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ABSTRACT
We show an improved parallel algorithm for decomposing an
undirected unweighted graph into small diameter pieces with
a small fraction of the edges in between. These decompo-
sitions form critical subroutines in a number of graph algo-
rithms. Our algorithm builds upon the shifted shortest path
approach introduced in [Blelloch,Gupta,Koutis,Miller,Peng,
Tangwongsan, SPAA 2011]. By combining various stages of
the previous algorithm, we obtain a significantly simpler al-
gorithm with the same asymptotic guarantees as the best
sequential algorithm.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

Keywords
Parallel algorithms; Low-diameter decompositions; Graph
partitioning

1. INTRODUCTION
Graph decomposition aims to partition the vertices of a

graph into well connected pieces so that few edges are be-
tween pieces. A variety of measures of the connectivity
within a piece, such as diameter, conductance, and spectral
properties have been studied. The more intricate measures
such as conductance have proven to be particularly useful in
applications [25], and have been well studied [20, 24]. How-
ever, these algorithms, as well as many others, use simpler
low diameter decompositions as a subroutine. This variant
takes a much more simplistic view of the connectivity within
each piece, and measures it using only the diameter.
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The various shortcomings of such decompositions as a
stand-alone routine are offset by its potential as an algo-
rithmic tool. Low diameter decompositions/clusterings were
first introduced in [4, 6], and have been used as core subrou-
tine for a number of algorithms such as: approximations to
sparsest cut [20, 24]; construction of spanners [12]; parallel
approximations of shortest path in undirected graphs [13];
and generating low-stretch embedding of graphs into trees
[3, 16, 15, 2].

More recently, the connection of low diameter decomposi-
tion with generating low stretch spanning trees was used in
[9] to give nearly-linear work parallel solvers for SDD linear
systems. These solvers can in turn be used as a black-box
in algorithms for computing maximum flow and negative-
length shortest path [11, 14]. This led to parallel algorithms
whose work is within polylog factors of the best known se-
quential algorithms. As these are problems for which work-
efficient parallelizations have proven to be elusive, parallel
solvers for SDD linear systems represent a promising new
direction for designing parallel algorithms.

The parallel SDD linear system solver algorithm from [9]
is of mostly theoretical interest due to a large polylog factor
in work. Much of this is due to the nearly-linear work, paral-
lel low diameter decomposition algorithm introduced in the
same paper, which was in turn used as a subroutine to gen-
erate tree embeddings. Therefore, finding improved parallel
graph decomposition routines represent a natural direction
for finding faster parallel solver algorithms.

In order to formally specify the diameter of a piece, it
is crucial to emphasize the distinction between weak and
strong diameter. The diameter of a piece S ⊆ V can be
defined in two ways, weak and strong diameter. Both of
them define diameter to the maximum length of a shortest
path between two vertices in S, while the difference is in the
set of allowed paths. Strong diameter restricts the short-
est path between two vertices in S to only use vertices in
S, while weak diameter allows for shortcuts through ver-
tices in V \S. The optimal tree metric embedding algorithm
[16] relies on weak diameter. It has been parallelized with
polylog work overhead [10], but takes quadratic work.

A trend in algorithms that use weak diameter is that their
running time tends to be quadratic. This is also the case
with parallel algorithms for computing low diameter decom-
positions [5]. To date, nearly-linear work algorithms for find-
ing tree embedding use strong diameter instead. While this
leads to more difficulties in bounding diameters, the overall
work is easier to bound since each piece certifies its own di-
ameter, and therefore does not need to examine other pieces.



For SDD linear system solvers [10], strong diameter is also
crucial because the final tree (which the graph embeds into)
is formed by combining the shortest path tree in each of the
pieces. As a result, we will use diameter of a piece to denote
strong diameter for the rest of this paper, and define a
low diameter decomposition as follows:

Definition 1.1. Given an undirected, unweighted graph
G = (V,E), a (β, d) decomposition is a partition of V into
subsets S1 . . . Sk such that:

• The (strong) diameter of each Si is at most d.

• The number of edges with endpoints belonging to dif-
ferent pieces is at most βm.

A standard choice of parameters for such decompositions is
(β, O( logn

β
)), which are in some sense optimal. Furthermore,

when computing tree embedding, β is often set to log−c n
for some constant c. As a result, the algorithm given in [9],
as well as our algorithm are geared towards small diameters.
This makes the running time of these algorithms more than
the NC algorithms such as [5] for large values of β. However,
they suffice for the purpose of generating tree/subgraph em-
bedding in polylog depth, as well as low work parallel graph
algorithms.
Obtaining these decompositions in the sequential setting

can be done via a process known as ball growing. This pro-
cess starts with a single vertex, and repeatedly adds the
neighbors of the current set into the set. It terminates when
the number of edges on the boundary is less than a β frac-
tion of the edges within, which is equivalent to the piece
having small conductance. Once the first piece is found, the
algorithm discards its vertices and repeats on the remain-
ing graph. The final bound of βm edges between the pieces
can in turn be obtained by summing this bound over all
the pieces. Using a consumption argument, one could prove
that the diameter of a piece does not exceed O( logn

β
). Be-

cause we are okay with a depth that depends on 1/β, and
the piece’s diameters can be bounded by O( logn

β
), finding a

single piece is easy to parallelize. However, the strong di-
ameter requirement means that we cannot start finding the
second ball until we are done finding the first. This leads
to a chain of sequential dependencies that may be as long
as Ω(n), and is the main challenge in obtaining a parallel
decomposition algorithm.
The parallel SDD linear system solver algorithm given in

[9] relied on a parallel algorithm that computes a O(β, log4 n
β

)

decomposition inO( log
3 n
β

) depth andO(m log2 n) work. This
algorithm showed that some of the ball growing steps can be
performed simultaneously in parallel, leading to balls which
have small overlap. Then a randomly shifted shortest path
routine is used to resolve these overlaps. In this paper we
show that these two steps can be combined in a simple,
global routine. This leads to a simple algorithm that picks
random shifts in a more intricate way and assigns vertices
to pieces using one shortest path invocation. In the PRAM
model, our result can be described by the following theorem:

Theorem 1.2. There is an algorithm Partition that takes
an unweighted graph with n vertices, m edges, a parameter
β ≤ 1/2 and produces a (β, O( logn

β
)) decomposition in ex-

pected O( log
2 n
β

) depth and O(m) work.

We will give an overview of our algorithm in Section 2 and
define our notations and give relevant background in Section
3. Section 4 contains the analysis of our partition routine,
and modifications to make it more suitable for implementa-
tion and parallelization are given in Section 5. In Section 6
we discuss some possible extensions to our algorithm.

2. OVERVIEW AND RELATEDWORKS
In this section we give an intuitive view of our partition

routine and discuss how it relates to various other graph de-
composition algorithms that have been studied in the past.
We will defer the implementation details to Section 5. A
simple interpretation of our algorithm executing in parallel
is outlined in Algorithm 1.

Algorithm 1 Parallel Partition Algorithm

Parallel Partition

Input: Undirected, unweighted graph G = (V,E), parameter
0 < β < 1 and parameter d indicating failure probability.
Output: (β, O(log n/β)) decomposition of G with probabil-

ity at least 1− n−d.

1: IN PARALLEL each vertex u picks δu independently
from an exponential distribution with mean 1/β.

2: IN PARALLEL compute δmax = max{δu | u ∈ V }
3: Perform PARALLEL BFS, with vertex u starting when

the vertex at the head of the queue has distance more
than δmax − δu.

4: IN PARALLEL Assign each vertex u to point of origin
of the shortest path that reached it in the BFS.

Steps 1, 2, and 4 of our algorithm are done independently
at each vertex and are clearly parallelizable. So the main
algorithmic aspects of our algorithm is in step 3, which is
performing a breadth first search while recording the point
of origin. Such processes have been well-studied [21, 8], and
we will discuss how to use such routines in a black-box man-
ner in Section 5. More intuitively, our algorithm can also
be viewed as performing parallel ball growing with random
delays. Each vertex u picks a start time according to some
distribution, and if u is not already part of some other clus-
ter at that time, u starts a cluster of its own and performs
a breadth first search. The search takes one unit of time
to propagate across an edge, and each such time steps can
be performed in parallel over all vertices. If a vertex v vis-
ited during the search is not yet part of any other cluster,
it joins the cluster of the vertex that first reached it, and
its neighbors are added to the BFS queue. The randomized
start times leads to both required properties of the decom-
positions, as well as small bound on the depth of the BFS
trees. Figure 1 shows the resulting partitions of our algo-
rithm with a 1000× 1000 square grid as input and different
values of β used to generate the delays. Lower β leads to
larger diameter and fewer edges on the boundaries, which
matches our more detailed analysis in Section 4.

To our knowledge, low diameter decompositions as stated
in Definition 1.1 were first used for distributed algorithms
in [4]. Subsequently it has been used as a key subroutine in
the construction of low-stretch spanning trees algorithms [3],
or more generally embeddings of graphs into trees [7]. An-
other application of unweighted decompositions is for effi-
ciently computing separators in minor-free graphs [23, 28].



(a) β = 0.002 (b) β = 0.005 (c) β = 0.01

(d) β = 0.02 (e) β = 0.05 (f) β = 0.1

Figure 1: Decompositions generated by our algorithm on a 1000 × 1000 grid under varying values of β. Different colors
represent different clusters

Our algorithm can be directly substituted into these algo-
rithms, although the main improvements that we obtain are
for generating low stretch spanning trees using the frame-
work of [9].
A definition related to low diameter decomposition is block

decompositions from [22]. One of their main algorithmic
routines is to partition a graph into O(log n) blocks such
that each connected piece in a block has diameter O(log n).
This decomposition can also be obtained by iteratively run-
ning a ( 12 , O(log n)) low diameter decomposition O(log n)
times. This is because the number of edges not in a block
decreases by a factor of 2 per iteration.
The main scheme of our algorithm is to pick radii of the

balls independently from some distribution. Similar ap-
proaches have been used in computing block decompositions
in [22], as well as finding (r, ρ, γ)-probabilistic partitions
needed for the Bartal trees [7]. Our partition scheme dif-
fers from these in that the process behaves identically on
all vertices, and our guarantees are in terms of strong di-
ameter. The first difference means that the formation of
clusters in our algorithm does not have sequential depen-
dencies; while the later actually leads to a lower work term.
A typical method for meeting weak diameter requirements is
to broadcast to all vertices within a certain distance [4, 22].
As the graph may have small diameter, this can lead to work

that is quadratic in the number of vertices. By broadcasting
only along shortest paths in a way that is akin to breadth
first search, we are able to reduce this to O(m) work.

Aside from being directly related to decomposition schemes
for unweighted undirected graphs, our algorithm can also be
adapted to give guarantees similar to other improved decom-
position schemes. When viewed as a sequential algorithm,
it can also lead to similar guarantees on weighted graphs to
the decomposition scheme from [7] as well as generalizations
needed for improved low stretch spanning tree algorithms [7,
15]. However, the parallel performance of our algorithm in
the weighted setting is less clear, and we will describe this
question in more detail in Section 6.

3. BACKGROUND AND NOTATIONS
In this section we state some standard notations, and re-

view some key ideas introduced in the Blelloch et al. al-
gorithm [9]. Given a graph G, we use dist(u, v) to denote
the length of the shortest path from u to v. As with earlier
works on tree embedding, we will pick a special vertex in
each piece, and use the distance to the farthest vertex from
it as an estimate for the diameter. This simplification can
be made since the graph is undirected and the final bound
allows for constant factors (specifically 2). We will denote



this special vertex the center of the piece, and denote the
piece centered at u using Su.
As the number of pieces in the final decomposition may

be large (e.g. the line graph), a parallel algorithm needs to
construct a number of pieces simultaneously. On the other
hand, for closely connected graphs such as the complete
graph, a single piece may contain the entire graph. As a
result, if too many pieces are grown independently, the total
work may become quadratic. The decomposition algorithm
by Blelloch et al. [9] addressed this tradeoff by gradually
increasing the number of centers picked iteratively. It was
motivated by the (β,W ) decompositions used in an algo-
rithm by Cohen for approximating shortest paths in undi-
rected graphs [13]. By running iterations with gradually
more centers, it can be shown that the resulting pieces at
each iteration have small overlap. This overlap is in turn
resolved using a shifted shortest path algorithm, which in-
troduces shifts (denoted by δ) at the centers and assigns
vertex v to Su that minimizes the shifted distance:

dist−δ(u, v) = dist(u, v)− δu. (1)

It was shown that by picking shifts uniformly from a suf-
ficiently large range, a (β, O( log

c n
β

)) decomposition can be
obtained.
Our algorithm can be viewed as a more streamlined algo-

rithm that combines these two components. Note that sam-
pling vertices with exponentially increasing density can be
emulated by adding a large, step-like increase to the shifts of
centers picked in earlier iterations. Furthermore, the need
to have exponentially decreasing number of centers in the
iterations suggests that the exponential distribution can be
used in place of the (locally) uniform distribution. This dis-
tribution has been well-studied, and the properties of it that
we will need have been used to study its order statistics in
fault tolerance [27]. For a parameter γ, this distribution is
defined by the density function:

fExp(x, γ) =

{

γ exp(−γx) if x ≥ 0,
0 otherwise.

We will denote it using Exp(γ) and will also make use of its
cumulative density function:

FExp(x, γ) = Pr [Exp(γ) ≤ x] =

{

1− exp(−γx) if x ≥ 0,
0 otherwise.

A crucial fact about the exponential distribution is that
it is memoryless. That is, if we condition on Exp(γ) ≥ t,
then Exp(γ) − t will follow the same distribution. We will
also use order statistic of random independent variables fol-
lowing the exponential distribution. Given n random vari-
ables X1 . . . Xn, the ith order statistic of them is the value
of the ith smallest random variable. Another property of
exponential distributions is that the difference between its
order statistics also follow exponential distributions. The
following fact as stated on page 19 of [17] has been used in
a variety of settings.

Fact 3.1. The n variables X(1), X(2) −X(1), · · · , X(n) −
X(n−1) are independent and the density of X(k+1) −X(k) is
given by fExp(x, γ) where γ = (n− k).

Let Xn
(i) denote the ith order statistic of n i.i.d. exponen-

tial random variables. An intuitive way to prove the above

fact is that by the i.i.d assumption, the cumulative density
distribution of Xn

(1) is given by

FXn

(1)
(x) = 1− (1− F (x))n

= 1− exp(−nβx)

where F (x) = 1 − exp(−βx) is the cumulative distribution
of Exp(β). This shows that Xn

(1) is has an exponential dis-
tribution with mean 1/(nβ). Conditioning on Xn

(1), we get
that Xn

(2) − Xn
(1) is again an exponential distribution equal

to Xn−1
(1) because of the memoryless property of exponen-

tial distributions. We can repeat this argument to get the
density of Xn

(k+1) −Xn
(k) for all k up to n− 1 [17].

4. ANALYSIS
In this section, we will show that our partition routine

indeed constructs a (β, O( logn
β

)) decomposition. For the
purpose of this proof, we use a slightly different formula-
tion of our algorithm given in Algorithm 2. In this view,
our algorithm picks shifts δu for all vertices from indepen-
dent exponential distributions with parameter β, and then
assigns each vertex to a piece so that the shifted distances
defined in (1) to the center of that piece is minimized.

Algorithm 2 Partition Algorithm Using Exponentially
Shifted Shortest Paths
Partition

Input: Undirected, unweighted graph G = (V,E), parameter
β and parameter d indicating failure probability.
Output: (β, O(log n/β)) decomposition of G with probabil-

ity at least 1− n−d.

1: For each vertex u, pick δu independently from Exp(β)
2: Compute Su by assigning each vertex v to the vertex

that minimizes dist−δ(u, v), breaking ties lexicographi-
cally

3: return {Su}

We start by showing that the assignment process readily
leads to bounds on strong diameter. Specifically, the strong
diameter of Su can be measured using distances from u in
the original graph.

Lemma 4.1. If v ∈ Su and v′ is the last vertex on the
shortest path from u to v, then v′ ∈ Su as well.

Proof The proof is by contradiction, suppose v′ belongs
to Su′ for some u′ '= u. The fact that v′ is the vertex
before v on the shortest path from u implies dist−δ(u, v) =
dist−δ(u, v

′) + 1. Also, as v′ is adjacent to v, we also have
dist−δ(u

′, v) ≤ dist−δ(u
′, v′) + 1. Since v′ belongs to Su′

instead of Su, we must have one of the following two cases:

1. v′ is strictly closer to u′ than u in terms of shifted dis-
tance. In this case we have dist−δ(u

′, v′) < dist−δ(u, v
′),

which when combined with the conditions above gives:

dist−δ(u
′, v) ≤dist−δ(u

′, v′) + 1

<dist−δ(u, v
′) + 1

=dist−δ(u, v).

So v is strictly closer to u′ than u as well, which implies
that v should not be assigned to Su.



2. The shifted distances are the same, and u′ is lexico-
graphically earlier than u. Here a similar calculation
gives dist−δ(u

′, v) ≤ dist−δ(u, v). If the inequality
holds strictly, we are back to the case above. In case
of equality, the assumption that u′ is lexicographically
earlier than u means v should not be in Su as well.

!

Note that the second case is a zero probability event, and
its proof is included to account for roundings in implemen-
tations that we will describe in Section 5.
To bound the strong diameter of the pieces, it suffices

to bound the distance from a vertex to the center of the
piece that it is assigned to. Since any vertex v ∈ Su could
have been potentially included in Sv, the shift value of the
center δu serves as an upper bound on the distance to any
vertex in Su. Therefore, δmax = maxu δu serves as an upper
bound for the diameter of each piece. Its expected value and
concentration can be bounded as follows.

Lemma 4.2. The expected value of the maximum shift value
is given by Hn/β where Hn is the nth harmonic number.
Furthermore, with high probability, δu ≤ O( logn

β
) for all ver-

tices u.

Our proof below proof closely following the presentation
in Chapter 1.6. of [17].

Proof The expected value can be found by summing over
the differences in order statistics given in Fact 3.1.

E

[

max
u∈V

δu

]

= E
[

Xn
(n)

]

=
1
β

n
∑

i=1

1
n

=
Hn

β
.

For the concentration bound, by the cumulative distribu-
tion function of the exponential distribution the probability
of δu ≥ (d+ 1) · lnn

β
is:

exp

(

−(d+ 1) · β lnn
β

)

=exp(−(d+ 1) lnn)

≤n−(d+1).

Applying union bound over the n vertices then gives the
bound. !

The other property that we need to show is that few edges
are between the pieces. We do so by bounding the probabil-
ity of two endpoints of an edge being assigned to two differ-
ent pieces. In order to keep symmetry in this argument, it
is helpful to consider shifted distances from a vertex to the
midpoint of an edge. This slight generalization can be for-
malized by replacing an edge uv with two length 1/2 edges,
uw and wv. We first show that an edge’s end points can
be in different pieces only if there are two different vertices
whose shifted shortest path to its midpoint are within 1 of
the minimum.

Lemma 4.3. Let uv be an edge with midpoint w such that
when partitioned using shift values δ, u ∈ Su′ and v ∈ Sv′ .
Then both dist−δ(u

′, w) and dist−δ(v
′, w) are within 1 of the

minimum shifted distance to w.

Proof Let the pieces that contain u and v be Su′ and Sv′

respectively (u′ '= v′). Let the minimizer of dist−δ(x,w) be
w′. Since w is distance 1/2 from both u and v, we have

dist−δ(w
′, u), dist−δ(w

′, v) ≤dist−δ(w
′, w) + 1/2.

Suppose dist−δ(u
′, w) > dist−δ(w

′, w) + 1, then we have:

dist−δ(u
′, u) ≥dist−δ(u

′, w)− 1/2

>dist−δ(w
′, w) + 1/2

≥dist−δ(w
′, u),

a contradiction with u′ being the minimizer of dist−δ(x, u).
The case with v follows similarly. !

An even more accurate characterization of this situation
can be obtained using the additional constraint that the
shortest path from w′ to w must go through one of u or
v. However, this lemma suffices for abstracting the situ-
ation further to applying random decreases δ1, δ2 . . . δn to
a set of numbers d1 . . . dn corresponding to dist(x,w). We
now turn our attention to analyzing the probability of an-
other shifted value being close to the minimum when shifts
are picked from the exponential distribution.

The memoryless property of the exponential distribution
gives an intuitive way to bound this probability. Instead of
considering the vertices picking their shift values indepen-
dently, consider them as light bulbs with lifetime distributed
according to Exp(β), and the dis indicate the time each light
bulb is being turned on. Then mini di − δi corresponds to
the time when the last light bulb burns out, and we want
to bound the time between that and the second last. In
this setting, the memoryless property of exponentials gives
that when the second to last light bulb fails, the behavior
of the last light bulb does not change and its lifetime af-
ter that point still follows the same distribution. Therefore,
the probability that the difference between these two is less
than c can be bounded using the cumulative distribution
function:

1− exp(−cβ) ≈ 1− (1− cβ) (When cβ is small)

= cβ.

The only case that is not covered here is when the last light
bulb has not been turned on yet when the second last failed.
However, in that case this probability can only be less. We
give a rigorous version of this intuitive proof below. An
algebraic proof using the definition of the exponential dis-
tribution can be found in Appendix A.

Lemma 4.4. Let d1 ≤ . . . ≤ dn be arbitrary values and
δ1 . . . δn be independent random variables picked from Exp(β).
Then the probability that between the smallest and the sec-
ond smallest values of di − δi are within c of each other is
at most O(βc).

Proof It is more convenient to consider the differences
between the largest and second largest of the negations of
the shifted values, −(di − δi). Let d′i denote −di, by the
assumption of d1 ≤ . . . ≤ dn we have d′1 ≥ . . . ≥ d′n. Define
Xi = d′i + δi − d′1 and let X(i) denote the ith order statistic
of X1, . . . , Xn, we would like to show that

Pr
[

X(n) −X(n−1) > c
]

≥ exp(βc).

Since Xis are independent, the memoryless property of
exponential distributions gives that when conditioned on



Xi ≥ 0, Xi still follows an exponential distribution with
mean 1/β. For all subsets S ⊆ {1 . . . n}, let ES denote the
event that for all i ∈ S, Xi ≥ 0, and for all i /∈ S, Xi < 0.
By the law of total probability, we have

Pr
[

X(n) −X(n−1) > c
]

=
∑

S

Pr
[

X(n) −X(n−1) > c | ES

]

Pr [ES ] .

Since Xn = δn ≥ 0, Pr [ES ] = 0 when S = ∅ or S '* n. The
only other case with |S| = 1 is when S = {n}. Here we have
Pr [X1 > c] ≥ 1− exp(βc). Combining this with X(n) ≥ X1

and X(n−1) < 0 gives a probability of at least exp(βc).
It remains to consider the case where |S| ≥ 2. In this case

both X(n) and X(n−1) are from elements in S, so it suffices
to consider the Xis given by i ∈ S. These |S| variables are
distributed the same as |S| independent random variables
following Exp(β). Therefore by the distribution of order
statistics given in Fact 3.1 we have:

Pr
[

X(n) −X(n−1) > c | ES , |S| ≥ 2
]

= exp(−βc).

This means for any S, we have

Pr
[

X(n) −X(n−1) > c | ES

]

Pr [ES ] ≥ exp (−βc)Pr [ES ] .

Summing over all S and using the fact that
∑

S Pr [ES ] = 1
gives that

Pr
[

X(n) −X(n−1) > c
]

≥ exp (−βc) ,

or equivalently

Pr
[

X(n) −X(n−1) ≤ c
]

≤ 1− exp (−βc) < βc.

!

Using this Lemma with c = 1 and applying linearity of
expectation gives the bound on the number of edges between
pieces.

Corollary 4.5. The probability of an edge e = uv hav-
ing u and v in different pieces is bounded by O(β), and the
expected number of edges between pieces is O(βm).

5. IMPLEMENTATION AND
PARALLELIZATION

Our partition routine as described in Algorithm 2 requires
computing dist−δ(u, v) for all pairs of vertices u and v. Stan-
dard modifications allow us to simplify it to the form shown
in Algorithm 1, which computes BFS involving small integer
distances.
The first observation is that the −δu shift at vertex u can

be simulated by introducing a super source s with distance
−δu to each vertex u. Then if we compute single source
shortest path from s to all vertices, the component that v
belongs to is given by the first vertex on the shortest path
from s to it. Two more observations are needed to transform
this shortest path setup to a BFS. First, the negative lengths
on edges leaving s can be fixed by adding δmax = maxu δu to
all these weights. Second, note that the only edges with non-
integral lengths are the ones leaving s. In this shortest path
algorithm, the only time that we need to examine the non-
integer parts of lengths is when we compare two distances
whose integer parts are tied. So the fractional parts can be
viewed as tie-breakers for equal integer distances, and all

distances with the same integer part can be processed in
parallel. We’ll show below that these tie breakers can also
be replaced by a random permutation of integers.

Therefore, the algorithm is equivalent to computing short-
est path when all edge lengths are integer, with an extra tie
breaking rule for comparing distances. In order to use un-
weighted BFS, it remains to handle the edges with non-unit
lengths leaving s, and we do so by processing the those edges
in a delayed manner. An edge from s to v only causes v to be
added to the BFS queue when the frontier of the search has
reached a distance larger than the length of that edge and v
has not been visited yet. So it suffices to check all vertices
v with a length L edge to s when the BFS frontier moves to
distance L, and add the unvisited ones to that level.

The exact cost of running a parallel breadth first search
depends on the model of parallelism. There has been much
practical work on such routines when the graph has small di-
ameter [21, 8, 26]. For simplicity we will use the O(∆ log n)
depth and O(m) work bound in the PRAM model given
in [18]. Here ∆ is the maximum distance that we run the
BFS to, and can be bounded by O( logn

β
). This allows us to

prove our main claim about the performance of Partition.

Proof of Theorem 1.2: Consider running Partition

using the BFS based implementation described above, and
repeating until we have an (β, O( logn

β
)) partition. Since

the δus are generated independently, they can be computed
in O(n) work and O(1) depth in parallel. The rest of the
running time comes from assigning vertices to pieces using
shifted shortest path. As the maximum distance from a ver-
tex to the center of its piece is O( logn

β
) (or we could stop the

algorithm at this point), this BFS can be done in O(m) work

and O( log
2 n
β

) depth using parallel BFS algorithms. The re-

sulting decomposition can also be verified in O(log n) depth
and O(m) time.

It remains to bound the success probability of each iter-
ation. Lemma 4.1 gives that the shortest path from u to
any v ∈ Su is contained in Su, so maxv∈Su

dist(u, v) is an
upper bound for the strong diameter of each subset. For
each vertex v ∈ Su, since dist−δ(v, v) = d(v, v) − δv ≤ 0
is a candidate, dist−δ(u, v) ≤ −δv. Lemma 4.2 then allows
us to bound this value by O(log n/β) with high probability.
The expected number of edges between pieces follows from
Corollary 4.5, so with constant probability we meet both
requirements of a (β, O( logn

β
)) partition. Therefore, we are

expected to iterate a constant number of times, giving the
expected depth and work bounds. !

One practical aspect worth noting is that the fractional
parts of the δ values can be viewed as a lexicographical or-
dering upon all vertices which are used for tie breaking. This
is where the tie breaking rule specified in Section 4 may be of
use. As the exponential distribution is memoryless and the
shifts are generated independently, the fractional parts can
also be emulated by directly generating a random permuta-
tion of the vertices. This view is perhaps closer to the use of
random permutations in the optimal tree-metric embedding
algorithm [16].

Similar ideas may also be used in practice instead of com-
puting δu. Although generating random variables from such
distributions have been studied extensively [19], avoiding
these routines might further reduce the cost of this stage of
the algorithm. One possibility is to generate a random per-
mutation of the vertices, and assign the shift values based



on positions in the permutation. We believe that the slight
changes in distributions could be accounted for using a more
intricate analysis, but might be more easily studied empiri-
cally.

6. CONCLUSION / REMARKS
We showed a simple parallel algorithm for computing low

diameter decompositions of undirected unweighted graphs.
Given a graph G with n vertices and m edges along with
any parameter β, it returns a (β, O( logn

β
)) decomposition in

O( log
2 n
β

) depth and O(m) work. This routine can be used
in place of Partition from [9] to give a faster algorithm
for solving SDD linear systems. It also represents a differ-
ent view of ball growing, which is at the core of the best
sequential low stretch spanning tree algorithms [15, 1, 2].
We believe that our approach may lead to a variety of im-

provements in algorithms that use ball growing or low diam-
eter decompositions. Many of these applications take place
in the weighted setting, and rely on additional clustering-
based properties. As a result, many of them are perhaps
better examined on a per-application basis. The analysis
of the partition routine from Section 4 can be readily ex-
tended to the weighted case. However, the depth of the
algorithm is harder to control since hop count is no longer
closely related to diameter. We believe obtaining similar
parallel guarantees in the weighted setting, as well as show-
ing clustering-based properties are interesting directions for
future work.
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APPENDIX
A. ALTERNATE PROOF OF KEY PARTI-

TION LEMMA
We give alternate, more formulaic proofs of Lemma 4.2,

which bounds the difference between the shortest and second
shortest shifted distance to any point in the graph.

Proof of Lemma 4.4:
Let E denote the number of indices i such that:

di − δi ≤ dj − δj + c ∀j.

For each vertex i, let Ei be an indicator variable for the event
that:

di − δi ≤ dj − δj + c ∀j.

We will integrate over the value of t = di − δi. For a fixed
value of t, Ei occurs if and only if δj ≤ dj−t+c for each j. As
the shift values are picked independently, we can multiply
the cumulative distribution functions for Exp(β) and get:

Pr [Ei]

=

∫ ∞

t=−∞

fExp(di − t,β)
∏

j &=i

FExp(dj − t+ c,β).

When t > d1 + c, d1 − t + c < 0 and fExp(d1 − t,β) =
FExp(d1−t+c,β) = 0. So it suffices to evaluate this integral
up to t = d1 + c. Also, we may use exp(−βx) as an upper
bound as fExp(x,β), and arrive at:

Pr [Ei]

≤
∫ d1+c

t=−∞

β exp(−β(di − t))
∏

j &=i

FExp(dj − t+ c)

≤
∫ d1+c

t=−∞

β exp(−β(di − t))
∏

j &=i

(1− exp(−β(dj − t+ c)))) .

We now bound E [E ] = E
[
∑

i Ei

]

. By linearity of expecta-
tion we have:

E

[

∑

i

Ei

]

≤
∑

i

∫ d1+c

t=−∞

β exp (−β(di − t))

∏

j &=i

(1− exp(−β(dj − (t− c))))

= exp(βc)

∫ d1+c

t=−∞

β
∑

i

exp (−β(di − t+ c))

∏

j &=i

(1− exp(−β(dj − t+ c))) .

Observe that the expression being integrated is the deriva-
tive w.r.t. t of:

−
∏

i

(1− exp(−β(di − t+ c))) .

Therefore we get:

E [E ] ≤− exp(βc)
∏

i

(1− exp(−β(di − t+ c)))

∣

∣

∣

∣

∣

t=d1+c

t=−∞

When t → −∞, −β(di−t+c) → −∞. Therefore exp(−β(di−
t+ c)) → 0, and the overall product tends to − exp(βc).

When t = d1 + c, we have:

− exp(βc)
∏

i

(1− exp(−β(di − (d1 + c) + c)))

=− exp(βc)
∏

i

(1− exp(−β(di − d1)))

≤− exp(βc)
∏

i

(1− exp(0)) = 0 (Since di ≥ d1)

Combining these two gives E [E ] ≤ exp(βc).
By Markov’s inequality the probability of there being an-

other vertex being within c of the minimum is at most
exp(βc)− 1 ≤ O(βc) for c = 1. !


