A gap ball is simply
a ball whose interior is empty of vertices:

Definition 20 (Gap-Ball). Let M be a point set in Ω. A gap-ball B(c, r) of M is any ball
such that c ∈ Ω and the interior of B is empty of vertices from M , B◦ ∩M = ∅.

2.2.1 Gap Ball Sizing Lemma

The reason for defining gap balls is that in a quality mesh, the sizing f is strongly tied to the
size of gap balls. The goal of this subsection is to show the Gap Ball Sizing Lemma. This
powerful result states that in a quality mesh M , the sizing fM at any point in a gap-ball
of M is bounded below by a constant times the ball’s radius. This lemma and proof is
appear in slightly different language [HMP06] and absolutely would not have been possible
without my co-authors on that work. I have cleaned up the proof here to avoid a messy
use of Cartesian coordinates that previously appeared. A similar result with a substantially
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Figure 2.2: A Gap Ball B such at V (p) contains q and b.

different proof appears in [MTTW99]. The proof approach taken here has constants that
are notably independent of dimension.

Lemma 5 (Gap Ball Sizing). Suppose that M is a τ -quality Voronoi diagram, and suppose
that B(c, r) is a gap-ball of M . If x ∈ B then

fM(x) ! r (2.2.1)

with constant depending only on τ .

Proof. Let B(c, r) be a gap ball for M as in the hypothesis. By scaling it will suffice to prove
the lemma for r = 1 and show that f is bounded below by a constant.

Let x ∈ B be given. The first simple observation is that f(x) ≥ 1 − |xc|. If |xc| ≤ 1/2
then f(x) ≥ 1/2 and the proof is done. Subsequently assume that |xc| ≥ 1/2.

Consider the ray −→cx. Define q and b as the points on −→cx at a distance 1/2 and 1 from c.
Let p ∈ M so that q ∈ V (p). See Figure 2.2.

By Lemma 3, it holds that |qp| ≤ Rp. There are two cases depending on whether or not
b ∈ V (p).

Case 1: Suppose that b ∈ V (p). Since both q and b are in V (p) it follows that x ∈ V (p)
and by Lemma 3, f(x) ≥ rp. Since B is a gap ball, p cannot be interior so 1/2 ≤ |qp|. Using
τ -quality, it then follows:

f(x) ≥ rp ≥ Rp/τ ≥
1

2τ
(2.2.2)

Case 2: Suppose that b ,∈ V (p). In this case, the goal is to get a stronger lower bound
on |qp|. Since b ,∈ V (p), then |bp| > rp. The following chain of inequalities holds:

|qp| ≤ Rp ≤ τrp ≤ τ |bp| (2.2.3)
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The remaining proof requires some light linear algebra. Without loss, assume that c is the
origin. Observe b = 2q, bT b = 1, qT q = 1/4, and pTp ≥ 1. Consider further:

|qp|2 = (p− q)T (p− q) = pT p− 2pT q + qT q = pT p− 2pT q + 1/4 (2.2.4)

|bp|2 = pT p− 2pT b + bT b = pT p− 4ptq + 1 (2.2.5)

Squaring (2.2.3) and plugging in (2.2.4) and (2.2.5):

pT p− 2pT q + 1/4 ≤ τ 2(pT p− 4ptq + 1)

Since τ > 1, cancel the pT p term and re-arrange:

(4τ 2 − 2)pT q ≤ τ 2 − 1/4 (2.2.6)

pT q ≤ 1

2

(
1− 1

4(2τ 2 − 1)

)
(2.2.7)

Back substituting (2.2.7) into (2.2.4) and using pT p ≥ 1, obtain:

|pq|2 ≥ 5/4−
(

1− 1

4(2τ 2 − 1)

)
= 1/4

(
1 +

1

2τ 2 − 1

)
(2.2.8)

Define δ := |pq|− 1/2. Consider then that δ2 + δ + 1/4 = |pq|2 and substitute into (2.2.8) to
obtain:

δ2 + δ ≥ 1

4(2τ 2 − 1)
(2.2.9)

Use the quadratic formula to find that:

δ ≥
−1 +

√
1 + 1

2τ2−1

2
(2.2.10)

Since τ > 1, δ is positive and bounded away from zero by some δτ > 0 so |pq| ≥ 1/2 + δτ .
By Lipschitz then f(x) ≥ f(p)− |xp| ≥ 1/2 + δτ − |xp| ≥ δτ and the lemma is proved.

2.2.2 Degree Bound Theorem

The lemmas just presented allow a generalization of the bounded-ply theorem of Miller et
al. [MTTW99] stating that any gap ball intersects only a constant number of Voronoi cells.
This leads directly to the degree-bound.

Lemma 6 (Bounded-Ply). Consider a τ -quality mesh M on domain Ω take any gap ball
B := B(c, r) with c ∈ Ω Then the number of Voronoi cells intersecting B is bounded by a
constant depending only on τ , that is:

B◦ ∩M = ∅ −→ |{v ∈ M | VM(v) ∩B ,= ∅}| " 1
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Proof. Let any gap ball B := B(c, r) be given. There is always a maximally empty ball
B′ ⊃ B with two vertices of M on its surface, so without loss, assume B has two vertices
of M on its surface. Thus f(c) = r, and for any x ∈ B, by Lipschitz on f it follows that
f(x) ≤ |xc|+ f(c) ≤ 2r.

Let M ′ ⊂ M be the Voronoi cells that intersect B, i.e. M ′ := {v ∈ M | VM(v)∩B ,= ∅},
so the goal is to show that M ′ " 1.

Consider any v ∈ M ′, then there is some point x ∈ B ∩ V (v). By Lemma 3 it holds that
|xv| ≤ f(x). The vertex v must be relatively close. The distance |vc| is bounded by:

|vc| ≤ |xc|+ |xv| ≤ r + f(x) ≤ 3r (2.2.11)

The Voronoi cell V (v) must also be relatively large. Lemma 3 gives f(x) ≤ 3Rv. By
Lemma 5 (Gap-Ball Sizing) it holds that f(x) ! r, thus:

|vc| ≤ |xc|+ |xv| ≤ r + Rv " f(x) + Rv ≤ 4Rv ≤ 4τrv " rv (2.2.12)

The set of balls B(v, rv) given by every choice of v ∈ M ′ are all disjoint, so view this
set as a sequence of events around c. Equation (2.2.12) shows they are proximal events.
Equation (2.2.11) shows that every event is at roughly the same distance |cv| ∼ r. Thus
|M ′| " 1 by Proximal Packing Lemma 4.

Lemma 7 (Worsened quality). Suppose M is a τ -quality-mesh. Let M ′ = M − S for some
small subset S ⊂ M . Then M ′ is a τ ′-quality-mesh where τ ′ depends on |S| and τ .

Proof. The general case is by induction on |S|, proving the lemma for |S| = 1 suffices.

Denote the singleton vertex to be removed as s. Consider any v ∈ M . The goal is
to bound change in v’s aspect ratio Rv/rv. Since M ′ ⊂ M , it must be the case that
VM(v) ⊂ VM ′(v), so the inradius of v can only increase rM ′

v ≥ rM
v which would improve

the aspect ratio.

The outradius of v may increase, worsening the aspect ratio, but this is controlled. Any
new point x in VM ′(v)− VM(v) must have come from VM(s). Since Voronoi cells are always
convex, this implies that v and s were neighbors in M , so |vs| ≤ 2RM

v . Furthermore, x must
have had v as its old second nearest neighbor, so fM(x) = |xv|. But fM(x) ≤ 2RM

s , thus
|xv| ≤ RM

s ≤ τrM
s ≤ τ |vs|/2 ≤ τRM

v . Thus RM ′
v ≤ τRM

v , so the aspect-ratio of v’s Voronoi
cell is only worsened by a factor of τ .

By induction this yields a total worsening of τ |S|.

Theorem 2 (Degree Bound). If M is a τ -quality mesh, then Del(M) has maximum degree
D " 1.

Proof. The proof follows immediately from the previous two lemmas. Remove v and what
remains is still a quality mesh. Put down a large empty ball in the space v used to occupy.
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This can only intersect a constant number of the new Voronoi cells, but these are a superset
of the old neighbors of v, giving an upper bound. Formally:

Consider any vertex v ∈ M , and consider M ′ := M − {v}. Consider the ball B :=
B(v, RM

v ), so VM(v) ⊂ B. Define U as the Voronoi neighbors of v. Let u ∈ U , then:

∅ ,= VM(u) ∩ VM(v) ⊂ VM(u) ∩B ⊂ VM ′(u) ∩B

so u’s new Voronoi cell intersects B. By Lemma 7, M ′ is a quality mesh. Furthermore, B is
disjoint from M ′, so by Lemma 6, |U | " 1. By duality, the degree of v in Del(M) is exactly
the same as number of Voronoi neighbors |U |.

2.2.3 Grading Lemmas

I define a yet another sizing function relative to a point set M following previous work in
[MTTW99, Tal97]. The utility of the gap-size is that it allows the definition of grading,
a metric on the local quality of the mesh anywhere in the domain. Previous metrics were
limited to describing quality at a vertex or on a whole element. This notion and nearly-
equivalent notions for grading are essential to meshing runtime analysis and have been used
before [MTT99, Tal97, Mil04, STÜ07, HPÜ05].

Definition 21 (Gap-Size). Let M be a point set in Ω. Let x ∈ Ω. The gap size GM(x) is
the radius of the largest gap-ball B of M such that x lies on the surface of the ball ∂B. M
may be suppressed.

It is worth noting that the gap size is a monotone decreasing function as vertices are
added to a mesh M , since the empty interior condition on gap balls only becomes more
difficult to satisfy.

Definition 22 (Grading). Let a mesh M and a point x ∈ Ω be given. Define the grading
of M at x as:

ΓM(x) :=
GM(x)

fM(x)

M may be suppressed.

Lastly in this section, I present two converse lemmas needed for runtime analysis that
relate the grading Γ of a Voronoi diagram to the quality τ . Similar lemmas appear in
[HMP06]. They are not novel, but provide a more simple formulation than in prior work.

Lemma 8 (Quality Gives Bounded Grading). Suppose M is a τ -quality Voronoi diagram.
Then for any x ∈ Ω:

ΓM(x) " 1
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Proof. Let B(c, r) be a maximal gap-ball with x on its surface, so that r = G(x). By Lemma
5, f(x) ! r = G(x). But Γ(x) is just the ratio of these values, so it immediately follows that
Γ(x) " 1.

Lemma 9 (Bounded Grading Gives Quality). Suppose we have a Voronoi diagram M , and
suppose there is some upper-bound γ ∈ (0,∞) such that ΓM(p) ≤ γ at every vertex m ∈ M .
Then M is a 2γ-quality Voronoi diagram.

Proof. Let p ∈ M be given. Let v be some Voronoi Corner adjacent to V (p). Consider the
ball B(v, Rp). This is a gap-ball, thus G(p) ≥ Rp. Recall from Lemma 3 that 2rp = f(p), so
it follows that:

Rp

rp
≤ 2G(p)

f(p)
= 2Γ(p) ≤ 2γ

Hence V (p) has aspect-ratio at most 2γ for any p ∈ M , so M is a 2γ-quality mesh.

Together, these two lemmas allow the discrete notion of Voronoi aspect-ratio and the
continuous notion of grading to be freely interchanged in analysis with only a constant
factor slack.

2.2.4 Proximity in Well-Spaced Meshes

The following section is concerned with a few simple lemmas about relatively local neigh-
borhoods in a τ -well-spaced mesh. These lemmas essentially state that in a neighborhood
consisting of constantly many Voronoi cells, all the cells are relatively the same size, and all
the vertices are relatively near one another.

Lemma 10 (Neighbor Sizing). Suppose M is a τ -well-spaced mesh and vertices u and v are
adjacent in M , i.e. VM(u) ∩ VM(v) ,= 0, then:

• |uv| ≤ 2Ru

• Ru ≤ τRv

Proof. The first statement holds for any mesh. Since the cells are adjacent, let x ∈ V (u) ∩
V (v). Then it must be that |xu| = |xv|, but then:

|uv| ≤ |xv|+ |xu| = 2|xv| ≤ Rv

Continuing, since x ∈ V (v), it must be that ru ≤ |ux|, but then by τ -well-spacing:

Ru ≤ τru ≤ τ |ux| = τ |uv| ≤ τRv
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Consider then the following corollary:

Corollary 1 (Neighborhood Sizing). Suppose M is a τ -well-spaced mesh and supposed the
shortest path in Del(M) from vertices u to v consists of at most k edges, then:

• |uv| ≤ 2kRu

• Ru ≤ τ kRv

Proof. Induction on k using Lemma 10.

2.3 Scaffolding Preliminaries

This section develops a fairly abstract set of lemmas related to mesh size analysis. Of
particular concern is upper-bounding the size of a quality mesh that conforms to set of
input points N . Recall that the task of meshing a point set simply requires generating a
superset of vertices M ⊃ N with good-aspect Voronoi cells. This is a vast simplification
from conforming to a PLC, but the tradeoff is an abstraction where very strong statements
can be made. The lemmas in this section are general-dimensional. Much of this section is
joint work with my co-authors, and appears in [MPS08, HMPS09]. This section establishes
the theoretical kernel of the Scaffold-Sizing Theorem (Section 4.2). The first lemma is a
simple observation:

Lemma 11 (Quality Mesh Upper Bound). Given a τ -well-spaced point set M ⊂ Ω:

|M | "
∫

Ω

1

fd
M

With constant depending on τ and d.

Proof. A birds-eye of the proof is that rm ∼ Rm ∼ fM(m) at every vertex m ∈ M . So the
Voronoi cells roughly pack Ω with cells of volume fd

M , so the vertices are distributed with
density 1/fd

M . The total mass (|M |) is the integral of this density.

Formally:
∫

Ω

1

fd
M

=
∑

m∈M

∫

VM (m)

1

fd
M

(2.3.1)

by Lemma 3, fM(x) ≤ 3RM for all x ∈ VM(m), so:

≥
∑

m∈M

∫

VM (m)

1

(3Rm)d
=

∑

m∈M

1

(3Rm)d
Vold(VM(m) (2.3.2)
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but then by definition:

≥
∑

m∈M

1

(3Rm)d
Vold(Bd(m, rm)) (2.3.3)

∼
∑

m∈M

1

(3Rm)d
(rm)d (2.3.4)

by τ -well-spaced:

∼
∑

m∈M

1

(3Rm)d
(Rm/τ)d =

∑

m∈M

1

(3τ)d
(2.3.5)

= |M | 1

(3τ)d
∼ |M | (2.3.6)

Define a few new notions on quality of point sets. The previous notion of quality (namely
good aspect-ratio Voronoi) is concerned with a static set of points. The following definitions
are dynamic, in that they are concerned with an iteratively growing set of points. The first
relates a new point to an existing set:

Definition 23 (θ-medial). For θ ∈ [0, 1], a point x is θ-medial with respect to a point set
M if the distances to the first and second nearest neighbors are within a factor of θ, i.e.
nM(x) ≥ θfM(x). x is called exactly-θ-medial when these quantities are equal (see Figure
2.3).

For a point set M , the vertices m ∈ M are exactly 0-medial. The Voronoi corners as
well as points on the Voronoi edges and facets are exactly 1-medial. This definition is useful
when considering a sequence of repeated additions to a point set. Consider that the function
f is monotone decreasing as vertices are added to a set, it is natural to ask how well behaved
are the changes in f . For some insertion sequences, f can be forced to decrease smoothly,
step-by-step.

Definition 24 (Well-Paced Extension). Given a point set N and an ordered point set ei ∈ E
with E ∩N = ∅, define a sequence of supersets: N0 := N , Ni+1 := Ni∪{ei}. E is a θ-Well-
Paced Extension of N if ei is θ-medial with respect to Ni for every i.

This gives rise to the following:

Lemma 12 (Well-Pacing Controls f). If E is a θ well-paced extension of N , then for all
x ∈ Ω:

fNi(x) ≥ fNi+1(x) ! fNi(x)
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Proof. Let any i be given and take ei as the vertex added at that step. The left inequality is
trivial since Ni ⊂ Ni+1. For the bound on the right, consider that if fNi(x) ,= fNi+1(x), then
either nNi+1(x) = |xei| or fNi+1(x) = |xei|. In either case |xe| ≤ fNi+1(x). Combine this with
two applications of Lipschitz and the θ-medial hypothesis on ei to obtain:

fNi(x) ≤ fNi(ei) + |xe| ≤ 1

θ
nNi(ei) + |xe|

=
1

θ
fNi+1(ei) + |xe| ≤ 1

θ
fNi+1(x) + (1 +

1

θ
)|xe|

≤ (2 +
1

θ
)fNi+1(x) " fNi+1(x)

Statements about well-paced extensions can be made without knowing the base set and
the ordered extension explicitly. Consider the following definition:

Definition 25 (Well-Paced Admission). Given a fixed domain Ω, say that point set N
admits a (τ, θ)-well-paced ordering if there exists some partition of N into (N0, E), with
an E a θ-well-paced extension of N0. Add the additional constraint that N0 is τ -well-spaced
in Ω. (τ and θ may be suppressed.)

This sets up an abstract but very strong result in mesh size analysis, the Well-Pacing
Theorem:

Theorem 3 (Well-Pacing). If a pointset N in domain Ω ⊂ Rd admits a well-paced ordering,
then: ∫

Ω

1

fd
N

" |N |

Proof. I sketch a proof here, a lengthier proof appears in [MPS08]. The proof proceeds
by induction on the well-paced extension. The decrease in f at successive iterations is
controlled by Lemma 12. This is shown to control the increase in

∫
1/f3 to bounded above

a constant between successive iterations. So the final value
∫

1/f3
N is bounded above by

|E|+
∫

1/f3
N0

. Since N0 was well-spaced by hypothesis, then by Lemma 11, |N0| "
∫

1/f3
N0

.
Thus

∫
1/f3

N " |N |.

2.4 Surface Reconstruction

This section diverges somewhat from the previous sections of this chapter, which were prin-
cipally laying groundwork for runtime and sizing analysis. SVRC protects creases by laying
out a set of spheres to approximate the collar region. SVRC then approximates the surface of
these spheres by some subset of Delaunay simplices at any time. I take inspiration from the
literature on the problem of surface reconstruction: constructing a set of simplices out of a
given point set to best represent a surface.
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RM (v)

VM (u)

VM (v)

rM (v)

u

v
x

Figure 2.3: The Voronoi cells of two vertices u and v in a vertex-set M (not pictured). The
radii of the inner-ball and outer-ball of v are labeled. The point x is 0.9-medial.

2.4.1 Collar Systems

The region that SVRC constructs is a collar system.

Definition 26 (Collar System). A collar system B is a set of collar balls B(c, r) ∈ B.
Define the collar surface S as the boundary of

⋃
B. S must have the following requirement:

If a point s ∈ S intersects more than one ball, then s must be contained in some circle C
with C ⊂ S. This disjointness property guarantees that S can be described as a collection
of circles C and partial spheres A, call this pair 〈C,A〉, the collar description of a collar
surface.

A collar system is also be defined in two dimensions, in this case the collar description
is as arcs and points. Consider taking a subsystem of a three-dimensional collar system by
taking only those collar balls whose centers lie on a common plane. The intersection of the
collar subsystem and the plane yields a new collar system in two dimensions. A collar system
in one dimension is just a set of points.

SVRC will have a set of balls that is a subset of the collar region. It is always a collar
system by the following:

Lemma 13 (g-sized balls form a system). Suppose P is a PLC and B is a set of balls
centered on the creases of P satisfying r < g(c)/2 for every B(c, r) ∈ B. Then B is a collar
system.

Proof. Balls are centered on creases, so every ball is either centered on a vertex or a segment.
First claim that any two balls in B only intersect if they are centered on the same segment.
If u and v are the centers of two balls not centered on the same segment, then the crease
containing u does not contain the crease containing v and vice-versa, so g(u) ≤ |uv| and
g(v) ≤ |uv|. But by assumption rv + rv < (g(u) + g(v))/2 ≤ |uv| so they cannot intersect.

So if a point s on the surface S of B is in more than one ball, then all these balls
intersecting s, must be centered on the same segment. Consider the plane normal to the
segment through s, its intersection with S is an appropriate circle.
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It will also be useful to have some geometric control over the collar system. To this end,
define a Smooth Collar System as follows:

Definition 27 (Smooth Collar System). A smooth collar system is a collar system such
that the any two balls whose surfaces intersect meet with at a tangent angle at least π/2.

Such collar systems can be characterized simply:

Lemma 14. A collar system is a smooth collar system iff for every pair of balls B(c1, r1)
and B(c2, r2) with intersecting surfaces, it holds that:

|c1c2|2 ≤ r2
1 + r2

2

Proof. Follows from straightforward trigonometry, in particular the law of cosines. Consider
two intersecting balls, and let a point x on both their surfaces. Consider the triangle formed
by x, c1, and c2. The edges (x, c1) and (x, c2) are normal to their respective spheres, so the
angle between these edges is the supplement of the tangent angle at x. So the lemma is
satisfied if the angle α between these edges is at most π/2. The law of cosines states:

|c1c2|2 = |xc1|2 + |xc2|2 − 2|xc1||xc2| cos α = r2
1 + r2

2 − 2r1r2 cos α

α is at most π/2 precisely when cos α ≥ 0, which occurs iff the hypothesis is true.

2.4.2 Restricted Delaunay and Voronoi

A hallmark definition for surface reconstruction theory is the restricted Delaunay diagram
of a set of vertices restricted to a surface. For simplicity, I will only consider collar surfaces,
but the definition is general:

Definition 28 (Restricted Delaunay and Voronoi of a Collar Surface). Let a point set M
and a collar surface S be given. Define the Restricted Voronoi diagram of M restricted
to S, denoted Vor(M)|S ⊂ Vor(M), as the subset of Voronoi polytopes that intersect S:

Vor(M)|S := {V ∈ Vor(M)|V ∩ S ,= ∅}

Define the Restricted Delaunay Diagram (Del(M)|S ⊂ Del(M)) as the dual simplices:

Del(M)|S := {Dual(V ) | V ∈ Vor(M)|S}

See Figure 2.4.2.

The restricted Delaunay definition also applies for collar surfaces in lower dimension. The
restricted Delaunay definition implicitly assumes the following non-degeneracy condition on
the collar description and the point-set: no Voronoi corner lies on a partial sphere; no Voronoi
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Figure 2.4: Left: A Voronoi diagram Vor(M) and a surface S cutting through. Center: The
restricted Voronoi cells Vor(M)|S . Right: The restricted Delaunay triangulation Del(M)|S
approximates S.

facets or edges are tangent to a sphere; no Voronoi corners or edges intersect a circle; and
no Voronoi facets are tangent to a circle. The exact radii of a collar balls is never critical in
SVRC, so this can always be achieved by perturbation.

Observe that if any vertices of M are actually on S, they will always be contained in
the restricted Delaunay. The restricted Delaunay is closed under subsets: if S ′ ⊂ S, then
Del(M)|S ⊂ Del(M)|S′ . So it makes sense to associate portions of the restricted Delaunay
with pieces of the collar description. (Note that this does not yet necesarily partition the
restricted Delaunay, some simplices may be associated with more than one sphere or circle.)

I will employ the following definitions regarding Del(M)|S :

Definition 29 (Representation Sets). Consider M , S and Del(M)|S as above. For a simplex
T ∈ Del(M)|S , define its representation set Rep(T ) := Dual(T ) ∩ S. For a triangle, the
dual is a voronoi edge, so this yields a set of representation points. For an edge, call it
a representation curve. For a vertex, call it a representation patch. (Note that these
sets may not actually be a single curve or patch.)

Representation sets are also defined in two dimensions. The restricted Delaunay does
a good job approximating a surface. Consider, that as more and more points are drawn
from S and added to M , Del(M)|S converges to S in several norms. The main goal is to
show is that Del(M)|S has the same topology as the collar surface. The chief technology
employed in such results is based on the theorem of Edelsbrunner-Shah[ES97], which requires
the so-called topological-ball property, that the intersection of each representation set with
the surface is a topological ball of proper dimension. SVRC will achieve this by enforcing a
set of topological constraints.

Definition 30 (Consistent Sample). Given a point set M and a collar surface S, a simplex
T ∈ Del(M)|S is called locally consistent if Rep(T ) ∩ S is a topological (|T |− 1)-ball. M
is a consistant sample for S if every simplex of Del(M)|S is locally consistent.

Concretely, this means that every set of representation points must be a singleton, every
representation curve must be topological 1-ball, and every representation patch must be
topological 2-ball.
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A restricted Delaunay simplex T can always verify its local-consistency by testing on
only the subset of collar balls that intersect Dual(T ). Note that if M is a consistent sample
of S, this does not necessarily imply that M is a consistent sample of some subset of S.

Definition 31 (Collar-Consistent Sample). A consistent sample M of S is a collar-consistent
sample if M is a consistent sample for the set of circles in the collar decomposition of S.

Lemma 15 (Collar Surface Topology). If M is a collar-consistent sample for a collar surface
S, then Del(M)|S is a triangulation homeomorphic to S. Furthermore, M agrees with the
collar decomposition, so that the restricted Delaunay of M restricted to any partial sphere
is a triangulation homeomorphic to the partial sphere, and the restricted Delaunay of M
restricted to any circle forms a cycle.

Proof. Since M is a consistent sample, it will meet the topological ball property of the
Edelsbrunner-Shah [ES97], which will guarantee that Del(M)|S is homeomorphic to the
collar surface. Since M is a collar-consistent sample, then for the set of circles C in the collar
description, Del(M)|C) is a set of cycles. By nesting of the restricted Delaunay, this is a
subset of Del(M)|S . These cycles partition Del(M)|S in to the restricted Delaunay of each
partial sphere.

For termination purposes, SVRC must eventually obtain a collar consistent sample. This
is will be guaranteed using the notion of ε-sampling. For general surfaces, this requires the
notion of a medial-axis and a local feature size [Dey06]. For collar surfaces, I develop simpler
definitions:

Definition 32 (Collar Surface Sizing). Consider a collar system B with S. For s ∈ S:

rad(s) := min{r | B(c, r) ∈ calB and s ∈ B}

Define css : (S → R) as the largest Lipschitz function that is less than or equal to rad(s)

Viewing any single piece (circle or partial sphere) of the collar description, this definition
guarantees that css at any point on the piece will be less than the distance to the medial
axis of the piece.

Definition 33 (ε-Sample of a collar surface). A point set M ⊂ S is an ε-sample of S if the
following:

• ∀ s ∈ S, |sM | ≤ εcss(s)

• For every circle C in the collar description of S, setting MC := M ∩ C, it holds that:

∀ s ∈ C, |sMC | ≤ εcss(s)
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The second condition is motivated by the non-smoothness of the collar surface around
the circles, requiring that there be sample points MC on the circles.

The following lemma will then be employed later for termination:

Lemma 16 (ε-Sample gives Consistent Sample). There exists ε ∈ (0, 1) such that if M is
an ε-sample of a smooth collar surface S, then M is a collar-consistent sample of S.

Proof. When M is an ε-sample, S must be nearly flat in a relative neighborhood of any vertex
v of M , then the intersection of S with any Voronoi cell will simply be the intersection of a
plane (or line) with a convex polytope, so it will have the proper topology. For details, see
[Dey06], Chapter 3.

The algorithm SVRC also seeks to approximate the geometry of the collar surface, moti-
vating the following:

Definition 34 (Representation Angle). Consider M , S, and a triangle T ∈ Del(M)|S .
Dual(T ) is a Voronoi edge E that pierces S at Rep(T ). For a point p ∈ Rep(T ), p is on
some partial sphere S of the collar description. The representation angle σ(T, M,S) is
measured at p as the angle between E and the normal of S at p. If Rep(T ) is not a single
point, take the largest (worst) representation angle.

The representation angle gives a measurement of how tilted a triangle T is relative to
the local portion of the collar surface S. Note that by perpendicularity, σ is also the angle
between the plane containing T and the plane tangent to S at Rep(T ) Furthermore, if all
the vertices of T lie on the same partial sphere S, then σ = 0.

Representation angles are defined analogously for edges in two dimensions The notion
of representation angle is not defined in general for edges in three dimensions. However,
in the specic case when C is a circle of the collar description and E ∈ Del(M)|C , then I
define the representation angle σ(E, M, C) as follows: Dual(E) is a facet that intersects C
at some point p = Rep(E); measure the angle between the normal of C at x and the plane
of Dual(E). This angle is measures how well E approximates the tangent of C at Rep(e).

Algorithm SVRC will add points on the collar surfaces to guarantee collar consistency and
to obtain a bound on representation angles. The bound on representation angles is used to
guarantee the quality of simplices that are created adjacent to creases.
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Chapter 3

Algorithm SVRC

The algorithm SVRC is based primarly on the sparse refinement paradigm developed in
SVR [HMP06]. The input to SVRC is a PLC P , and two constants. The output is a tetrahe-
dralization T that conforms to P . T has bounded radius-edge ratio tetrahedra everywhere
except adjacent to creases. Near the creases, T contains tetrahedra with no large dihedral
angles. The runtime of SVRC is near-optimal O(|P| log ∆ + |T |). The total space usage is
optimal O(|T |).

The constants input to SVRC are τ and σ. τ governs the radius-edge ratio of the tetrahedra
away from creases, and must be given with τ > 4

√
2, in order to later satisfy Theorem 5. σ

gives a guarantee on the largest dihedral angle for output tetrahedra adjacent to a crease.
Two internal parameters are constructed, θ and θ0. The constant θ must generally be chosen
very close to 1 in order to later satisfy Theorem 5, and the constant θ0 is always prescribed
as θ0 := 2θ/(1 + 2θ), which is then about 2/3. θ can be set internally closer to 1 to control
a tradeoff between runtime and output-size.

This chaper presents a high-level overview of SVRC, followed by a description of imple-
mentation details, and then detailed pseudocode for the algorithm.

3.1 Algorithm Overview

SVRC is an iterative algorithm. A very bland mesh is created to begin with, and vertices
are added to this over time until a correct (i.e. quality, conforming) mesh is achieved. In
actuality, SVRCcreates several very bland meshes, one for each input feature. For F ∈ P ,
these will each be denoted MF . One three-dimensional volume mesh MΩ is also created.
The goal of SVRC is to refine MΩ until it is suitable for output.

Before the meshes can be created, SVRC creates dim(F )-dimensional domains ΩF . For
input vertices and segments, ΩF = F . For an input facet F , a bounding-box ΩF is chosen
from R2 meeting the following criteria:
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Definition 35 (Bounding Box). Consider X ⊂ Rd for d ≥ 2, let L be the diameter of X,
ΩX ⊂ Rd is a bounding-box if:

- ΩX is bounded, convex, and X ⊂ ΩX

- The diameter of ΩX " L

- The distance from any point in X to the exterior (Rd − ΩX) is ! L

The second condition is to ensure that a bounding-box is not too large, since a trian-
gulation or tetrahedralization will have to cover the whole thing. The third condition is
to prevent any interactions with the border of a bounding-box. SVRC takes ΩF as a square
centered on F of an appropriate diameter for each 2D feature F . Take Ω = ΩP as a cube
centered on P of the an appropriate diameter.

3.1.1 Sparse Refinement

This subsection describes how SVRC approaches the basic sparse refinement paradigm. The
next subsection (3.1.2) explains the significant changes in SVRC to handle creases.

Each mesh MF is initialized with a constant number of points at the boundary of ΩF .
SVRC then proceeds by queueing up work events, gap-balls needing destruction in a given
mesh. A work event destorys a gap ball by adding a new vertex to the mesh inside the gap
ball, refining the meshes until all the work is done Work events are queued for three main
reasons: skinny, unresolved, and encroached.

The work event type skinny is simple. At termination, SVRC wants every mesh to be
τ -well-spaced. If there is some skinny Voronoi cell, then it is adjacent to a gap-ball that is
much too large. The algorithm will destroy this gap-ball by inserting a vertex relatively near
its center.

The second type is for purposes of conforming to P . Each feature mesh makes sure it
conforms to its own feature, and then globally conforming subdivision of P is decided upon
by SVRC at the lowest dimensions and recursively enforced upward. This motivates the notion
of containment dimension.

Definition 36 (Containment Dimension and Parent Feature). The containment dimen-
sion of a point x ∈ Ω is the dimension of the lowest-dimensional feature domain containing
x:

CD(x) := min{dim(F ) | F ∈ P and x ∈ ΩF}

For a simplex T , containment dimension is given by the highest among points in T , so
CD(T ) := maxx∈X CD(x) A ball inherits the containment dimension of its center, so CD(B(c, )) :=
CD(c). The parent feature of x is the feature F ∈ P with dim(F ) = CD(x) and x ∈ ΩF .
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If there is ever a disagreement between feature meshes, then there is a feature mesh that
does not contain some simplex of a subfeature mesh. (Consider that initially, MΩ does not
contain any of the input vertices, which are 0-simplices of their own feature meshes.) Such
a simplex is unresolved in the superfeature mesh. SVRC finds large gap-balls in a mesh
containing unresolved simplices and queues these as work events.

A gap-ball B is always destroyed by inserting some p near the center of B. The first
choice to destroy B is to add its center c, but if there is an unresolved vertex v nearby c
with CD(v) < CD(c), this would be even better, so SVRC will warp the insertion of c to v.
If all the unresolved simplices are too far from c, then SVRC cannot warp. It will destroy the
gap-ball by inserting c, then find new, smaller gap-balls containing the same still-unresolved
simplices and queue new work events.

The parameter θ ∈ (0, 1) controls how far SVRC is allowed to warp. If θ = 0, the algorithm
will never warp, never conform to P and never terminate. If θ = 1, then SVRC will always
warp to the unresolved simplex, but guarantees on asymptotic runtime disappear. Always
warping will tend to favor adding fewer total vertices. Thus θ becomes a tradeoff between
runtime and output-size. This phenomenon is observed empirically in [AHMP07].

The third type of work event Encroached is related to both sizing and conforming.
SVRC should not return a mesh with arbitrarily many points. If a point is arbitrarily added
ε away from to a feature F , then a mesh may not be able to be conform without inserting
log(1/ε) points. SVRC desires that the final number of points be related somehow to fP , so
this must be avoided. To do so, SVRC puts a set of protective balls with low containment
dimension around each subfeature. A protective ball B is encroached by a point p if p
intersects the interior B◦. If SVRC is trying to destroy some B by inserting p and it happens
that p encroaches on a protective ball B′ with CD(B′) < CD(p), the insertion is disallowed.
B still must be eventually destroyed, however, so SVRC yields and destroys B′ first, before
re-attempting to destroy to B.

The distinction between warping and yielding is a bit subtle. The goal is to keep the
meshes in sync with one another with regards to conforming. Yielding prevents a high-
dimensional mesh from getting too far ahead with regards to refinement, it must slow down by
refining lower-dimensional meshes. Warping prevents a high-dimensional mesh from getting
too far behind, it should catch up by inserting unresolved points from lower-dimensional
meshes. The main procedure for destroying gap-balls, warping, and yielding is found in
Destroy (Figure 3.3).

3.1.2 Enhancements for handling Creases

The first thing to note is that when P has sharp creases, a point set cannot ever be conform-
ing and well spaced, so SVRC so far would run forever. The solution taken by SVRC is to give
up on conforming near creases for the run of the algorithm, and then stitch in a conforming
mesh around the creases as a post-process. The area around the creases where SVRC aban-
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Figure 3.1: The sparse refinement process. (a) A 2D mesh and a 1D mesh side by side.
The vertex v is resolved in both meshes. (b) The intersections between 1D protective balls
and the 2D mesh are stored in the Bipartite Location Graph (BLG). (c) A work event for
a skinny element desires the insertion of a circumcenter/Voronoi corner. (d) SVRC looks for
any unresolved vertex nearby (within θ times the radius) in order to warp if necessary. (e) It
finds the unresolved 1D vertex and inserts this instead, updating the Voronoi diagram and
the BLG. (f) A new work event for a skinny cell finds no vertices to warp to. (g) However,
the new insertion would encroach on a 1D protective ball, so yield by refining the 1D mesh
instead. (h) The 1D mesh is refined, and the BLG is updated for new intersections. (i) The
2D mesh resumes its insertion, which now finds to vertices to warp to and no encroached
protective balls.
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dons conforming is a collar system. The algorithm simply discards any unresolved work
events if they are inside the collar system. This is enough to guarantee termination, quality
everywhere, and conforming everywhere outside the collar system.

Unfortunately, a collar system is not known in advance, so the algorithm must create a
collar system and dynamically add to it. Any unresolved work events in the current collar
system are discarded, except to recover the interior of a segment crease. As long as a whole
collar system approximating the collar region is recovered early enough, SVRC can get the
same guarantees as if it knew the collar region in advance.

Portions of the collar system are recovered whenever MΩ adds a vertex v that lies on
a crease. At insertion time, v calculates its sizing g(v) via the routine FastCollarSize
(Figure 3.3 Then is adds a new collar ball B(v, g(v)/3) to the collar system. If v was
inserted in time to ensure that nMΩ(v) ! g(v), then SVRC has not refined too far past the
collar surface. Overall, the mesh size in an area will only be going down when SVRC deals
with Unresolved events. If care was not taken, SVRC might continually warp to points on
the features adjacent to the crease, rather than warping to the crease itself (which would
heroically augment the collar system and prevent infinite refinement). To give the crease
precedence, SVRC always warps to the lowest-dimensional unresolved vertex.

Once all refinement has stopped, SVRC should have an collar-consistent sample of the
collar surface (recall Section 2.4). This is ensured by enqueuing work events of a fourth
type: Collar. The restricted Delaunay of the collar surface is maintained, and if it is ever
not locally consistent, SVRC enqueues a work event to add a vertex on the collar surface
by destroying some gap-ball centered on the surface. It is important to conform to the
collar system, but less important than conforming to features. To reflect this, redefine the
containment dimension for points on the collar surface as follows:

Definition 37 (CD for collars). Consider the collar description of circles and partial spheres.
Let the “collar dimension” d(x) of a point x be 1 if x is on a circle, 2 if x is on a partial sphere,
or 3 if x does not intersect the collar surface. Then redefine the containment dimension of
a point x by the pair CD(x) := 〈CD(x), d(x)〉 Ordering on containment dimension is then
given by lexicographical ordering on the pairs, i.e. so CD(x) ≤ CD(y) if the old containment
dimension was less, or if the old containment dimension was the same and x has lower collar
dimension.

Recall the collar subsystem intersecting an input facet is described by arcs and points,
and the intersection with an input segment is just a points. This sets up the following
ordering by CD from lowest to highest:

(0,3) input vertices

(1,2) points where collar spheres intersect input segments

(1,3) points on input segments

(2,1) points where collar circles intersect input facets
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(2,2) points where collar spheres intersect input facets

(2,3) points on input facets

(3,1) points on collar circles

(3,2) points on collar spheres

(3,3) points in space

Note that a few cases do not exist, since collar surfaces never intersect input vertices, and
collar circles never intersect input segments. This priority is used for enforcing conforming
and good collar approximation across all the meshes. Insertions always warp or yield to
lower containment dimension balls.

An additional procedure is added to the algorithm to handle vertices that may be very
near the surface of a collar ball. A constant factor 0 < δ << 1 is selected. The factor δ
must be smaller than ε sin(π/2 − σ/2), where ε is the constant in the proof of Lemma 16.
For a collar ball with radius R, whenever a vertex is within δR of the surface, the vertex
is symbolically snapped to Snap performs a symbolic perturbation of the coordinates of v.
For all Delaunay and Voronoi calculations, v retains its original calculations. For calculating
the quality of the collar approximation, the warped coordinates are used. This ensures that
SVRC will not attempt to fill the tiny gap between the vertex and the sphere only for the sake
of collar approximation. The choice of δ ensures that the perturbation does not significantly
disturb the representation angle in the restricted Delaunay.

Once all work events are complete, SVRC deletes all the vertices between the creases and
the implicitly represented collar surface. A new tetrahedralization is then manually inserted
by SVRC to fill the collar system. This procedure is shown in Figure 3.3. The new tetrahedra
will have no-large-angles so long as the implicit surface has good representation angles. To
ensure good representation angles at the finale, work events are also queued with reason
Collar whenever the restricted Delaunay contains a representation angle worse than the
parameter σ ∈ (0, π/2). Setting σ near zero will yield dihedral angles not much larger than
π/2, which will require a great deal of vertices on the collar surface, so σ becomes a tradeoff
between quality of simplices adjacent to collars and overall mesh size.

3.1.3 Correctness of SVRC

Assuming that SVRC terminates, then there no more work events of any of the four types
Unresolved, Encroached, Skinny, and Collar. The following claim of correctness
can then be made:

Theorem 4 (SVRC Quality and Conforming). Given a PLC P, if SVRC terminates, it out-
puts a conforming tetrahedralization T with good radius-edge tetrahedra everywhere except
adjacent to creases. Tetrahedra adjacent to creases have no-large-angles.
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Proof. The first claim is that SVRC generates a tetrahedralization. Let B be the final collar
system with collar surface S. Let M := MΩ immediately before the call to post-process
RipStitchCollar. M is a tetrahedralization of Ω. Let T ′ = Del(M)|S , note T ′ ⊂ T .
Since there are no more Collar events, M is a collar-consistent sample for S, so by Lemma
15, T ′ is a triangulation homeomorphic to S. S divides Ω into two closed regions, “inside”
(B) and “outside” (Ω−B) whose intersection is S. By homeomorphy, T ′ does the same, call
these closed regions I and O. The inside I is tetrahedralized by RipStitchCollar, the
outside O is tetrahedralized by Del(M ∩O), and the intersection is the triangulation T ′, so
T is a tetrahedralization of Ω.

Since there are no more work events of type Skinny or Collar, then the quality guaran-
tees trivially hold. The primary issue is conforming. Since there are no Unresolved events
interesecting O, Del(M) is outside-conforming in the sense that for any feature F ∈ P , F ∩O
appears as a union of simplices of Del(M), Accordingly, F ∩ T ′ is a union of simplices of T ′.
It only remains to conform inside I. Let F ∈ P that intersects I, then it remains to show
that F ∩ I must be a union of simplices from T . Suppose F is a crease, then F is resolved
by RipStitchCollar. so T conforms to F .

Suppose F is not a crease. If F is a segment, it enters I at some point v in T ′ and is
adjacent to a crease vertex v′. This edge was added so T conforms to F If F is a facet, then
it enters I along some path in T ′ and is adjacent to some crease segments. A set of triangles
stitching this crease segment to the path is added by RipStitchCollar, so T conforms to
F .

Thus T is a conforming tetrahedralization of P .

3.2 Structures in SVRC

3.2.1 Data Structures

For each mesh MF , use a cell-complex data structure to store the whole of Vor(MF ). The
cell-complex should be able to handle Voronoi insertions in time proportional to the number
of cells that are changed. Vertices are augmented to answer if they lie on a crease of P .

Maintain 11 total work queues, one for each of the four types of work events paired
with relevant dimensions. Voronoi cells of any dimension but 0 may be skinny, so maintain
SkinnyQueue1...3. Voronoi cells of dimension > 0 will need to resolve subfeature meshes,
so maintain UnresolvedQueue1...3. Diametral balls only protect edges and facets, so
maintain EncroachedQueue1...2. The collar system is projected to subsystems in each
lower dimension, each having their own collar surface, so maintain CollarQueue1...3.

Every work event popped off a queue, causes a call to Destroy which handles warping
and yielding before eventually calling ForceInsert to perform an actual insertion into a
mesh. If a point is inserted on a collar, a call is spun off to CreateCollar to augment the
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collar system appropriately.

Managing the work queues is done with Enqueue and Dequeue (Figure 3.3). Dequeue
pops an event in particular priority order on the type and dimension. This ordering is crucial
for efficiency (Chapter 5). But for correctness, any order on the work events will suffice. Each
work event is a gap-ball represented as Balls.

3.2.2 Protective Balls

SVRC uses a system of protective balls to represent the work events. For the purposes of
SVRC, a Ball is a pair 〈(c, r), F 〉, where (c, r) is a center and radius and F ∈ P is a
feature for which this is a gap-ball. The Balls are divided into two groups, RepBalls and
ConfBalls. RepBalls are representation balls and are used for the implicit collar
surface representation (recall Section 2.4):

Definition 38 (Representation Balls). Consider a 3-dimensional mesh M and collar surface
S. Let 〈C,A〉 be the collar description of S. The representation balls of Del(M)|S are
given by:

1. For every A ∈ A, for every triangle T ∈ Del(M)|A with a vertex v

{B(c, |cv|) | c ∈ Rep(T )}

2. For every C ∈ C, for every edge E ∈ Del(M)|C with a vertex v

{B(c, |cv|) | c ∈ Rep(E)}

Consider a two-dimensional mesh M ′ and collar surface S. Let A and P be the arcs and
points of the collar description of S. Then the representation balls of Del(M ′)S are given by:

1. For every A ∈ A, for every edge E ∈ Del(M)|A with a vertex v

{B(c, |cv|) | c ∈ Rep(E)}

2. For every p ∈ P, B(p, 0)

Consider a one-dimensional mesh M ′′, its collar surface is just a set of points P . The
representation balls are {B(p, 0) | p ∈ P}.

Since RepBalls inherit the containment dimension of their centers, and their centers
are on the collar surface, they have fractional containment dimension. Balls of type 2 in the
definition have lower containment dimension than those of type 1.
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From the definitions of restricted Delaunay and representation sets, any representation
ball will be an empty ball centered on the collar surface. Note that these balls are guaranteed
empty by definition. Whenever the restricted Delaunay is changed, the new RepBalls will
be empty, even if they are not nested inside the old RepBalls.

RepBalls manage the implicit representation of the collar surface. If there are bad rep-
resentation angles or bad topology, then the appropriate RepBall is queued for destruction,
which will add its center, a new point on the collar surface.

The other balls are conforming balls (ConfBalls). These protect lower-dimensional fea-
tures so that higher dimensional meshes will conform to them. To protect a lower-dimensional
simplex S, SVRC uses its diametral ball. This works since if the vertices of S are in M , and
the diametral ball of M is empty, then S ∈ Del(M). The ConfBall to protect a vertex v is
a 0-radius ball. If a ConfBall is encroached by a higher-dimensional mesh, then SVRC will
destroy it by adding its center to the mesh of the lower-dimensional feature it is protecting.

For reasons of runtime, SVRC might not enqueue a ConfBalls for destruction immedi-
ately after it is encroached, preferring to wait until it is doubly-encroached by two vertices.
For this reason, ConfBalls store an flag PartiallyEncroached which may be set true
or false.

3.2.3 Object Location

The main work in SVRC is Destroy and ForceInsert. Destroy handles warping and
yielding when destroying a gap-ball, eventually calling ForceInsert performs an actual
mesh insertion (Figures 3.3 and 3.3). This requires supporting several local operations. In
particular, these methods need to find out about any lower-dimensional work events that
are in a local neighborhood. This work is principally handled by a bipartite graph called
the Bipartite Location Graph (BLG). The BLG is an intersection graph, edges are pairs of
geometrically intersecting objects.

On one side of the BLG are location objects, and on the other side are all the Voronoi
cells of all the feature meshes. Location objects are of two varieties, Balls and Collars.
Balls are the RepBalls and ConfBalls discussed in Section 3.2.2. Collars are collar
balls and circles and are used to track intersection of the collar system with the meshes. (In
a two dimensional mesh, Collars are circles and intersection points.)

The edges of the BLG are directed pointers, labelled and grouped by the type of objects.
Consider first edges from location objects to cells. Suppose B is a Ball. Recall that B is
actually a pair containing a ball and a feature F . If F ⊂ P are the superfeatures of F , then
for each F ′ ∈ F , there is a bundle of pointers given by CellsF ′(B) that are pointers to the
cells in Vor(MF ′) that intersect B. For every feature F ∈ P , a Collar C has a bundle of
pointers CellsF (C) for the cells in Vor(MF ) intersecting C.

Now consider pointers in the other direction. Consider any feature F and v ∈ MF , there
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are bundles ConfBallsF (v) and RepBallsF (v) representing all the Balls intersecting
VMF (v). The union of these two bundles is denoted BallsF (v). There is another bundle
CollarsF (v) for the Collars intersecting v’s Voronoi cell.

The low-level access to the BLG is given by AddLink and RemoveLink (Figure 3.3).
RemoveLink merely deletes the obvious pointers. When AddLink is called, it is to register
new intersections between balls and Voronoi cells. Such intersections are the cause of collar
and encroached events, so AddLink traps such events and enqueues them if necessary.

Higher-level access to the BLG is given by UpdateLocation and PropagateLoca-
tion (Figures 3.3 and 3.3). UpdateLocation is called with the old and new vertex sets
when a mesh MF has been changed. In this case a few things happen, first, any local Rep-
Balls must be recomputed since the restricted Delaunay may have changed. Then all the
location objects must be re-intersected with the new Voronoi cells. New ConfBalls must
be created to send to higher dimension. At this point ConfBalls should not be created
around scaffolding, simplices inserted into the lower-dimensional ΩF that are do not contain
part of F . This cruft is not should stay invisible to higher-dimensional meshes. The last
step in UpdateLocation is to send the all the revised location objects to PropagateLo-
cation to inform the higher dimensional meshes.

PropagateLocation is passed an old set and a new set of location objects and a
feature. All the superfeatures must be updated, removing links to the old objects and
adding links to the new objects. The superfeature may not be conforming to all the new
ConfBalls, this is the cause of unresolved events, and so it is trapped here and events
are enqueued as necessary. Inside the collar region, subfeatures need not be resolved, so no
new events for these are created.

3.3 Detailed Algorithm
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SVRC(P : a piecewise linear complex, τ , θ, σ)
1: Initialize(P)
2: B := Dequeue()
3: while B ,= ∅ do
4: Destroy(B)
5: B := Dequeue()
6: end while
7: return RipStitchCollar()

Figure 3.2: Main method for SVRC. Initialization creates meshes for each feature and links
them together in the BLG. SVRC repeatedly Destroys gap balls to achieve conforming and
quality goals. Dequeue chooses balls in priority order to ensure good runtime. Finally, the
call to RipStitchCollar removes whatever cruft is inside the collar system and replaces
it with a no-large-angle conforming tetrahedralization.

Initialize(P : a piecewise linear complex)
1: Compute Creases, the creases of P
2: Create MΩ := BoundingBox(P)
3: for F ∈ P do
4: Create MF := BoundingBox(F )
5: end for
6: for F ∈ P do
7: UpdateLocation(∅, MF , F )
8: end for

Figure 3.3: Initialization begins by building a constant sized bounding mesh for each feature.
UpdateLocation creates new ConfBalls for a feature and sends them to superfeatures,
which will enqueue new work events to initially load the queues.
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Destroy(B = 〈(c, r), F 〉: a Ball)
1: if c is no longer on the Voronoi skeleton of MF then return
2: Compute V := {v ∈ MF | VMF (v) ∩B ,= ∅}: the set of Voronoi cells intersecting B
3: Compute B =

⋃
v∈V BallsF (v)

4: Compute W = {〈(p, 0), F ′〉 ∈ B | p ∈ B(c, θr) and CD(B) < CD(p)}: warp points
5: if ∃ 〈(p, 0), F ′)〉 ∈W then
6: Choose p to minimize CD(p)
7: ForceInsert(F , p, F ′)
8: else
9: Compute Y := {B′ ∈ B | c ∈ B′◦ and CD(B′) < CD(B)}:yield balls

10: if Y = ∅ then
11: ForceInsert(F , c, F )
12: else
13: Take B′ ∈ Y , Destroy(B′)
14: goto 1
15: end if
16: end if

Figure 3.4: The central operation of SVRC is to continually Destroy large gap balls. If
the center of the ball is no longer on the Voronoi skeleton, it has been destroyed by other
operations. If there is an unresolved vertex p (Ball with radius 0) within θr of c, then c
should warp to p conforming purposes(line 7). In line 6, SVRC carefully inserts the candidate
of lowest containment dimension. This ensures that points on creases are added before too
many points are added near a crease, so that collars can be created to stop refinement. Next,
Destroy then looks for any nearby lower-dimensional protective balls encroached by c. If
there aren’t any encroached balls, it is safe to insert c (line 11). If there is some encroached
ball B′, this call to Destroy is a witness that B′ must be destroyed, so yield to destroying
B′. The destruction of B′ may have created some new points to warp to so go back and
check everything again (line 14). The computations of V , B, W and Y must be cached so
that the conditionals are fast on repeated attempts.
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ForceInsert(F : feature to add to, p: a point, F ′: feature containing p)
1: Compute V := {v ∈ MF | VMF (v) ,= VMF∪{p}(v)}: the set of vertices whose Voronoi cells

that will change
2: Set V ′ := V ∪ {p}.
3: Add p to MF , creating new cells VMF (v′) for every v′ ∈ V ′

4: UpdateLocation(V ,V ′, F )
5: if dim(F ′) < dim(F ) and p ∈ Creases then
6: CreateCollar(p, F )
7: end if
8: for all v′ ∈ V ′ do
9: if v′ is the center of some work event O on a work queue Queue then

10: DecreaseSize(O,Queue, Rv′)
11: end if
12: if v′ is a τ -skinny Voronoi cell then
13: let c be the farthest Voronoi corner of V (v′)
14: Enqueue(〈(c, Rv′), F 〉, skinny, F )
15: end if
16: end for

Figure 3.5: The ForceInsert routine always inserts a point p into a mesh of a feature
F . Update the mesh MF , then update the BLG with UpdateLocation. If p is on a
crease, augment the collar system to protect p. Lastly, enqueue any new skinny events for
destruction.
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UpdateLocation(V: old vertices, V’: new vertices, F:containing feature)
1: Compute C := ∪v∈VCollarsF (v) the old Collars
2: Initialize S ′ = ∅ to collect new ConfBalls
3: Initialize R′ = ∅ to collect new RepBalls
4: for all v′ ∈ V ′ do
5: for all C ∈ C do
6: Create RepBalls for any intersections in C ∩ VMF (v′), add these to R′

7: if |v′C| ≤ δR(C) then
8: Snap(v′,C)
9: end if

10: end for
11: for all Simplices T ∈ Del(MF ) with v′ as a vertex do
12: if |T | = dim(F ) or |T | = 1 then
13: Let B(c, r) be the diametral ball of T
14: if dim(T ∩ F ) = dim(T ) then create ConfBall〈(c, r), F 〉, add to S ′
15: end if
16: end for
17: end for
18: Compute S := ∪v∈VConfBallsF (v) the old lower dimensional ConfBalls
19: Compute R := ∪v∈VRepBallsF (v) the old RepBalls
20: Set O := C ∪ S ∪R, all the old location objects
21: Set O′ := C ∪ S ∪R′, the location objects to re-intersect
22: for all v ∈ V , RemoveLink(v,O))
23: for all v′ ∈ V ′, {O′ ∈ O′| O′ ∩ VMF (v′) ,= ∅} do
24: AddLink(v′, F, O′)
25: end for
26: Set O′′ := S ′ ∪R′, the new objects to report to higher dimension
27: PropagateLocation(O, O′′, F )

Figure 3.6: UpdateLocation performs local operations to update the BLG when a patch
of MF has been updated. First, create new RepBalls to account for the new restricted
Delaunay, then create new ConfBalls to report to higher dimension. Some of the new
ConfBalls may only be bounding-box scaffolding in MF around F . Superfeatures need
not resolve these and should not be informed, so discard scaffolding here by checking in
line 14. Re-intersect the new Voronoi with the old collars, new RepBalls and old lower-
dimensional ConfBalls. Lastly, propagate the new location objects to higher dimension.
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CreateCollar(p: point on crease, F: feature needing collar)
1: Compute g := FastCollarSize(p, F )
2: Compute V := {v ∈ MF | V (v) ∩B(p, g) ,= ∅} covering the new collar ball
3: Compute C :=

⋃
v∈V CollarsF (v) the old Collars

4: Compute R :=
⋃

v∈V RepBallsF (v) the old RepBalls
5: Compute C ′, augmenting collar system C to include B(p, g)
6: Initialize R′ = ∅ to collect new RepBalls
7: for all v ∈ V , C ∈ C ′ do
8: Create any RepBalls due to intersections C ∩ VMF (v), add these to R′

9: For any segments emanating from a vertex collar, enqueue the dimension (1,2) vertex
as Unresolved

10: end for
11: for all v ∈ V do
12: RemoveLink(v, C ∪R))
13: for all O ∈ R′ ∪ C ′ | O ∩ VMF (v) ,= 0 do
14: AddLink(v, F, O)
15: end for
16: end for
17: PropagateLocation(C ∪R, C ′ ∪R′, F )

Figure 3.7: CreateCollar first calls FastCollarSize to determine the size of the collar
ball to be created. Neighboring portions of the collar system are found to update the collar
surface. New RepBalls are created. The Collars and RepBalls in the BLG must then
be updated. and this information propagated to higher dimension.

FastCollarSize(v: vertex on crease, F : feature needing collar) → R
1: Initialize F = ∅, the set of features near v
2: Initialize g = ∞, the size of the neighborhood needing to be explored
3: Initialize X = ∅, the region that has been explored
4: while B(v, g) ,⊂ X iterate on v′ ∈ MF in breadth-first order beginning with v do
5: Update X := X ∪ VMF (v′)
6: Update F := F ∪ {F ′ | ∃〈 (c, r), F ′〉 ∈ ConfBalls(v′) and F ′ ,= F}
7: Update g := min{|vF ′| | F ′ ∈ F}
8: end while
9: Return g/3

Figure 3.8: FastCollarSize computes the size of a proper collar ball around v. A neigh-
borhood of v is explored. g keeps track of the nearest feature that has been found. Loop
until there cannot be a feature nearer to v. When the loop terminates, g = g(v). The
actually procedure is rather brute force, with the cleverness in its analysis (Chapter 5).
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PropagateLocation(O, O′, F )
1: for all superfeatures F ′ ∈ {F ′ ∈ P | F ′ ⊃ F} do
2: Compute V :=

⋃
O∈O(CellsF ′(O)), cells in F ′ needing to be updated

3: for all v ∈ V do
4: RemoveLink(v, F ′,O)
5: for all O′ ∈ O′ do
6: if VMF ′ (v) ∩O′ ,= ∅, then AddLink(v, F ′, O′)
7: end for
8: end for
9: if O′ = 〈(c, r), F 〉 is a ConfBall and F ∩O′ ,= F ′ ∩O′ then

10: Let C = CollarsF ′(v): collar balls
11: if VF ′(v) ,⊂ CollarsF ′(v) then
12: Enqueue(O′,unresolved, F ′)
13: if v is on a crease, isolated, and θ0-medial then
14: CreateCollar(v,F’)
15: end if
16: else
17: Let c = creases(C): center of collar ball containing v
18: if c ∈ creases AND CD(c′) = 1 then
19: Enqueue(O′,unresolved, F ′)
20: end if
21: end if
22: end if
23: end for

Figure 3.9: After a mesh inserts a point into F , all superfeatures F ′ need to be informed
about the new set of location objects. Loop over superfeatures, updating the BLG for each
one. New ConfBalls may add new items to the unresolved queue to make a superfeature
F ′ conform. If this occurs internal to the collar system (line 11)
and is not on the interior of a segment crease, then F ′ does not have to conform, so Prop-
agateLocation does not add work event. If this lower dimensional point is on a crease, it
may be time to augment the collar system.
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AddLink(v:vertex, F :containing feature, O: new location object)
1: Add v to CellsF (O)
2: if O is a Collar then
3: Add O to CollarsF (v)
4: else if O is a RepBall then
5: Add O to RepBallsF (v)
6: if O has bad topology or the representation angle is worse than σ then
7: Enqueue(O,collar, F )
8: end if
9: else

10: Add O to ConfBalls(v)
11: if v encroaches O then
12: if CD(v) = dim(F ) then
13: Enqueue(O,encroached, F )
14: else if PartiallyEncroached(O) then
15: Enqueue(O,encroached, F )
16: else
17: PartiallyEncroached(O) := True
18: end if
19: end if
20: end if

RemoveLink(v:vertex, F :containing feature, O: old location objects)
1: for all O ∈ O do
2: Remove O from ConfBallsF (v), RepBallsF (v), and/or Collars(b) appropriately
3: Remove v from CellsF (B)
4: end for

Figure 3.10: AddLink updates the BLG. New RepBalls may be enqueued for destruc-
tion if they have bad representation angle or bad topology. New ConfBalls may require
destruction if singly-encroached by a higher dimensional vertex or if doubly-encroached.
RemoveLink makes a simple set removal from the BLG.
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Enqueue(B : Ball, type : aworkeventtype, F : Feature) → Ball
1: Push(typeQueuedim(F ), B)

Dequeue() → Ball
1: for i = 1 to 3 do
2: if SkinnyQueuei ,= ∅ then return Pop(SkinnyQueue)
3: end for
4: for i = 2 downto 1 do
5: if EncroachedQueuei ,= ∅ then return Pop(EncroachedQueue)
6: end for
7: for i = 3 downto 1 do
8: if Q(unresolved, i) ,= ∅ then
9: B = 〈(c, r), F 〉Pop(UnresolvedQueue)

10: for all F ′ ∈ P | F ′ ⊃ F do
11: if F ∩B ,= F ′ ∩B then return B
12: end for
13: end if
14: end for
15: for i = 2 to 3 do
16: if CollarQueuei ,= ∅ then return Pop(CollarQueue)
17: end for
18: return ∅

Figure 3.11: Enqueue merely marshalls work into the appropriate dimensional queue. De-
queue accesses the work queues in priority order. Skinny, encroached, and collar angle balls
will need to be destroyed unless they have already been destroyed by some other insertion
(checked later by Destroy). However, unresolved elements may have become resolved.
Trapping this behavior in Dequeue allows Destroy to perform ignorantly of the type of
work event.
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RipStitchCollar() → A Triangulation of Ω
1: Set T := the Delaunay diagram dual to MΩ

2: Compute C := ∪v∈MΩCollars(v)
3: Compute V := {v ∈ MΩ | v ∈ Creases}
4: Compute I := {v ∈ MΩ | V (v) ⊂ C}
5: Remove from T all simplices adjacent to I.
6: Initialize P = ∅, a set of pairs
7: for all v ∈ V do
8: if there is a sphere S := {S ∈ Collars(v) | C = B(v, )} then
9: Add vertex v to T

10: end if
11: if CD(v) = 1 then
12: for all C ∈ Collars(v) | ∃ v′ ∈ V , C = B(v, ) ∩B(v′, ) (there are 2) do
13: Add 〈{v, v′}, C〉 to P
14: end for
15: end if
16: end for
17: for all 〈T, C〉 ∈ P do
18: Compute R :=

⋃
m∈CellsΩ(C) RepBalls(m)

19: for all B ∈ calR do
20: Let T ′ be the restricted Delaunay simplex dual to the Voronoi polytope containing

B’s center
21: Add Sim(T ′ ∪ T ) and its subsimplices to T
22: end for
23: end for
24: return T

Figure 3.12: RipStitchCollar performs a post process on the volume mesh MΩ to replace
the triangulation inside the collar system. First compute the collar region C, the crease
vertices V , and the vertices internal to the collar region I. Empty out the collar regions in
line 5. The first loop then pairs up crease points with collar spheres, and the inner loop pairs
crease edges with collar circles. The second loop goes over all the pairs and fills T with a
star around each crease point and a book around each crease edge.
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Chapter 4

Termination and Sizing Analysis

The goal of this chapter is to prove two properties of the algorithm SVRC using just one
theorem. The Spacing Theorem lowerbounds the nearest neighbor as a nonzero function on
the input P . Since this sizing is nonzero, packing gives an upper bound on the number of
vertices that will fit, thus proving the termination of SVRC.

Many are extraneous vertices are inserted by SVRC that are not included in the final
output. The other use of the Spacing Theorem is to prove the Scaffold-Sizing Theorem in
the next Chapter, guaranteeing these extraneous vertices do not cause significant work.

4.1 Spacing

Recall from Section 1.4, that for a PLC P without creases, an size-optimal, conforming, well-
spaced point set M has fM ! fP . For handling creases, no optimal bounds or algorithms are
known. SVRC will still bound its spacing as a function of the input. Given a PLC P , recall
that the collar region Ĉ is the area around creases with sizing based on gP . This chapter will
define Ĉ as the ε2-collar-region, where ε2 is a constant defined in Lemma 24. Recall that the
clipped complex PĈ is is the union of features with portions removed inside the collar region.
The goal is to lower bound the spacing in SVRC by the function fPĈ . To mark its importance
call this function the input spacing and denote it Ψ := fPĈ .

The algorithm is only ever approximately aware of the collar region Ĉ, so at any time
there is a approximate collar region Ci, these increase as more collars are inserted, to form a
final approximation C := ∪iCi. Since the approximation is made of balls with radius g/3, it
will be good enough to cover the ε2-collar-region Ĉ.

For this chapter, consider each feature mesh MF as a sequence of meshes M i
F taken over

the run of the algorithm. Whenever F or i is suppressed, the statements are to hold for any
choice of F and i. Sequences are nested so that M i ⊂ M i+1. Meshes may be denoted M−

and M+ to refer to the mesh immediately before and after an insertion.
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To prove termination, first I show in Section 4.1.1 a weak condition that the spacing in
SVRC is lower-bounded by a spacing function that goes to zero around the creases. Nonethe-
less, this will guarantee that SVRC terminates in the area outside the creases. Then, I show
that because refinement is stopped inside the creases (Section 4.1.3), the spacing in the
creases is lower bounded by the non-zero spacing in the exterior (Section 4.1.4). This will
guarantee termination.

A few technical results are also contained in this chapter are useful for both termination
and later for runtime. In particular, Section 4.1.2 gives the proof that every mesh has at
least some quality bound throughout the run of the algorithm.

4.1.1 Weak Spacing

Define a new spacing function ḡ as follows:

Definition 39 (Lipschitz ḡ). Given a set of features X , define the function ḡX as the largest
function such that ḡX ≤ gX and ḡ is 1-Lipschitz.

The function ḡ is called the weak spacing function. Note that the definition of ḡ is
equivalent to definition ḡ as the distance to the second nearest feature, so that ḡ < f and
ḡ < g. The weak spacing function approaches zero at all the creases, and essentially captures
the sizing of the mesh if a Delaunay refinement algorithm that didn’t properly handle creases
were to run forever. A mesh that is sized according weak spacing will be infinite, but it can
still conform to the input and have good quality. This notion of an infinite mesh simplifies the
analysis and allows the interior of the collar regions to be subjected to a seperate analysis.
Weak spacing on it’s own is powerful enough to give the desired runtime bound if the
algorithm, albeit with an infinite M , in the sense that any partial run of the algorithm will
conform to the output-sensitive runtime bound for the partial output.

Several of the cases within the proof of the Weak Spacing Theorem are purely inductive
in nature, depending only on the Lipschitz condition. These may be recalled in later proofs
relative to other Lipschitz sizing functions.

Theorem 5 (Weak Spacing Theorem). There exists K ∈ (0,∞), such that for any point p
considered for insertion into any mesh M i:

ḡ(p) ≤ KnM i(p)

Proof. If Theorem 5 holds, there is an immediate corollary that bounds the spacing across
sequences:

Corollary 2. In any mesh M , for any v ∈ M , we have that:

ḡ(v) ≤ (1 + K)nM(v)
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Proof. The vertex v inserted at some point into some mesh M i, so by Theorem 5, ḡ(v) ≤
CnM i(v). Let w be the nearest neighbor of v in M , so nM(v) = |vw|. Vertex w was inserted
at some point j, so ḡ(w) ≤ KnMj(w) If j < i, then w ∈ M i so the corollary is trivially
complete:

ḡ(v) ≤ KnMi(v) ≤ K|vw| = KnM(v)

If i < j, then by a symmetric argument ḡ(w) ≤ KnM(w), so then by Lipschitz:

ḡ(v) ≤ |vw|+ ḡ(w) ≤ |vw|+ KnM(w) ≤ |vw|+ K|vw| = (1 + K)|vw| = (1 + K)nM(v)

The proof of the Weak Spacing Theorem will proceed inductively on a sequence of inser-
tions. Note that the if the lemma holds for all i less then some i0, then the corollary also
holds for i < i0. Thus the Corollary2 may be used as an inductive hypothesis in proving
Theorem 5 Note the corollary trick was independent of ḡ except that it was Lipschitz.

Inductively assume the lemma holds not for a single constant K, but for a bundle of
constants Ki

j for every pair of containment dimensions with j < i. Constant Ki
j will govern

the sizing for a vertex of containment dimension j added into a mesh of dimension i. Take
Ki = maxj Ki

j. Then when any vertex v is inserted into a mesh M of dimension i:

ḡ(v) ≤ KinM(v)

Similarly, take Kj = maxi{Ki
j}, then a vertex v of containment dimension j inserted into

any mesh M has:
ḡ(v) ≤ KjnM(v)

A complicated set of constraints will be derived on the bundle of constants in order to satisfy
the lemma, then these will be shown to be feasible. Setting K = maxi{Ki} will finish the
lemma.

A point p is considered for one of four reasons: Skinny, Encroached, Unresolved,
and Collar. The inductions steps in the proof are independent of the definition of ḡ except
that it is Lipschitz. These cases will be recalled for brevity in later proofs.

Case 1:Skinny

Suppose p is considered for MF for reason Skinny, let i := dim(F ) = CD(p). Now p is
the farthest Voronoi corner of some skinny cell V (v). V (v) is skinny, so Rv/rv > τ . Consider
then:

ḡ(p) ≤ |pv|+ḡ(v) ≤ Rv+(1+Ki)nM(v) = Rv(2+2Ki)rv ≤ (1+
2 + 2Ki

τ
)Rv = (1+

2 + 2Ki

τ
)nM(p)

Then Ki
inM(p) must be larger than the right hand side. This not satisfiable unless τ > 2 ,

and the general constraint Ki
i > (1 +

2 + 2Ki

τ
) for i = 1, 2, 3
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Case 2:Unresolved

There are two subcases, depending on how Unresolved event is carried out, either
warping to an unresolved point, or inserting a Steiner point because the unresolved point is
not (1− θ)-medial.

The first case 2(A) is when SVRC warps to an unresolved point.
Suppose a mesh M of dimension i inserts some Unresolved point p of dimension j, so that
j ≤ i− 1. Let q be the nearest-neighbor of p in M .
There are three sub-sub-cases based on the containment dimension of q and its relation to
p.
Case 2(A)(i): Suppose CD(q) = i′ > i − 1. Then q was inserted as the center of some
gap-ball of M with radius R. Since the insertion of q did not warp to p, it follows |pq| > θR.
Continuing:

ḡ(p) ≤ ḡ(q) + |pq| ≤ Ki
i′R + |pq| < (1 +

Ki
i′

θ
)|pq| = (1 +

Ki
i′

θ
)n(p)

The right-hand side must be less than Ki
jn(p), so this leads to the set of constraints:

Ki
j > 1 +

Ki
i′

θ
for i = 1, 2, 3, j ≤ i− 1 and i′ > i− 1

Case 2(A)(ii): Suppose CD(q) ≤ i − 1 and q and p have different parent features. This
is a base case, since ḡ(q) ≤ g(q) ≤ 2|pq|, this is trivially satisfied by

Ki
j > 2 for i = 1, 2, 3 and j ≤ i− 1

Case 2(A)(iii): Then CD(q) ≤ i− 1 and q and p must have the same parent feature F ,
with j := dim(F ) = CD(q) = CD(p). By simple induction, then ḡ(q) ≤ (1 + Kj

j )|pq|, this is
satisfied by

Ki
j > 1 + Kj

j for i = 2, 3 and j ≤ i− 1

Case 2(B): The last case for Unresolved is when SVRC inserts a Voronoi corner p due
to an unresolved point q that is not (1 − θ)-medial. Suppose CD(q) = j, and suppose p
is a corner of the V (v) with q ∈ V (v). Since q is not (1 − θ)-medial, then by definition,
|vq| ≤ 2(1 − θ)Rv/θ. Point q will eventually be inserted, so by induction ḡ(q) ≤ Ki

j|vq|.
Then consider:

ḡ(p) ≤ |pq|+ ḡ(q) ≤ 2Rv + Ki
j|vq| ≤ 2(1 +

1− θ

θ
Ki

j)Rv

So this adds the constraint:

Ki
i > 2(1 +

1− θ

θ
Ki

j) for i = 1, 2, 3 and j ≤ i− 1
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Case 3:Encroached

Take B := B(p, R) as the ball that is encroached, and let v be one of the vertices on B.
Let i := CD(p). Let q be the point that encroached on B, let j = CD(q). There are two
sub-cases, depending on j.

Case 3(A): Suppose j ≤ i. Then q is not on the same feature as p, so this is a simple
base case with ḡ(p) ≤ g(p) ≤ R = n(p), satisfied by the constraint

Ki
i > 1 for i = 1, 2

Case 3(B): Then j > i and q is on a superfeature. Consider the j′-dimensional mesh M ′

containing q. When q was inserted into M ′, it was the center of a gap-ball of radius Rq not
containing v and q did not warp to v, so |qv| > θRq. Then:

ḡ(p) ≤ |pq|+ ḡ(q) ≤ Rv + Kj′

j Rq < Rv + |qv|
Kj′

j

θ
(4.1.1)

≤ Rv + (|vp|+ |pq|)
Kj′

j

θ
= (1 +

2Kj′

j

θ
)Rv = (1 +

2Kj′

j

θ
)nM(p) (4.1.2)

When p is the midpoint of a straight-line segment, a better bound of |vq| ≤
√

2Rv is achieved
by using both ends. This yields the bundle of constraints (including encroached representa-
tion balls):

K3
(3,2) > 1 +

2

θ
K3

3

K2
2 > 1 +

2

θ
K3

3

K1
1 > 1 +

√
2

θ
K3

3

K1
1 > 1 +

√
2

θ
K2

2

K2
(2,1) > 1 +

2

θ
K3

3

K2
(2,1) > 1 +

2

θ
K2

2

K2
(2,1) > 1 +

2

θ
K3

(3,2)

Note, the last three constraints are the encroachment of a RepBall protecting an arc
segment where a collar sphere intersects an input facet. This bound can be improved since
the arc segment approaches a straight line in the limit.
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Suppose p is the center of an arc-segment of a collar sphere centered at c. Then the radius
Rc of the sphere is g(c)/3, so ḡ(p) ≤ g(p) ≤ Rc +g(c) = 4Rc. Let a, b be the endpoints of the
arc-segment, and let a′ and b′ be the corresponding endpoints of the straight line segment
through p tangent to the collar. Let some ε close to zero. When the RepBall has radius
Rp ≤ εRc, then |aa′|, |bb′| " ε, so better encroachment bound gives new constraints of the
form:

K2
(2,1) > 1 +

√
2 + O(ε)

θ
K3

3

Suppose the RepBall has radius Rp ≥ εRc, then re-class this as a base-case, i.e.:

ḡ(p) ≤ 4Rc ≤
1

ε
Rp =

1

ε
n(p)

So we have:

K2
(2,1) >

1

ε

Replacing each of the earlier constraints with this pair will give a system that is feasible for
better choices of τ . Note that ε is only realized in the analysis.

Case 4:Collar

The Collar case requires the follow Lemma:

Lemma 17. SVRC generates a smooth collar system or terminates larger than ḡ.

Proof. Consider two collar balls created by SVRC that intersect. First, suppose they are both
centered on the same segment and neither is an endpoint. Simple geometry shows that if the
two collar balls intersect at sharper than a right angle, then any points on the intersection
would encroach upon the segment. If no points on the intersection are resolved, then the
Voronoi cells coverting the vertices of the segment must be larger than g/4 which is larger
than ḡ.

Consider where a collar ball B := B(v, R) at a crease vertex intersects a collar ball cen-
tered at u on some crease segment adjacent to v. First, it must be that |uB| > δR, otherwise
B would warp. But in this case, the appropriate vertex with containment dimension (1, 2)
would have been added, ensuring the smoothness.

Case 4(A): Suppose all the vertices of the bad simplex are on the collar, this is a base
case. Here, p is point on the collar surface with bad representation angle or bad topology.
Let c and RC be the center and radius of the piece of the collar description to which p
corresponds, recall RC = g(c)/3. ε-sampling theory (Lemma 16) guarantees that the since
the representation ball around p is bad, it must be big relative to RC , i.e. there exists ε such
that n(p) ≥ εRC . Then

ḡ(p) ≤ |pc|+ ḡ(c) ≤ RC + g(c) = 4/3RC ≤ 4/3εn(p)
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. So the constraint Ki > 4/3ε for i = 2, 3 suffices. Note that the only requirement on ḡ for

this case was that ḡ(c) ≤ g(c) for points on a crease.

Case 4(B): Suppose some Collar event is inserting p, and suppose the bad simplex
has at least two vertices off the collar, let them be v and w. The two vertices v and w both
have higher containment dimension then p, and they are nearby, so the insertion of p can
be charged inductively to the distance |vw|. The resulting constraints and derivation are
identical to those as if the RepBall had been encroached as in Case 3.

Case 4(C): Inserting p, suppose all but one vertex v of the bad simplex is on the collar.
This will be a base case. If v had snapped to the collar, then all the vertices would be
symbolically on the collar, and so the simplex would be good. Thus the vertex v did not
snap to the collar, so the distance from v to the collar is at least δ times the radius R of the
collar ball. From Lipschitz and since R = g/3 at the collar center, then R ≥ g(p)/4. Thus
|vp| ≥ δg(p)/4, so that:

ḡ(p) ≤ g(p) ≤ 4

δ
|vp| = 4

δ
n(p)

So

K >
4

δ

will suffice.

Feasibility for Sizing Constants

The constraints on the family of constants K in the weak spacing proof are all of the form
K > a + bK ′ for some K and K ′. So these form a linear program, with the additional set
of constraints that all the K must be strictly greater than zero. If this program is feasible,
then there exists a family of constants to satisfy all the induction hypothesis and thus prove
the theorem.

I claim the set of constraints is feasible whenever τθ2 > 4
√

2. Since θ < 1, this implies
τ > 4

√
2. Since the program is finite, this can be easily verified by computer algebra.

It is useful to expose a more generic technique. The first claim is that because all the
constants must be positive, then by scaling arguments, every constraint K > a + bK ′ can
be replaced by a constraint K > bK ′. If the latter system is feasible, then a solution to the
latter can be multiplied by some large constant to give a solution to the former.

To question the feasibility of this simpler system, create a graph with a node for every
K. For every constraint K > bK ′, add a directed edge from K to K ′ with weight b. Some
of the constraints may form self-loops, and it may be a multigraph. (The multigraph case
can be reduced by throwing out dominated constraints.) The system is then feasible if the
product of the weights along any cycle is strictly less than 1. For the family of constraints
K, the critical cycle will have weight τθ2/4

√
2, leading to the constraints on τ and θ for

feasibility.
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Shewchuk has alluded to this technique with the use of “data-flow diagrams” [She97b].
A rigorous treatment is given in Section 24.4 of [CLRS01]. The latter treatment is framed
using additive constraints and summing weights over cycles. The system here can be reduced
to additive constraints by taking the log of each constraint to get log K > log b + log K ′; it
is clear that feasibility is preserved by this reduction.

4.1.2 Mesh Quality Maintenance

A key property on which many bounds depend is that at every stage of the algorithm, the
mesh is always a quality mesh. This determines the runtime and space bounds, and is also
needed to ensure correctness of the dynamic collar process. The quality at intermediate
stages is not the final τ quality bound that the user calls for – SVRC cannot guarantee that
the quality won’t degrade by some amount – but is only smaller by a constant function of
parameters τ and θ.

The idea is to show that SVRC decays the mesh sizing gradually enough that quality is
never truly lost. To this end, I begin with a few technical lemmas bounding the reduction
in sizing as refinement occurs.

Lemma 18 (Any Single Insertion Only Marginally Decreases Quality). Suppose SVRC inserts
a single vertex into a τ -quality mesh, then there exists τ1 depending only on τ and θ such
that M ′ is a τ1-quality mesh.

Proof. The first observation is that every vertex inserted by SVRC is (1 − θ)-medial with
respect to the previous point set. Any centers of protective balls are 1-medial, and by
design, SVRC only warps to unresolved vertices that are (1− θ)-medial.

Since every insertion is (1−θ)-medial, the totality of SVRC can be viewed as a well-paced
extension (Section 2.3) of the initial bounding box. Applying Lemma 12, it follows that for
any vertex v ∈ M :

fM(v) " fM ′(v) (4.1.3)

Consider also the new vertex u. Firstly fM(u) ≤ 2Rp, where p is chosen so that u ∈
VM(p). Also nM ′(u) ≥ (1 − θ)Rp, from which it follows that nM ′(u) ≥ 1−θ

2 fM(v). Since
nM ′(u) = fM ′(u), then equation 4.1.3 also holds for the new vertex, and thus all vertices of
M ′.

Recall Section 2.2.3 on grading for the rest of the argument. For every vertex v in M ′,
clearly GM ′(v) ≤ GM(v), since refinement can only decrease the gap-size G.

Since the gap-ratio Γ is the ratio of G to f , it follows immediately that for all vertices
v ∈ M ′:

ΓM ′(v) " ΓM(v)

68



Since M was τ -quality, by Lemma 8 I then obtain that for every vertex v ∈ M ′:

Γ′M(v) " ΓM(u) " 1

Since ΓM ′ is bounded at every vertex, it then follows from Lemma 9 that M ′ is a τ1-
quality mesh where τ1 " τ . (Note here that τ1 is really much larger (worse quality) than τ ,
but only by a constant factor.

A constant-bounded worsening in quality after a single insertion is intuitive and expected,
but clearly insufficient to prove a global quality bound over the life of the algorithm. The
single insertion bound will be used for moves that sacrifice quality to work on conforming.
In between these moves are entire sequences of moves done to maintain quality, and much
stronger inductive results hold for these cleaning sequences.

Lemma 19 (Cleaning Preserves Current Feature Size). Consider a mesh M ′, and SVRC de-
queueing a series of insertions consisting only of Skinny work events to obtain some M ′′,
then for every vertex v ∈ M ′′, it follows there is some constant Φ such that:

fM ′(v) ≤ ΦnM ′′(v)

Proof. The argument is inductive and similar to the Weak Spacing Theorem 5.

First claim that at the time of insertion of any vertex v,

fM ′(v) ≤ (Φ− 1) NN
M ′′

v

(v)

This fact has the obvious corollary that for any mesh M ′′,

fM ′(v) ≤ Φ NN
M ′′

(v)

(this is identical to the structure of Corollary 2 in the Weak Spacing Theorem.)

Suppose SVRC seeks to Destroy some skinny Voronoi cell. There are two cases, either
SVRC insert a circumcenter c or warps to some input point u.

Suppose first that c is inserted, this is identical to Case 1 of the Weak Spacing Theorem.

fM ′(c) ≤ (1 +
2Φ

τ
)nM ′′(c)

So this requires Φ− 1 > (1 + 2Φ
τ ) which will be strictly dwarfed by the second case.

The second case is when SVRC warps to some input point u.
This case differs from Weak Spacing, in that the insertion is charged to the proximity of the
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small feature, not recursively to a lower dimensional mesh. Suppose V (p) is being destroyed
because it is skinny:

fM ′(u) ≤ |up|+ fM ′(p) ≤ (1 + θ)Rp + ΦnM ′′(p)

≤ (1 + θ)Rp + 2Φrp

≤ (1 + θ +
2Φ

τ
)Rp ≤ (1 + θ +

2Φ

τ(1− θ)
nM ′′(u)

Unravelling shows that setting Φ > (1 + θ)τ/(τ(1 − θ) − 2) satisfies the lemma. Note
here that this relies on the trivially satisfied τ · (1− k) > 2.

Next is Lemma 20, which roughly states that the cleaning process is approximately
monotone with respect to quality. While cleaning to improve the mesh quality from some
τ1 back to τ , SVRC will never reach an intermediate stage where the quality of the mesh is
more than marginally worse.

Lemma 20 (Intermediate Quality). Suppose SVRC begins with a τ1-quality mesh M and
dequeues a series of Skinny work events, There exists a constant τ2 depending only on τ1,
τ and θ such that every intermediate M ′′ is a τ2-quality mesh.

Proof. Consider M ′′, a τ2-quality mesh obtained in the process of cleaning M ′. First note as
before that for every point x, GM ′′(x) ≤ GM ′(x).
Note that by Lemma 19, it holds that for every vertex v,

fM ′′(v) = nM ′′(v) ≥ 1/ΦfM ′(v)

Since M ′ was τ1-quality, combine with Lemma 8 to obtain that:

ΓM ′′(v) ≤ ΦΓM ′(v) " 1

Since ΓM ′′ is bounded at every vertex, it then follows from Lemma 9 that M ′′ is a τ2-
quality mesh where τ2 " 1.

Lemma 21 is the obvious corollary following from Lemmas 18 and 20.

Lemma 21 (Always Quality). At any point during SVRC, the intermediate mesh is a τ2-
quality mesh.

Theorem 6 (Sparse Mesh). Any intermediate mesh during the lifetime of Sparse Voronoi
Refinement is sparse, i.e. there is a constant depending only on τ and θ that bounds the
degree of every vertex.

Proof. This follows directly from the Degree Bound Theorem 2.
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4.1.3 Crease Recovery

Recall that SVRC adds balls to the system dynamically, with the goal of eventually covering
the entirety of the creases. The goal of this subsection is to prove that this procedure in fact
works, an essential part of the termination of the algorithm. An argument will show that
the current mesh is not too small in the neighborhood of a crease before it is covered by
the collar system. The notion of “not too small” in this lemma will also be useful later in
proving that there are not too many extraneous vertices later removed from the collar region
during RipStitchCollar, essential to the overall runtime of the algorithm.

Recall the following definition from the algorithm:

Definition 40 (Isolated Point). Consider a point x ∈ P and any mesh M . Let F be the
parent feature of x, and v be the vertex of M such that x ∈ VM(v). The point x is isolated
with respect to M and P if every feature of P that intersects VM(v) contains x.

This definition is useful because it is easily testable during the run of SVRC. To relate
this to the proof technology, the following simple lemma exposes a relation between isolation
and the sizing g:

Lemma 22 (Isolated is Equivalent to g). Let x, P, M , and v as in Definition 40. If
Rv ≤ g(x)/2 iff x is isolated.

Proof. Follows directly from the definition of g. Clearly B(x, g(x)) does not intersect any
features except those containing x. Consider x ∈ B(v, Rv) ∈ B(v, g(x)/2), but then
B(v, g(x)/2) must be a subset of B(x, g(x)), and so x is isolated. Prove the other direc-
tion by contrapositve. Let w be a witness to g(x), i.e. g(x) = |xw|. If x is not isolated, then
WLOG w ∈ V (v), so g(x) = |xw| ≤ |xv|+ |vw| ≤ 2Rv.

Now I prove the main lemma:

Lemma 23 (Crease Recovery). Every vertex v created on a crease of P is marshalled to
the function CreateCollar. Furthermore, there exists some constant ε0 > 0 such that the
inequality nM(v) > ε0g(v) holds for the mesh M when CreateCollar is called.

Proof. Let v be given. Recall from the algorithm that v is marshalled to CreateCollar
if ever it is the case that v is θ0-medial and is isolated, or if v is inserted.
Recall further that θ0 := 2θ

2θ+1 ∈ (0, 1), where SVRC insertions warp to points within θ times
the radius when inserting a circumcenter.

Take

ε1 :=
1

4τ2

, where τ2 is the global bound on mesh quality throughout the algorithm from Lemma 21.
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Let x be the first vertex that is inserted into any mesh M such that |xv| < ε1g(v). Con-
sider the mesh M− and M+ immediately before and after the insertion of x.

If x = v, then the collar size is called immediately before v is inserted, and since v must
have been (1 − θ)-medial (Lemma 18). Then by choice of x, it must be that nM−(v) >
ε1g(v) > ε0g(v), so the case is trivial. Assume x ,= v for the remainder of the proof.

Clearly x must have higher containment dimension than v for it to be within B(v, ε1g(v))
and must be on some superfeature of v’s parent feature. Thus, when x was created as the
center of some gap-ball B(x, 2rx), it had a chance to warp to v, but did not. Thus

|xv| > 2θrx (4.1.4)

but then
θ2rx < ε1g(v) (4.1.5)

By Lemma 21, Rx < τ2rx, so then Rx < 2τ2ε1g(v). But then since v ∈ B(x, Rx) by design,
the choice of V E1 gives isolation in M+. by Lemma 22.

Since v is isolated in M+, I now claim that v is θ0-medial wrt to M+.

Since x was the center of a gap-ball, there was some vertex b of M− on the surface of the
ball. Then by (4.1.4):

|bv| ≤ |xv|+ rx ≤ (1 +
1

2θ
)|xv|

Since x and b are both in M+, we have nM+(v) = |vx| and fM+(v) ≤ |bv|, but then this
yields:

n(v) ≥ 2θ

2θ + 1
f(v) = θ0f(v)

So v is θ0-medial.

Thus CreateCollar will be invoked after the insertion of x (if not already at some
previous iteration). It remains to show the lower bound on n(v) at this iteration.

Take b as before, and take:

ε0 :=
θε1

θ + 1

Note since θ ∈ (0, 1), then 0 > ε0 > ε1. Since x was the first vertex closer than ε1g(v), then
|bv| must have been larger than this distance. Consider then, using (4.1.4) as well:

ε1g(v) < |bv| ≤ |xv|+ |xb| = |xv|+ 2rx < (1 +
1

θ
)|xv|

Bringing the constant over, then:

nM+(v) = |xv| > θε1

θ + 1
g(v) = ε0g(v)
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Over the life of the algorithm, the nearest neighbor distance n only decreases. So if
CreateCollar was called at some earlier iteration before the insertion of x, then the
lower bound on n still holds.

The previous lemma guaranteed that the vertices on creases are resolved early enough.
A technicality is to make sure that the rest of the crease (along segments in particular) is
protected as well. Recall the ε-collar-region from Section 1.4 as the region given by the union
of balls B(x, εg(x)) taken over all x on the creases. I will show this region is protected for
some constant ε2.

Lemma 24 (Crease Protection). There exists a constant ε2, such that no Unresolved work
event is ever enqueued in the ε2-collar-region for a vertex not on a crease.

Proof. Proof is by contradiction, and will rely on the lower-bound on size at crease recovery
from the Crease Recovery Lemma 23. Take ε0 as in the proof of Lemma 23 Take ε2 :=
ε0/3 < ε0/(2 + ε0) < ε0.

Suppose some vertex v has an Unresolved work event enqueued and v is in the ε2-
collar-region but not on a crease.

Suppose v near some created vertex on crease u, i.e. v ∈ B(u, ε2g(u)), but since ε2 < ε0,
then by the Crease Recovery Lemma, CreateCollar has been called on u. Then since
v ∈ B(u, g(u)/3), then v is interior to the collar system and would not have been enqueued.

So it must be the case that v is near some crease subsegment but far from its vertices.
Based on its relative distance to the segment and the definition of g, it is clear that v must
be on some superfeature of the segment. But then v would not be inserted if it encroached
on this segment. Suppose a is an endvertex of this segment, let R and c be the center radius
of the diametral protective ball. Without loss of generality, assume that v is close to c, so
that |vc| < ε2g(v). Since v does not encroach, and g is Lipschitz along the segment, then:

R < |vc| < ε2g(c) ≤ ε2g(a) + ε2R

Since the other end of the segment is not too close to a by Lemma 23, it holds that ε0g(a) <
2R, so this gives:

R < ε2g(a) + ε2R <
2ε2

ε0
R + ε2R <

(
2ε2

ε0
+ ε2

)
R

But then the choice of ε2 makes the right side constant less than one, so this is a contradiction.

4.1.4 Exterior Spacing

In this section, I will combine the weak spacing theorem along with the Crease Recovery
Lemma to prove the Strong Exterior Spacing theorem, which will guarantee termination for
SVRC.

73



Consider the ε2-collar-region as in the previous, Section 4.1.3, and denote this region I.
Consider the exterior vertices outside of the collar system in the region O = Ω− I. ḡ is
bounded away from zero in this region, and vertex spacing is bounded from below by ḡ by
the Weak Spacing Theorem 5 , so SVRC can only generate finitely many vertices in O.

Let M̂ be the (possibly infinite) set of points generated by SVRC.

Definition 41 (Exterior Vertices). Given any point set M , define the exterior vertices Ṁ
as those whose Voronoi cells VM(v) intersect the exterior Ω − I. At any iteration i, define
the exterior vertices as M i ∩O.

The claim is that the actual spacing of SVRC is given by f ˆ̇M
, that is to say, all the spacing

is governed by exterior vertices. For this section let τ2 as in the Always Quality Lemma 21.

Lemma 25 (Exterior Size). At any time, for any points in the exterior, removing the interior
vertices does not significantly change their feature size. Consider any M and let x ∈ O, then:

fM(x) ≤ τ2

2 + τ2
fṀ(x)

Proof. Let v ∈ Ṁ such that x ∈ VM(v), and let w ∈ Ṁ such that v, w are neighbors in M ,
note this implies that |v − w| ≤ 2RM

v .
Since x ∈ VM(v), then |x− v| ≤ fM(x) and rM

v ≤ fM(x).
Using triangle inequality, τ2-well-spaced, and these three facts, it follows:

fṀ(x) ≤ |xw| ≤ |xv|+ |vw| ≤ fM(x) + 2RM
v ≤ fM(x) +

2

τ2
rM
v ≤ (1 +

2

τ2
)fM(x)

Moving the constant to the other side yields the lemma.

By the previous lemma and by since subset nesting increases f , consider the following
corollary:

Corollary 3 (fṀ nested). For x ∈ O, for any M ⊂ M̂ :

fṀ(x) ≥ fM(x) ≥ fM̂(x) ≥ τ2

τ2 + 2
f ˆ̇M

(x)

Inside the collar region for y ∈ I, the final inequality does not hold, merely:

fṀ(y) ≥ fM(y) ≥ fM̂(y)

I will lower bound the nearest neighbor on input by the function f ˆ̇M
.

Lemma 26 (Exterior Spacing). Suppose SVRC adds a new vertex u to some mesh M , then:

f ˆ̇M
(u) " nM(u)
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Proof. The proof of this theorem is identical to the proof of the Weak-Spacing Theorem 5,
with only the base cases changed. The lower bound side of all the inequalities will be f ˆ̇M
instead of ḡ.

All of the inductive cases in the proof of Theorem 5 relied only on the Lipschitz condition
for ḡ, which also holds for f ˆ̇M

, and so they are identical and will not be repeated here.

There were four base cases in the Weak-Spacing Proof. Case 2(A)(ii), when the nearest
neighbor after an Unresolved event was on a different feature. Case 3A, when a protective
ball was encroached by an insertion on a superfeature. Case 4A, when a simplex on the collar
surface was refined for bad representation angle or topology. And lastly, Case 4B, when a
simplex with all but one vertices on the collar surface was refined for a Collar event.

In the Weak-Spacing proof, all four of these cases actually use g to establish a lower
bound, and then use ḡ ≤ g to finish.

I then claim that if it is established that f ˆ̇M
" g in all these insertion settings, then the

Exterior Spacing Lemma is finished. Alternatively it may established directly that f " n in
some cases.

Suppose for the remainder of the proof that some vertex u is being inserted into some
mesh M .

Case 2(A)(ii). Since this is an Unresolved event, then by the Crease Protection Lemma

24, either u is on a crease or u ∈ ˆ̇M . If u ∈ ˆ̇M , then the lemma is trivially satisfied, since
f ˆ̇M

(u) will be the distance to u’s final nearest neighbor which will be less than nM(u).
Suppose u is on a crease. Then its distance to the exterior is lower bounded, i.e. |uO| ≥
ε2g(u). But f ˆ̇M

(u) is at least |uO|, so the case is finished.

Case 3A, wherein one feature encroaches another is similar to the previous. If u ∈ ˆ̇M ⊂ O
then we are done. Suppose then that u ∈ I. Since u is the center of the circumball of the

simplex, if any simplex vertex v is in O (and hence ˆ̇M), then f ˆ̇M
(u) ≥ |uv| = n(u). If all the

vertices of the simplex are in I, then u must be on a crease, but then f ˆ̇M
(u) ≥ |uO| ≥ ε2g(u)

as before.

Case 4A and Case 4B both consider insertions on the collar surface. In this case these
vertices are in O and hence in ˆ̇M , so once again nM ≥ f ˆ̇M

.

Theorem 7 (Termination). SVRC terminates with a mesh M .

Proof. First, I claim the set of vertices ˆ̇M is finite. By the Weak Spacing Theorem 5, the
distance between these vertices is lower-bounded by ḡ. All of these vertices are in the exterior

O, and ḡ is bounded away from zero everywhere in O, so by compactness, ˆ̇M must be finite.

It then follows that f ˆ̇M
is bounded away from zero everywhere. By the Exterior Spacing

Lemma 26, the spacing everywhere is lower-bounded by f ˆ̇M
, and since this bounded away
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from zero, it then follows by compactness that SVRC terminates.

4.1.5 Spacing Between Meshes

Consider now a spacing theorem that relates the relative spacing in different feature meshes
at any fixed time iteration. The lemma shows that the spacing will always be similar among
all the meshes.

Lemma 27. Suppose p is considered for insertion into MF at some iteration. Let F ′ ⊃ F
with dim(F ′) = dim(F ) + 1. Then for some constant H:

fMF (p) > HfMF ′ (p)

Proof. Write M = M i
F and M ′ = M i

F ′ . Suppose in the first case that p was the center of a
gap-ball B(p, r) that was encroached by q. This is a base case. It follows from q not warping
that:

nM ′(q) ≤ 2

θ
r =

2

θ
fM(p)

Point q was considered for insertion in M ′, so q was (1−θ)-medial, i.e. nM ′(q) ≥ (1−θ)fM ′(q).
Since p was the center of gap-ball b, then fM(p) = r. Using Lipschitz, combine to obtain:

fM ′(p) ≤ fM ′(q) + |pq| ≤ 1

1− θ
nM ′(q) + r ≤ (

2

θ(1− θ)
+ 1)r = (

2

θ(1− θ)
+ 1)fMF (p)

which will be satisfied if H large enough.

Suppose in the second case that p is a Voronoi corner of a skinny Voronoi cell belonging
to q.
Apply the hypothesis inductively on q or its nearest neighbor of M i, and obtain that (1 +
H)fM(q) ≥ fM ′(q) as in Corollary 2. Then:

fM(p) = |pq| = Rq ≥ τrq =
τ

2
fM(q) ≥ τ

2(1 + H)
fM ′(q)

Then:

HfM(p) ≥ τ

2
fM ′(q)− fM(p)

≥ τ

2
(fM ′(p)− |pq|)− fM(p)

=
τ

2
fM ′(p)− (1 +

τ

2
)fM(p)

Thus:
2

τ
(H + 1 +

τ

2
)fM(p) ≥ fM ′(p)
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Or simply:

(
2H

τ
+

2

τ
+ 1)fM(p) ≥ fM ′(p)

So the lemma requires an H such that H ≥ 2H
τ + 2

τ + 1, but this simply requires that

H ≥ (τ + 2)/(τ − 2) Clearly, large enough H can be taken since τ > 2.

Combining Lemma 27 over all dimensions, then there exist a constant (H2) so that
fMF (p) ! fMΩ(p)) for any feature mesh MF and any point p ∈ MΩ. In particular, lower
bounds the size of any protective balls which are queued.

Corollary 4. For any created protective ball B := Ball(c, r) protecting a lower dimensional
mesh MF ,

r ! fMΩ(c)

Proof. Since B is a created ball, it has two vertices of MF on it, so r = fMF (c). Then
fMF ! fMΩ from the previous.

4.2 Scaffolding

Frequently in meshing, and in SVRC, a region is meshed that is larger than the actually
feature F being meshed. This is true for the bounding-boxes around features in SVRC and in
many other algorithms. The extra vertices only exist to fill out space with a quality mesh,
all of the mesh resolution is really due to F . In this setting, call the uninteresting space
filling vertices scaffolding, they exist to support F , and will eventually be torn down.

The remarkable result of this section is that in most settings, the number of the scaffold
vertices is only linear in the number of interesting vertices. SVRC will apply this in two ways.
First, to guarantee that no extra work went into filling out the bounding-boxes ΩF around
every subfeature, since this is all discarded at the end. SVRC also discards any extraneous
vertices that were added interior to the collar system. These are really just scaffolding for
the exterior vertices, and are similarly bounded in size.

The scaffolding setting is general enough to be applied retroactively to almost every
meshing algorithm that uses a bounding-box [BEG94, ABE98, She98, CDE+00, ELM+00a,
MV00, MPW02b, Üng04, HMP06, CDR07]. Scaffolding also has a nice implication for surface
meshing. Recall that SVRC is generating tetrahedralizations that fill space, but suppose a user
only requires good triangulations of the features of the PLC P . A user can run SVRC and
discard all the simplices not on P . This will have a smaller output-size, but scaffolding
guarantees that SVRC still ran with output-sensitive efficiency. The results in this section are
general dimensional with constants depending on dimension.
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Figure 4.1: Incremental mesh refinement algorithms first generate a mesh over a bounding
box (left), then remove the scaffold vertices and elements (center). Some applications are
interested in only the surface mesh (right). The one-dimensional Lake Superior surface mesh
shown has 530 surface vertices. The volume mesh shown has 1072 total volume vertices; 258
interior and 284 exterior. We offer the first theoretical analysis of the costs of this scaffolding.

The scaffolding result is reminiscent of one by Moore [Moo95]. A balanced quadtree is
one in which neighboring quadtree cells have size within a constant factor of each other.
Given an arbitrary quadtree with l leaves, Moore proved that the quadtree can be balanced
by splitting only O(l) cells. The operation of balancing a quadtree is analagous to filling
space with a quality mesh.

For the rest of this section, consider a quality mesh M called a scaffold mesh. It has
a subset N that is called a driver set. These will be defined formally, but the intuition is
that all the spacing in M is only driven by spacing between the vertices of N .

4.2.1 Scaffolding Definitions

The main result is the Theorem 8, the Scaffold-Sizing theorem showing that given a scaffold
mesh M with underlying driver set N , |M | is bounded above by a constant times the size of
|N |. Define now a formal setting:

Definition 42 (Scaffold Mesh, Driver Set). Suppose M ⊂ Ω is a finite vertex-set. Consider
a driver set N ⊂ M . For τ ≥ 1 and α ∈ (0, 1), say that M is an (α, τ)-Scaffold Mesh
for N in Ω if two conditions hold. First, M must be τ -well-spaced in Ω. Second, N must
drive all the mesh sizing thusly:

∀ m ∈ M, fM(m) ≥ αfN(m) (4.2.1)

Scaffolding requires that the domain Ω being filled is somewhat well-proportioned to the
underlying driver set, otherwise filling out Ω could take arbitrarily many vertices. Enforce
this by defining the notion of a ρ-seed of an embedded graph.

Definition 43 (ρ-seed). Suppose G is a graph embedded in Ω with vertices N . A ρ-seed N0
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Figure 4.2: The definitions of Section 4.2.1 illustrated abstractly. Left, a surface S is
composed of both black shapes, with the domain Ω shaded. Center, vertices form a scaffold
mesh M of Ω. The subset of surface vertices NS are shown in black, with the volume vertices
in white. Observe the density of the volume vertices is driven only by the spacing of surfaces
vertices. Right, a possible seed N0, containing at least two points from each component.
Notice the four points are ρ-well-spaced and have quality Voronoi cells (shown in dashed
lines).

is a ρ-well-spaced subset of N containing at least two vertices for each connected component
of G.

Definition 44 (Delaunay Sub-Diagram). Given point sets N ⊂ M , define the Delaunay
sub-diagram of M restricted to N as Del(M |N) := Del(M) ∩Del(N).

Note that Del(M |N) ,= Del(N) in general.

4.2.2 Scaffold-Sizing Theorem

Theorem 8 (Scaffold-Sizing Theorem). Suppose M is an (α, τ)-Scaffold Mesh for N in Ω,
and suppose Del(M |N) has a ρ-seed N0, then:

|M | " |N |

with constant only depending on α, τ , ρ, and dimension d.

Proof. N admits a well-paced ordering by Lemma 28 (to be proved), thus by Well-Pacing
Theorem 3: ∫

Ω

1

fd
N

" |N | (4.2.2)

Since M is τ -well-spaced, by Lemma 11:

|M | "
∫

Ω

1

fd
M

(4.2.3)
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Figure 4.3: Examples of Non-Scaffold Meshes. Left, this volume mesh is not a scaffold mesh,
because the sizing is not driven by the surface. The sink in the lower-center could contain
arbitrarily many volume vertices. Note how this violates equation (4.2.1). Center, when
the surface S has disproportionately small components, it will be too costly to fill Ω in a
way that resolves these small surface features. Note that no seed can exist in this example.
An attempted seed is shown, but as the surface components grow relatively small, there is
no way to fit two points on each component in a way that is well-spaced.

But M is an scaffold mesh for N , so fM(m) ≥ αfN(m) for m ∈ M . Consider any x ∈ Ω,
and let m be a nearest-neighbor of x, then by Lipschitz and Lemma 3:

fN(x) ≤ |xm|+ fN(m) ≤ |xm|+ αfM(m) ≤ (1 + α)|xm|+ αfM(x) ≤ (1 + 2α)fM(x)

So fN ≤ (1 + 2α)fM hence: ∫

Ω

1

fd
M

"
∫

Ω

1

fd
N

(4.2.4)

Combining (4.2.2), (4.2.3), and (4.2.4) gives |M | " |N |.

Most of the work is in the remaining lemma:

Lemma 28 (N admits a well-paced ordering). Suppose M is a τ -well-spaced set in Ω, with a
subset N such that Del(M |N) has a ρ-seed N0. Then, N admits a (ρ, θ)-well-paced ordering
with N0 as the base set and θ = 1

2+3τ .

Proof. Construct an ordering by beginning with N0, then selecting θ-medial vertices greedily,
and prove by contradiction that there is always a θ-medial vertex that can be added to the
current set.
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vsv
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Figure 4.4: Figure for the proof of Lemma 28. If there is still a non-medial uninserted point
p, then the original Voronoi cells from M were small near q but large near x, contradicting
the assumption that M is well-spaced.

Suppose for contradiction that some vertex-set Ni is reached with N0 ⊂ Ni ! N , and
there no more unadded points are θ-medial with respect to Ni.
Let p ∈ N −Ni and take v ∈ Ni such that p ∈ VNi(v).
p is not θ-medial, or it would be added, so it must be relatively close to v in the following
sense. Using Lipschitz and Lemma 3

|pv| < θfNi(p) ≤ θ(|pv|+ fNi(v)) = θ|pv|+ θrNi
v

Unravel this as:

|pv| < θ

1− θ
rNi
v (4.2.5)

Let e be an edge of Del(M |N) with one endpoint q in VNi(v) and the other end outside
VNi(v), so that e exits VNi(v) at some point x. Such an edge must exist, otherwise an entire
connected component of Del(M |N) would be contained with in VNi(v), which would be a
contradiction since N0 is a seed of Del(M |N).

It may be the case that q is equal to p, v, or neither of the two. Consider two cases with
only slightly differing arguments, depending on whether q = v.

Case 1: Suppose q = v. Because x is on both the boundary of VNi(v) and a Delaunay
edge in M out of v, then rNi

v ≤ |xv| ≤ 2RM
v . Using this along with Eq.4.2.5, it follows:

rM
v ≤ 1

2
nM(v) ≤ 1

2
|pv| (4.2.6)

<
θ

1− θ
rNi
v ≤ θ

1− θ
|xv| (4.2.7)

≤ 2θ

1− θ
RM

v ≤ 1

τ
RM

v (4.2.8)
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But this contradicts the assumption that M was τ -well-spaced.

Case 2: Suppose q ,= v. The second case is virtually the same except for one more
degree of indirection. Then q ,∈ Ni since q ∈ VNi(v), so it follows (as before):

|qv| < 2θ

1− θ
rNi
v (4.2.9)

The triangle inequality yields rNi
v ≤ |xv| ≤ |xq| + |qv|. Substituting this into Eq. 4.2.9,

it follows:

|qv| < 2θ

1− 3θ
|xq| (4.2.10)

As before, since x on a Delaunay edge of M out of q, then |xq| ≤ 2RM(q). Using this
and Eq. 4.2.10, so:

rM
q ≤ 1

2
nM(q) ≤ 1

2
|qv| (4.2.11)

<
θ

1− 3θ
|xq| ≤ 2θ

1− 3θ
RM

q (4.2.12)

=
1

τ
RM

q (4.2.13)

But again this contradicts the assumption that M was τ -well-spaced. Thus, there is always
a θ-medial point to add, so N admits a well-paced ordering.
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Chapter 5

Runtime Analysis of SVRC

For an input PLC P with N features, spread ∆, and an output mesh M , the overall runtime
of SVRC will be given by O(N log ∆ + |M |). There are two essential types of operations in
SVRC, those that are linear with respect to the output size, and those that carry a log ∆
term.

All of the log term operations will be those related to point location, and are charged
according to the same amortized argument. Every point location operation will be packed
around a vertex on some feature, and these events will be charged to the feature, so that there
will only be log ∆ operations per feature. If SVRC were just handling point-set input, this
would be sufficient, but for PLCs there is more subtlety. Some operations will be clustered
around a vertex that was created on a feature. If the total number of vertices created
on features is denoted M1, so that N < M1 < |M |, then the simple amortized argument
would only give a runtime bound of O(M1 log ∆) for point-location type operations. This is
circumvented by showing that for vertices in M1−M , the number of operations packed around
such vertices is bounded by a constant, instead of just O(log ∆). The packing arguments
used in this chapter will all build on Section 2.1.2.

5.1 Linear Work Operations

This section will be concerned with those operations of SVRC which will be linear in the size
of the final output mesh M . Recall that SVRC actually generates many more vertices than
will be output. Each feature mesh MF is wholly discarded, and vertices are also discarded
from the interior of the collar system by RipStitchCollar.

Proceeding in two stages, first let M0 be the total number of vertices generated over the
life of the algorithm. First, I will show that the non-point-location work of SVRC is linear
in M0, this will primarily rely on the bounded degree in each mesh (Theorem 2.) Second, I
will show that M0 " |M |. The non-point-location work is that of updating the mesh data
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structure, maintaining flags on uninserted vertices, maintenance of the work queues, and
some of the collar sizing work.

5.1.1 Refinement Work

The work for updating the mesh data structure during refinement is located in the method
ForceInsert (Figure 3.3).

Lemma 29. The function ForceInsert has runtime bounded by a constant, excluding the
work in subroutines.

Proof. Suppose ForceInsert is inserting p into M− to form M+. Recall both M− and M+

have bounded degree via the Always Quality Lemma 21 and Degree Bound Theorem 2.

Any Voronoi cell from M− that will change can only do so because it is adjacent to the p
in M+, but there are only constantly many. The new vertex p and then be inserted via the
Bowyer-Watson Delaunay insertion strategy [Bow81], which incrementally digs out a cavity
and replaces it with a star around the new vertex. Dual operations can be simultaneously
made to a Voronoi data structure, and the whole process runs in time proportional to the
new degree of p, which is constant.

The check to see if p ∈ Creases can be done with a flag on every uninserted vertex.
This can be easily done by checking the parent feature when p is originally created as a
circumcenter. The check to see if each modified cell is τ -skinny can be done in runtime
proportional to each of their degrees, all of which is constant.

5.1.2 Work Queues

SVRC needs to perform work events in an approximately largest first fashion, i.e. When a
work event seeks to destroy some gap-ball with radius r, it must be that case that there is
some constant so that r ! r′ for every other enqueued work event. To this end, the work
queues in SVRC are to be implemented as a bucketed priority queue, where work events are
bucketed according to 4log2 r5. The queues will be implemented as simple doubly-linked lists
of buckets with a head pointer. The operations on each queue will be Enqueue, Dequeue,
and DecreaseSize; and each of these operations will run in constant time. Naively, the
simple list implementation would require too much time, but SVRC will only perform queue
operations with a restricted set of parameters that will guarantee the desired runtime. (These
results bucketed priority queues for meshing were developed from unpublished research done
with Benôıt Hudson).

Lemma 30 (Queue Runtime). Suppose a queue has as its head a work event of size R0.
Then the queue operations require the following amounts of work:

• Dequeue requires constant time
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• Enqueue(B(c, R1)) requires constant time if R1 > R0, otherwise time in O(log R0/R1)

• DecreaseSize(B(c, R1)) for an event with previous size R3 requires time in O(log R3/R1)

Proof. These all follow directly from the naive queue implementation and simply walking
down the linked list of buckets to perform insertions and size changes.

The bounds on changes in size will follow directly from Section 4.1.2.

Lemma 31 (Bounded Size Changes). Every Enqueue and DecreaseSize operation runs
in constant time.

Proof. Consider a queue with head size R0, and consider inserting a vertex v to go from
mesh M− to M+. Then it must be that fM−(v) ! R0. From the proof of Lemma 18 (Eq.
(4.1.3)) and from Lemma 19, it must be that fM+ ! fM− . So if any cell u is changes
size, then Ru could have gone down by only a constant multiplicative factor, so the time
for DecreaseSize will be constant. If any cell u is newly enqueued, then u must be v or
adjacent to v. In either case, the Always Quality Lemma 21 gives Ru ! Rv ! R0, so the
new work event must be near the top of the queue and will only require constant work.

5.1.3 Total Vertices Created

Lastly, it remains to bound the total number of vertices created by a constant times the
output size |M |. First, I will bound the number of extraneous vertices in the feature meshes
and their bounding boxes. Then I will bound the vertices inside the collar system that are
discarded by SVRC.

Lemma 32 (Feature Mesh Vertices). The total number of vertices in all feature meshes is
bounded by a constant times |M |.

Proof. Let MF be a feature mesh. When SVRC terminates, there will be no more Unre-
solved work events, so any vertex v ∈ MF ∩ F will also appear in M .

There are other vertices in MF , namely those in the bounding box, but these can be
accounted by a scaffolding argument. Recall the definitions of Section 4.2. Consider the
subset I = MF ∩ F ⊂ MF consisting of the internal vertices. Clearly I the Delaunay
sub-diagram Del(MF | I) is connected and has a ρ-seed (Simply take two points that are
separated by distance proportional to the diameter of F ). I claim that MF is a scaffold mesh
with driver set I.

Recall the Weak Spacing Theorem, i.e that fMF ! ḡ. Observe that for x ,∈ F , by
definition ḡ will be at least the distance to the feature, so that ḡ(x) ≥ |xF |. But all the
vertices of I are in F , so that fM(x) ≥ |xF |. Combining, this yields, for every x ,∈ F :

fMF (x) ! ḡ(x) ≥ |xF | ≥ fI(x)
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Consider then any point y ∈ F . Because MF is τ -well-spaced, the removal of the exterior
vertices (those not in I) will not significantly increase f at any points in the interior, i.e.
fMF (y) ! fI(y). (This is straightforward and equivalent in nature to Lemma 25.)

Since it then holds that fMF ! fI everywhere, then I is a driver set for the scaffold
mesh MF , thus by Scaffold-Sizing Theorem 8, |MF | " |I|. But since I ⊂ M , the lemma is
proved.

The other vertices to consider are those that are discarded from inside the collar system
during RipStitchCollar. The argument is similar to the previous lemma, only now the
interior of the collar regions is charged to all the exterior vertices.

Lemma 33. Let Mc be the all the vertices including those in the collar region before some
are discarded to obtain output mesh M , then |Mc| " |M |.

Proof. This proof is straightforward from the sizing arguments that have already been es-
tablished.

Let O be those vertices of M which are outside the collar region, these will all be main-
tained, so that O ⊂ M . The Exterior Spacing Lemma 26 establishes that fMc ! fO.

This the outside vertices O form a driver set for the scaffold mesh Mc. The Delaunay
sub-diagram of Del(Mc | O) will be connected and so the bounding box forms a trivial ρ-seed.
Thus the Scaffold-Sizing Theorem applies, so that Mc " O. But O ⊂ M , so the lemma is
finished.

5.2 Collar Sizing Runtime

The calls to method FastCollarSize generate work to perform an exploration of the local
neighborhood around some vertex v in order to calculate g(v).

The efficiency of this procedure is what causes the need for approximately largest first
work queues. When the queues are processed largest first, the geometric sizing of the mesh
will decrease in somewhat of a breadth-first fashion. If there are two disjoint regions that
both require refining, then the largest-first order will roughly alternately refine them, rather
than refining one first and then the other. This will be captured in the proofs by observing
that in this case, the outstanding Unresolved work events will always be proportional to
each other, and all the other cells in the mesh will be larger than this. The following lemma
encodes this notion:

Lemma 34 (Same Size Lemma). Consider the mesh M at some point during a run of SVRC.
Let R be the outradius of the largest Unresolved work event. Then for every vertex
v ∈ M , Rv ! R.
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Proof. First, I claim that every Unresolved work event so far has had radius larger than
R. Suppose v is the unresolved feature causing the current largest work event. Any previous
cell containing v must have had a larger radius, and so whatever Unresolved work events
have been done must have been even larger.

Since there is an outstanding Unresolved event, then no Collar moves have been
performed, so then Unresolved events represent the only base case for the Weak Spacing
proof. Letting R′ be the radius of the smallest unresolved event performed, a simple revisiting
of the Weak Spacing Proof then gives nM ! R′. Alwasy

But since R′ > R, then nM ! R. The proof is then finished since it is always the case
that Rv ! nM(v).

Returning to the collar exploration, the procedure explores a local patch of the mesh
looking for a witness to the function g. All of the work looking at witnesses will be accounted
for in the next section. It is necessary to account for all the cells explored, in case there are
many cells but few witnesses.

Lemma 35 (Fast Collar Exploration). Suppose FastCollarSize is called at some vertex
v. Then the exploration to find g(v) explores at most constantly many Voronoi cells of M .

Proof. Recall that v may or may not have just been inserted. Let M be the current mesh,
unless if v was just inserted, then let M be the mesh just prior to inserting v.

Let q ∈ M such that v ∈ V (q). Since q ,= v, then V (q) must be enqueued as an
Unresolved move. Let R be the outradious of the largest Unresolved move, then R ≥
Rq. But by the Same Size Lemma, every cell V (u) in M has Ru ! R ≥ Rq.

By the Crease Recovery Lemma, there is an empty ball around v of radius ε0g(v), but
this then implies that |vq| ≥ ε0g(v), so then Rq ≥ V E0g(v).

But this implies that every cell in the mesh is large with respect to g(v), and since the
cells are all τ2-well-spaced, then only constantly many cells will intersect the ball B(v, g(v)).
The breadth-first search will only try cells intersecting this ball before it finds a witness to
g(v), so the lemma is proved.

5.3 Amortized Work Operations

The operations in SVRC related to point-location will be accounted in this section. Recall that
every call to Destroy results in a mesh insertion near the center of some gap-ball. Before
this vertex is inserted, SVRC makes a query to the Bipartite Location Graph 3.2.3 to determine
if there are any nearby location objects (protective balls and collars), either for warping, or
for yielding to first perform a lower dimensional insertion. After an insertion eventually
occurs, the BLG must be updated to reflect the newly changed mesh. Additionally, the
flags for isolation and θ-medial must be updated for any Unresolved events. The BLG is
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also queried when FastCollarSize is called to determine the sizing g(v) for a new collar
centered at v. Call v a target when either v is being inserted or v is the center of a collar
sizing query.

All of the work will occur in a relatively local neighborhood of the target, and so I will
account for all this work as a set of location work events (LW-Events), each of which is
a pair 〈v, O〉, where v is a target, and O is a location object of the BLG. There may be
more than one LW-Event for a given pair, but I claim that the number of repeated events is
constant per pair.

Lemma 36 (Unique LW-Events). The total number LW-Events is at most a constant times
the number of unique pairs 〈v, O〉 for which there exists an LW-Event.

Proof. The lemma follows by simple inspection of the algorithm. LW-Events occur in
ForceInsert, UpdateLocation, PropagateLocation, CreateCollar, and FastCollarSize.
Each of these methods is only ever called once with a given target. Furthermore, any pair
〈v, O〉 will cause at most constantly many LW-Events in each method call. Thus, the total
LW-Events for any given pair is constant, so it suffices to count the unique pairs.

Unfortunately, the number of LW-Events associated with a single target can be very
large. Consider the first few mesh insertions, which may scan the entire input to update the
BLG. The key argument is an amortization to count LW-Events per object, instead of per
target. Let W be the set of all unique LW-Events. Given W and a single location object O,
define the set of all LW-Events associated with O as WO; simply those pairs which include
O.

Some location objects may cause many LW-Events. Consider an Unresolved work
event for some input vertex that is not resolved until the mesh reaches very fine resolution.
This vertex will be checked for relocation many times as the mesh insertions decrease the size
of whatever current Voronoi cell contains the vertex. In this case, I will show that the size
of |WO| " log ∆ if O is part of the input. On the other hand, consider a RepBall around
some subsegment that is created at some time during the algorithm. Either this ball is part
of the output, or soon after, this ball will be encroached. If it is encroached, then its center
is inserted, it is destroyed, and two new balls are created. Either way, the lifetime of this
object will be short enough that I will bound |WO| " 1 for any created objects. Putting
these together will give the runtime bound desired:

|W | =
∑

O

|WO| =
∑

O∈Input

|WO|+
∑

O∈Created

|WO|

"
∑

O∈Input

log ∆ +
∑

O∈Created

1

≤ N log ∆ + |M |
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5.3.1 Counting Location Work

For this section, recall the lemmas on Structural Properties of Quality Voronoi Diagrams
from Section 2.2. Recall from Lemma 21 that every mesh during SVRC is τ2-well-spaced for
some τ2. This section will separate LW-Events into two cases based on their target.

Consider first the LW-Events where the target is a vertex v being inserted. Vertex v was
inserted because of some gap-ball B := B(c, R). The location objects that v will pair with
will be any object intersecting B, as well as any object intersecting a Voronoi cell that is
modified by inserting v.

The first lemma states that the such LW-Event pairs are not relatively far apart:

Lemma 37. Let v, B, c and R, as in the preceding paragraph. Let O be an object such that
〈v, O〉 is a LW-Event, then:

|vO| " R

Proof. Let M− and M+ be the mesh immediately before and after the insertion of v Since
c is a Voronoi corner of M−, let q be a vertex whose corner it is, so that R = Rq(M−).

Suppose first that O intersects some cell V (u) that happened to intersect the gap-ball B.
Let U be the set of all such u. By the Bounded-Ply Lemma 6, since all these cells intersect
a gap-ball, then |U | " 1. But then by the Neighborhood Corollary 1, Ru " Rq = R and
|uq| " R for every u. But then using triangle inequality, and since O intersected V (u):

|vO| ≤ |vc|+ |cq|+ |qu|+ |uO| ≤ R + R + |qu|+ Ru " R

Now suppose instead that O intersected some cell VM−(u) which is then modified by
inserting v. It must then that u and v are adjacent in M+. Also, in the new mesh M+,
either O intersects VM+(v) or VM+(u). If it is the former, then using rv(M+) ≤ |vq|/2 ≤ R:

|vO| ≤ Rv ≤ τ2rv ≤ τ2R " R

If it is the latter, then using the Neighbor Lemma 10 in M+:

|vO| ≤ |vu|+ |uO| ≤ 2Rv + Ru ≤ 2Rv + τ2Rv = (2 + τ2)Rv ≤ τ2(2 + τ2)R " R

Since they are close together, then packing arguments developed in Section 2.1.2 will
apply. Recalling Definition 19 for a Proximal Event Sequence, where each event (in this case
a target) has an empty ball around it lower bounded by the distance to the center (in this
case the location object):

Lemma 38 (Insertion LW-Events form a sequence). Consider any location object O and
consider the set WO of all the LW-Events 〈v, O〉 for which the target v is a vertex being
inserted. Then WO forms a Proximal Event Sequence around the O.
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Proof. Let some 〈v, O〉 be given. Let M− be the mesh immediately before inserting v, and
let B := B(c, R) be the gap-ball being destroyed by v. Then v must have been near c,
i.e. |vc| ≤ θR. But since B was a gap-ball, this means that nM−(v) ≥ (1 − θ)R. Let
Bv := B(v, (1− θ)R) be the associated empty ball centered at v.

This ball is empty of any previously inserted vertices, so the sequence of pairs 〈Bv, v〉
form an event sequence.

But then by the preceding Lemma 37, it follows:

|vO| " R " (1− θ)R

So this must be a proximal event sequence around O.

A similar pair of lemmas will establish the same result for LW-Events whose target is
performing a collar sizing query.

Lemma 39. Suppose 〈v, O〉 is an LW-Event where v is the argument to FastCollarSize,
then |vO| " g(v)

Proof. Recall from the code (Figure 3.3) that SVRC performs a breadth-first search around
v until it finds a witness for g(v).

Let q be the Voronoi cell containing v, i.e. v ∈ V (q), noting that it may be that v = q
if v was just inserted. This code is only called when v is isolated, therefore Rq ≤ g(v)/2 by
Lemma 22.

Suppose some cell V (u) is explored. If u = q, then simply |vO| ≤ |vq|+|qO| ≤ 2Rq ≤ g(v).
Suppose u ,= q. Then it must be the case that V (u) ∩ B(v, g(v)) ,= ∅ otherwise this would
contradict breadth-first; SVRC would first have explored all the cells intersecting B(v, g(v))
and would have found a witness and stopped. Let x ∈ V (u)∩B(v, g(v)), then since u is the
nearest-neighbor of x, V (u) cannot be too large, i.e.:

Ru ≤ |ux| ≤ |xq| ≤ |xv|+ |vq| ≤ g(v) + Rq ≤ 1.5g(v)

Continuing then:
|vO| ≤ |vx|+ |xu|+ |uO| ≤ g(v) + 2Ru " g(v)

Continuing as in the other target case:

Lemma 40 (Collar Sizing LW-Events form a sequence). Consider any location object O and
consider the set WO of all the LW-Events 〈v, O〉 for which the target v is a vertex argument
to FastCollarSize. Then WO forms a Proximal Event Sequence around the O.
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Proof. Let some 〈v, O〉 be given. By the Crease Recovery Lemma 23, there is an empty ball
around v with radius at least ε0g(v) for some fixed ε0 when FastCollarSize is called.

These balls are disjoint from any previously inserted vertices, so the pairs 〈B(v, ε0g(v)), v〈
form an event sequence. But then by the preceding Lemma 39, it immediately follows that
they form a proximal event sequence around O.

5.4 Counting the Proximal Event Sequences

The previous section established that the LW-Events form two proximal event sequences
around the location objects, one for insertion targets and one for collar targets. From here
on, it suffices to consider one proximal event sequence around each location object, with
the understanding that the total number of LW-Events is then underestimated by at most
a factor of two.

Lemma 41 (Bound on LW-Events). Consider a location object O, and let MO be the LW-
Events associated with O. If O is a created object, then |MO| " 1. If O is an input object,
then |MO| " log ∆.

Proof. Let v be the target of the LW-Event which minimizes |vO|, with the exception that
if O is a protective ball and v encroaches it, this should not be included. This excludes at
most two LW-Events per object, since the ball would always be destroyed after it is doubly-
encroached. If the location object is a ball B(c, R), then this guarantees that |vc| > R.

Suppose O is a created object, then by Corollary 4, it is always the case that O is not
too small, i.e. R ! fM(c) for every M containing O, which then implies that |vc| " R. But
then all the LW-Events are at distance proportional to R, so the second statement of the
Proximal Packing Lemma 4, so |WO| " 1.

Suppose O is an input object. Then the farthest LW-Event cannot be larger than the
diameter of the PLC. The nearest event will be no closer than the nearest neighbor in the
final output. By the Exterior Spacing Lemma 26 this is bigger than f ˆ̇M

which is bigger
than the smallest feature of the clipped PLC. Thus the ratio for farthest to nearest LW-
Events is at most a constant times ∆, so by the Proximal Packing Lemma, there are at most
|WO| " log ∆.

Corollary 5 (Total Location Work). The total number of Location Work Events W is
bounded by:

|W | " N + |M | log ∆
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Chapter 6

Conclusions and Extensions

Overall, the SVRC algorithm represents the first algorithm for meshing arbitrary PLCs in
three dimensions with an efficient runtime guarantee. There are a few limitations of SVRC as
it has been presented herein. The first is the quality guarantee on the output mesh. SVRC can
terminate for any Voronoi aspect ratio τ > 4

√
2 for elements away from the creases. This

gives a bound of 2
√

2 on the radius-edge ratio of any output simplex. The state of the art
for guaranteed quality in three dimensions is a bound of 2 [CDRR04]. It is still a challenge
to reach this quality bound with efficient runtime.

Another limitation of SVRC may be the expense of the predicates needed for testing and
maintaing the restricted Delaunay of the collar surface, testing for topological ball property,
and good representation angle. Although these predicates will run in constant work, they
may be expensive to implement in practice. One solution is to replace the explicit testing
with a simple size criteria relative on the radius of the collar ball. This will still guarantee
termination, but it will certainly generate more vertices on the collar surface. This may be
an acceptable penalty in the interest better runtime.

6.1 Other Approaches

6.1.1 Weighted Delaunay Refinement

The approach to handling the collar surface in SVRC to explicitly maintain appropriate topol-
ogy and no large angles adjacent to the creases continues from the work in [CP06, PW05].
There is another approach to handling the collar region using Weighted Delaunay Trian-
gulations [CDR07]. The weighted delaunay triangulation assigns a weight to every vertex
and has as its dual the power diagram, where the region is subdivided according to a weighted
distance from regions. This weighting allows some vertices and edges to be forced into the
weighted Delaunay.
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Weighted Delaunay allows the proper output mesh topology around the creases to be en-
forced implicitly, so that the mesh will properly conform without a need for the RipStitchCollar
routine.

This approach could easily be grafted into SVRC without affecting the runtime. The
routine FastCollarSize can be used to find the appropriate weight for a vertex on a
crease instead of the sizing for a collar ball. The effect of protecting the crease to guarantee
termination would be the same.

An advantage of this approach is that it would save a large constant factor with regards
to all the calculations performed by SVRC with respect to the collar surface; representation
angles and topological ball property would not be computed. The main disadvantage of this
approach is that it gives no guarantee on the tetrahedra adjacent to the crease. In general
they may have angles as large as π − α∗, where α∗ is the smallest angle of the input PLC,
whereas SVRC allows the an arbitrary bound σ to be input.

6.1.2 Two Pass Algorithms

One way to simplify algorithm SVRC would be to run it in two passes. The first pass would
run until the collar system had been resolved. Then a clipped PLC could be computed, and
the generic SVRwithout handle creases could run on this new PLC, with a post-process to
stitch in an appropriate mesh where the creases used to exist. This approach would generate
asymptotically the same sized output mesh, but most likely fewer vertices in practice, since
the slack in mesh size from dynamically computing the collar region is removed.

The disadvantage of this approach would be that the new clipped PLC would have a
larger description complexity than the original input. In general, if SVRC would generate M1

vertices on the creases, then the clipped PLC would have Θ(N + M1) features. Thus, the
second pass would run in O((N +M1) log ∆+M). This would be desirable if there were few
creases and minimizing output mesh size was a high priority.

6.2 Extensions

6.2.1 Slivers

Historically, many algorithms have been proposed that take as input a good radius-edge 3D
mesh, and refine it into a sliver-free, good aspect-ratio mesh [Che97, ELM+00b, LT01].

The original strategy of [Che97] was that whenever taking the center of a gap-ball for
insertion, try several randomly selected points very near the center in attempt to avoid
creating any new slivers smaller than the gap-ball being destroyed. Then add a new type
of work event (Sliver) with the lowest priority, that destroys any slivers by adding a new
vertex near their circumcenter.
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In [LT01], Li and Teng showed that this notion extends to handle features by requiring
that whenever a lower-dimensional ball is split, the algorithm can chooose randomly in a disc
near the circumcenter, where the disc is restricted to lie on the lower-dimensional feature
being refined. To further extend this into SVRC, it must handle the case where a RepBall
is refined. Recall that a RepBall is centered on the collar surface. The new point must be
chosen randomly near the center, and restricted to lie on the collar surface as well.

Using the analysis techniques of this thesis, a very simple timing analysis of the Li-Teng
algorithm shows that it will work, only adding linear time and space requirements.

6.2.2 Curved Surfaces

Algorithm SVRC is not far from handling the more general case of Piecewise Smooth Com-
plexes. Indeed, the predicates developed for handling the collar surface (which was essentially
a PSC), can be extended to handle a PSC as input.

The first idea is that each bounding-box mesh MF would be a full three-dimensional
mesh, even if the feature F is only a one or two dimensional surface. Then the restricted
delaunay of MF restricted to F would be maintained, and the representation balls would be
reported to higher dimension as protective balls for conforming.

These three-dimensional bounding box meshes around each feature will generate many
excess vertices that will be discarded. Fortunately, scaffolding arguments still hold regardless
of the dimensions of the scaffold mesh relative to its driver set. So a one-dimensional curve
meshed in three dimensions still generates only linearly many excess vertices.

6.3 Improving log ∆

A major area for improvement would be the reduction of the point location costs from
O(N log ∆) down to O(N log N) for inputs with pathological spread. For a comparison
based model, a sorting lower bound for triangulation applies, so that any algorithm must
run in Ω(N log N). If the point-location costs could be improved, then this would give
SVRC the optimal output-sensitve runtime. Although this is largely a theoretical concern, it
may lead to practically faster algorithms.

The factor of O(log ∆) arises as the number of times an input vertex may be relocated
over the life of the algorithm. This was bounded by observing that every relocation can
be charged to some mesh insertion that made progress on increasing the mesh resolution.
The progress ends up being a multiplicative factor, and the final resolution was at most the
spread of the input, and hence the O(log ∆) relocations.

This notion of “progress” is geometric in nature. In order to drop the factor to O(log N),
the algorithm must make some combinatorial progress every time a relocation occurs. Mesh
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operations must provably be subdividing the input in a combinatorial rather than a geometric
fashion.

One approach would be some sort of median finding. In the early phases of the algorithm,
there is a great deal of freedom in choosing a vertex for warping. Choosing a median breaks
the input in half in one dimension, and with some other techniques can lead to the desired
O(N log N) relocation costs. In higher dimension, some appropriate notion of median is
needed. Rather than explicitly finding some type of median, the problem may also be solved
by randomization. Either case requirs improved notions of combinatorial depth for points in
dimension three and higher, especially in the case of a non-laminar series of subdivisions as
those produced by unstructured meshing.
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Chapter 7

Glossary

Global Symbols:

Symbol Names and Description
nX (x), n Definition 17, Nearest Neighbor Distance, |xX|
fX (x), f Definition 13, Second Nearest Disjoint Neighbor of x from X
gX (x), g Definition 14, Largest Ball at x hitting two features of X , one of which

doesn’t contain x
ḡX (x), ḡ Definition 39, Weak Spacing Function, Second Nearest Neighbor
Ω Closed, Bounded, Convex Subset of R3

P Input Piecewise Linear Complex
τ Quality Bound Away from Creases, Desired Voronoi Aspect Ratio of the

Output
σ Quality Bound At Creases, Desired Maximum Representation Angle, Def-

inition 34
GM(x) Definition 21, Gap-Size, Largest Ball with x on the surface, that is disjoint

from M
ΓM(x) Definition 22, Grading, (GM(x)/fM(x))
θ SVRC warps to (1− θ)-medial points, function of τ
θ0 SVRC creates collars when centers are θ0-medial, function of θ
VM(v), V (v) Voronoi Cell centered at v in the Voronoi diagram
Del(M), Vor(M) Delaunay and Voronoi Diagram of points M
Rv(M), Rv Definition 12, Outradius of the cell VM(v)
rv(M), rv Definition 12, Inradius of the cell VM(v)
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[Üng04] Alper Üngör. Off-centers: A new type of steiner points for computing size-
optimal guaranteed-quality delaunay triangulations. In Proceedings of LATIN,
2004.

105


