Flow in Planar Graphs with Multiple Sources and Sinks *

(Extended Abstract)

Gary L. Miller 1

1 Introduction

In the common formulation of the maximum flow prob-
lem, the maximum flow from a distinguished vertex in
the graph, called the source, to another distinguished
vertex in the graph, called the sink, is computed. Here
we assume that the underlying network is planar; this
case was extensively studied and more efficient algo-
rithms were developed for it (see section 2). Yet the
assumption was always that there is only one source
and one sink.

In this paper we investigate the following problem:
given a planar network with many sources and sinks,
compute the maximum flow from the sources to the
sinks. Ford and Fulkerson [FF] reduced the multiple
source, multiple sink problem to the single source, sin-
gle sink problem by connecting the sources to a super
source, the sinks to a super sink, and then computing
the maximum flow from the super source to the super
sink. In planar graphs, this reduction may destroy the
planarity of the graph if the sources or sinks belong
to different faces. Nevertheless, we would like to take
advantage of the planarity of the graph to design more
efficient algorithms for the case of multiple sources and
sinks.

We feel that this reformulation of the problem is
more natural within the context of planar graphs, and
has motivation in both sequential and parallel com-
putation. Previous planar flow algorithms dealt exclu-
sively with the single source, single sink case. Megiddo
[Mel, Me2] gave an algorithm in the case of multiple

*this work was supported in part by NSF grant DCR-8713489
and AT&T grant USC-5345991020.

fCurrent address: Computer Science Department, Carnegie-
Mellon University, Pittsburgh, PA 15213-3890. Permanent ad-
dress: Computer Science Department, University of Southern
California, Los Angeles, CA 90089-2140.

!Computer Science Department, Stanford University, Stan-
ford, CA 94305-2140. Supported by contract ONR N00014-88-
[{-0166 and by a grant of Stanford’s Center for Integrated Sys-
tems. Part of this work was done while the author was a post-
doctoral fellow at the Computer Science Department, University
of Southern California, Los Angeles, CA.

CH2806-8/89/0000/0112/$01.00 © 1989 IEEE

112

Joseph Naor ¥

sources and sinks (in a general graph) to compute opti-
mal flows, namely to distribute the flow “fairly” among
the sources and sinks. This is the only other attempt
known to us that copes with multiple sources and sinks.

Maximum flow in a general network was shown to
be P-complete [GSS] and hence, it is widely believed
not to have an efficient parallel algorithm. On the
other hand, maximum flow can be reduced to maxi-
mum matching and this reduction gives an RNC al-
gorithm when the edge capacities are represented in
unary [KUW ,MVYV]. This emphasizes the importance
of solving the problem in the case of a planar network
with arbitrary capacities. In the restricted case of a
single source, single sink, there do exist NC algorithms
in both directed and undirected graphs [HJ, Jo].

We assume that we get as input the amount of flow
(demand) at each source and sink and compute the
flow function. Our algorithm runs in O(log®n) time
using O(n!-®) processors on an EREW PRAM. Unfor-
tunately, when the demands are unknown, the prob-
lem still remains open. However, in the special case
that the sources and sinks are all on one face (and
the demands unknown), we present an algorithm that
computes the maximum flow and its time complexity
is O(log® nloglogn) using O(n'"®) processors. In this
sense, planar graphs are different from general graphs
where it was shown that knowing the value of the max-
imum flow, does not improve the complexity of com-
puting the flow function [Ra]. Our results also hold for
more general networks, namely when the edge capaci-
ties have both lower and upper bounds.

The novel idea in computing the flow function when
the demands are known is redirecting the flow through
a spanning tree from the sinks back to the sources.
The problem then reduces to that of computing a cir-
culation in the network. To compute the maximum
flow when the demands are not known and all the
sources and sinks are on one face, a non trivial divide-
and-conquer is employed. An example where multiple
sources and sinks are useful is the case of computing

a perfect matching of a planar bipartite graph. In the
standard reduction from matching to flow one part of
the graph is connected to a source and the other part
to a sink. This reduction in general will result in a
non-planar graph, but can be utilized within our con-
text (the demand of each source and sink is exactly one
unit). This places the problem of computing a perfect
matching in a planar bipartite graph in NC.

The situation in computing a perfect matching in
planar graphs is very intriguing. Kasteleyn [Ka] had
already shown how to count the number of perfect
matchings in a planar graph, a problem that is # P-
complete in general graphs, and his methods can be
implemented in NC as well (see for example [Va]). Yet
computing a perfect matching in a planar graph is still
an open problem. This situation is interesting as it
contradicts the current view of the computational dif-
ficulty of counting the number of solutions vs. con-
structing a solution in combinaterial problems.

Johnson [Jo] showed how to compute in parallel a
maximum flow for the case of a single source, single
sink in a directed graph. We present an algorithm for
this case which improves on the number of processors
and is also very simple in comparison with the fairly
complicated algorithm of [Jo]. Johnson’s approach was
first to find the minimum cut, and then to compute the
flow function. We adopt a different approach; using
parametric methods, we can find the value of the max-
imum flow and then, the computation of the flow func-
tion follows easily. Our algorithm runs in O(log® n)
time using O(n'-®) processors and hence, improving
upon [Jo] whose running time is O(log® n) using O(n*)
processors or, O(log® n) using O(n%) processors. Our
results improve also the best parallel bounds for the
case of an undirected graph which were O(log2 n) us-
ing O(n®) processors [HJ,Jo].

In light of our results, the following open problems
may be considered: (i) Compute the maximum flow
when the demands are not known. (i1) Compute a min-
imum cost circulation in a planar graph. (iii) Compute
a perfect matching in a planar graph. (iv) Compute a
multicommodity flow in a planar graph; even the re-
stricted case when the sources and sinks are all on one
face 1s open.

2 Previous results in planar flow

All the results referred to in this section deal exclu-
sively with the single source, single sink flow problem.
I'ord and Fulkerson [I'T] had already observed that
a minimum cut in a planar graph is equivalent to a
minimum weight cycle that separates the source from
the sink in the dual graph. They gave an O(nlogn)
time algorithm to compute the minimum cut when the

113

source and sink belong to the same face. Itai and
Shiloach [IS] showed how to compute the flow funec-
tion in O(nlogn) time and Hassin [Ha] gave a simple
algorithm to compute the flow function when the mini-
mum cut is known. His algorithm can be implemented
in O(n+/Togn) time using the method of [Ft] for com-
puting shortest paths in a planar graph.

Itai and Shiloach [IS] also gave an algorithm to comi-
pute the maximum flow in an undirected graph when
the source and sink do not necessarily belong to the
same face. Its running time was O(n%logn). This was
improved by Reif [Re] who gave an O(nlogn) time
algorithm to compute the minimum cut in an undi-
rected planar graph. Only Ilassin and Johnson [HJ]
completed the picture by giving an O(nlog?n) time
algorithm to compute the maximum flow in an undi-
rected graph by generalizing the ideas of [Ha] and [Re].
The running time of their algorithm can be improved
to O(nlogn) time through the methods of [Fr] for com-
puting shortest paths in a planar graph. (An alterna-
tive algorithm for computing the minimum cut in an
undirected graph was given by [JK]).

Computing the maximum flow in planar directed
graphs is more difficult as it is not clear how to reduce
the problem of computing a minimum weight cycle to
that of computing a minimum weight path. Johnson
and Venkatesan [JV] gave an O(n!®logn) time algo-
rithm to compute both a minimum cut and a maximal
flow.

In the course of the evolution of efficient algorithms
for planar flow, the computational difficulty alternated
between searching for the minimum cut vs. computing
the flow function when the minimum cut is known.

It is easy to implement in parallel the algorithm
of [HJ] for undirected graphs and its complexity is
O(log® n) time using O(n®) processors. (The details
are given in [Jo]). As for directed planar graphs, an
algorithm that first computes the minimum cut, and
then the flow function, was given by Johnson [Jo]. Its
complexity is O(log® n) time using O(n*) processors
or, O(log® n) time using O(n®) processors.

3 Terminology and preliminaries

Let G = (V, E) be a planar directed graph where V
is the vertex set and E is the edge set. The graph
partitions the plane into connected regions called faces.
For each edge e € E, let D(e) be the corresponding
dual edge connecting the two faces bordering e. Let
D = (F, D(E)) be the dual graph of G where F is the
set of faces of G and D(E) = {D(e)|e € E}. The dual
graph is planar too, but may contain self loops and
multiple edges. We sometimes refer to the graph G as
the primal graph.

aon T ot ;

There is a 1-1 correspondence between primal and
dual edges and the direction of a primal edge e induces
a direction on D(e). We use a left hand rule: if the
thumb points at the direction of e, then the index finger
points at the direction of D(e). For a vertex v, in(v)
(out(v)) denotes the incoming (outcoming) set of edges
into (from) v.

A simple cycle ep,c1,.--,ci is a set of vertices such
that: (i) for every 0 < i < k, ¢; and ¢;41 (mod (k+1))
are adjacent. (ii) For every 0 < 4,5 < k, ¢; # ¢;.
In a directed cycle, for every i (mod k), ¢; is oriented
towards ¢;41. In an undirected cycle, this property does
not necessarily hold.

Associate with each edge ¢ € E a capacity c(e) >
0 and let S = s1,...,5 and T = #;,...,1; be two
sets of distinguished vertices, called sources and sinks
respectively. A function f : B — Z is a legal flow
function if and only if:

(i) Yee E : 0 < f(e) < c(e).

(ii) Vv € V- {S! T} : Zeein(v] f(&) = Ze&out(u) f(e)

In the maximum flow problem, we are looking for a
legal flow function that maximizes the amount of flow
entering T" (or leaving S). The amount of flow entering
the sink is also called the value of the flow function.
A natural generalization of the flow problem is when
edges have a lower bound different from zero on their
capacity; this lower bound may be either negative or
positive and the capacity of an edge in that case will
be denoted by [a,b] where @ < b. A circulation is a
legal flow function where condition (ii) is applied to
every vertex in the graph, i.e., there are no sinks and
sSources.

The flow on a dual edge D(e) is always equal in value
and direction to the flow on the corresponding primal
edge e. Let the output flow at source s; be denoted by
and the input flow at sink ¢; by [#;|. These inputs
and outputs are also called demands.

We have the following equivalence rules that connect
the orientation of an edge e = (v — w), the sign of its
flow f(e), and the sign of the lower and upper bounds
on its capacity.

8¢

1. The edge v — w with flow f(e) is equivalent to
the edge v «— w with flow —f(e).

2. The edge v — w with capacity [a,b] is equivalent
to the edge v «— w with capacity [—b, —a].

3. Let e; and es be two parallel edges that are ori-
ented in the same direction with capacities [a, b1]
and [a9, bo] respectively. The two edges can be re-
placed by one edge with capacity [a1 + a2, by + b]
and flow f(e1) + f(ea).

114

In the paper, the capacity of an edge may sometimes
be also referred to as its weight.

The residual graph is defined with respect to a given
flow. Let e = (v,w) be an edge with capacity [a,]
and flow f. In the residual graph, e is replaced by two
darts with capacities [0,5— f] and [0,a + f].

A special case of planar flow is when the source and
sink are on the same face. These graphs are called
{s,t}-planar graphs.

A potential function p : F — Z is defined on the
faces of a planar graph. Let e be an edge in the graph
G, and let D(e) = (g,h) be its corresponding edge
in the dual graph such that D(e) is directed from g
to h. The potential difference over e is defined to be
p(h) — p(g). The following proposition, proved in [Ha]
and [Jo], can be easily verified.

Proposition 3.1. Let C = c1,...,cx be an undi-
rected cycle in the dual graph and let fi,..., fi be
the potential differences over the cycle edges. Then,

k
Zf,'(e) = 0.

It follows from the proposition that the sum of the
potential differences over all the edges adjacent to a
primal vertex is zero. A potential function is defined
to be consistent if the potential difference over each
edge is not larger than its capacity. Such a potential
function induces a circulation in the graph. The use
of a potential function as a mean of computing a flow
was first suggested by Hassin [Hal.

4 Computing the flow function

In this section we assume that the demand at each
source and sink is known and give an efficient algorithm
that computes the flow function in this case. The key
ideais to compute a potential function on the faces of
the planar graph such that the flow in each edge is the
potential difference of the two faces that border the
edge.

To do that, we first compute in the graph a spanning
tree T. In the computation of the spanning tree, the
orientation of the graph is ignored. Qur purpose is to
add new edges to the graph, parallel to the edges of
T, such that a maximum flow would be equivalent to
any circulation. Intuitively, we use the spanning tree
to redirect the flow from the sinks back to the sources.

An edge e € T separates the tree into two parts
called right and left where T,, the right part of the
tree, is adjacent to the tail of e. Let w, be 3, . [sil—
Si.er, til. A new edge ¢’ parallel to e is inserted with
capacity [we,w,] and it is directed from T}, to T;. (It
returns the flow from 7, to T;). This is equivalent

to adjusting the capacity of e by the value [w,,w,].
Assigning a lower bound which is equal to the upper
bound forces the flow on e’ to be equal to w,. This
construction is repeated for each e € T" in parallel and
the new graph that results is denoted by G’.

We claim that a maximum flow in G is equivalent
to a circulation in G’. This circulation is computed as
follows: pick an arbitrary face in the dual of G’ as a
root and compute all shortest paths from it; the dis-
tance of a face u from the root, bfs(u), is defined to be
the potential function. For the purpose of computing
the shortest paths, an edge v — w whose capacity is
[a, b] is decomposed into two edges: v — w with weight
b and v — w with weight —a.

Sketch of Algorithm (I):

L. In the graph GG, compute a spanning tree 7. (The
orientation of (G is ignored in the computation of the
spanning tree).

2. For each edge e € T', compute its return flow: it is
equal to the flux between the two parts of the tree

which is we = 37, [sil = 2 er, [t

3. For each edge ¢ € T adjust its weight in G’ by
adding [w., w.] to its weight. Let D' = (F', D(&'))
be the dual graph of G'.

4, Pick an arbitrary face in F’ and compute all shortest
distances from it in D’.

5. Vv € F': p(v) — bfs(v)

6. Ve € E : f(e) — (p(v) - p(u)) — w, where v and
u are the faces that border ¢ and D(¢) is oriented
from u to v. (w. =0ife g T).

4.1 Proof of correctness

We have to show that the flow function that we com-
pute is legal and maximal. The following lemmata
which imply Theorem 4.4, are based on the assumption
that there exists a flow function satisfying the demands
given as input to the algorithm.

Lemma 4.1. Every circulation in G' induces a maz-

tmal flow f in G.

When the shortest paths are computed, define the
weight of a directed cycle to be the sum of the weights
of its edges.

Lemma 4.2. In D', the dual graph of G', a consistent
potential function p exisis if and only if there are no
negalive weight cycles.

115

Lemma 4.3. A circulation in a planar graph implies
the exisience of a consisient polential funciion on its
faces.

Theorem 4.4. The algorithm computes a mazimal
legal flow in the graph. Iis sequential running time is
O(n'*3); its parallel running time is O(log” n loglog n)
using O(n'-®) processors in the CREW PRAM model.

5 Maximum flow on the disk

In this section we describe an algorithm for computing
a maximum flow when the sources and sinks are all on
the same face and the demands are not known. With-
out loss of generality, one can assume that the sources
and sinks are on the outer face, and that they alter-
nate, namely there are no two consecutive sources or
sinks. These two properties will be maintened during
the recursive calls to the algorithm.

The Ford-Fulkerson minimum cut with respect to a
given maximum flow is the set of edges inbetween W,
the vertices reachable in the residual graph from the
sources, and V — IW. Suppose the vertices of the outer
face are separated into two consecutive sets L and R;
the maximum flow f from L to R is defined to be the
flow that maximizes the input of the sinks in R.

The main idea of the algorithm is the following. Di-
vide the vertices of the outer face into two sets (as
aforementioned) and compute the maximum flow from
L to R. The Ford-Fulkerson minimum cut associated
with this flow decomposes the disk into regions, and
in each region, the maximum flow is computed recur-
sively. In the last step of the algorithm, the maximum
flow is computed from R to L. We prove that when the
algorithm terminates, there are no augmenting paths.
Assume that the edges of the Ford Fulkerson minimum
cut are removed from the graph. A connected compo-
nent that does not contain either sources or sinks is
called an island. The next two lemmas explain how
the above decomposition into regions is achieved.

Lemma 5.1. After the mazimum flow from L to R is
computed, all the islands can be discarded.

Lemma 5.2. The dual of the Ford-Fulkerson min-
tmum cul with respect to f is a set of disjoint, non
nesting paths connecling pairs of faces adjacent to the
outer face. (Assuming the islands were discarded).

Let V denote the sources and sinks contained in a set
of vertices V. Let C denote the connected components
of G after the edges of the Ford-Fulkerson minimum
cut are deleted.

Corollary 5.3. A connected component ¢ € C cannol
contain both a seurce from L and a sink from R.

e Y 30¥ B

ol

We are now ready to present the outline of the algo-
rithm for computing the maximum flow.

Sketch of algorithm (II)

1. Divide the sources and sinks into two consecutive
sets, L and R, such that |L,| = |R,| and L contains
at least as many sources as R.

2. Compute the maximum flow from L to R and the
residual graph (' induced by this flow. Discard all
the islands from the graph.

3. Delete the edges of the Ford-Fulkerson minimum cut
and compute C, the connected components of G’;
recursively, compute the maximum flow in each ¢ €

C.
4. Add together all the flows computed.
5. Compute the maximum flow from R to L.

We now elaborate on the steps of the algorithm. It is
clear that in step 2, there exists a maximum flow from
L to Rin which the input of the sinks in L and the out-
put. of the sources in R are set to zero. Hence, all the
gources in L can be connected to a new vertex, a super
source, and all the sinks in R can be connected to a
new vertex, a super sink. The problem then reduces to
computing a maximum flow in an {s,¢} planar graph,
a graph in which both the source and the sink are on
the same face [FT",IS,Hal.

In step 3, the maximum flow in each ¢ € C is re-
cursively computed. Suppose for example that a con-
nected component ¢ contains sources from [L; then
all the vertices in ¢ that are adjacent to the Ford-
Fulkerson minimum cut (denoted U) become sinks.
Let U = uy,...,um and let the input of u; be g;. To
avoid step 3 from augmenting the flow entering the
vertices in U/, we connect them to a new sink w. For
each wu;, the capacity of the edge connecting it to w is
[9i, 9i] (the orientation is from u; to w). The sinks in
the set U do not function anymore as sinks and become
ordinary vertices.

The capacities of the edges in ¢ are the residual ca-
pacities with respect to the flow computed in step 2.
We now recursively compute the maximum flow inside
e. If a connected component contains vertices from
both L, and R, then there may be only two cases:
sinks from L with sources and sinks from R, or sources
from R with sinks and sources from L. When a maxi-
mum flow inside ¢ is computed, then in the first case,
we connect all the sinks that belong to L to a super
sink whereas in the second case, we connect all the
sources that belong to 2 to a super source.

In step 4, the flows computed in step 3 are disjoint
and hence can be added together.

1é

In the final step, we compute the maximum flow
from R to L, similarly to step 2.

In the following lemma, assume for the sake of the
proof that all edges are of unit capacity. If A is an aug-
menting path from some source s to some sink ¢, then
the edges in A are ordered according to their distance
from s.

Lemma 5.4. Assume that Steps 1-4 of Algorithm (IT)
have been performed. Obtaining the flow in Step § can
be described by a set S of augmenting paths with the
following properties: (i) For each edge e, the augment-
ing paths either always increase the flow on an edge, or
always decrease it. (i1) Each augmenting path crosses
the Ford Fulkerson minimum cui at most once.

Theorem 5.5. Algorithm (II) computes a maxi-
mum flow. Its running time is O(log® n loglog n) using

O(n'-®) processors.

6 Applications

The first application is computing a perfect matching
in a planar bipartite graph G = (A, B, F') where A and
B are the two parts of the vertex set. In the standard
reduction from matching to flow F is directed from A
to B, a source s is connected to all the vertices of A
and a sink t is connected to all the vertices of B. All
the edges in the reduced graph have capacity [0, 1] and
the saturated edges in a maximum flow constitute a
maximum matching in G. Obviously, this reduction
may in general destroy the planarity of the graph.

To compute the perfect matching efficiently, each
vertex in A becomes a source, and each vertex in B
becomes a sink. The demand at each source and sink
is exactly one unit. The sequential complexity of our
algorithm is O(n!*®) time and it matches the best se-
quential bound for computing a maximum matching in
a planar graph [LT]. In parallel, our result places the
problem of computing a perfect matching in a planar
bipartite graph in NC.

The second application is the improvement of the
algorithm of [Jo] in the case of a single source, single
sink in a directed planar graph. We present a simple
algorithm for this problem and also improve the pro-
cessor bound with respect to [Jo]. The approach taken
in [Jo] 1s first to find the minimum cut, and then to
compute the flow function. We employ a different ap-
proach. The obvious difficulty in applying Algorithm
(I) is that we do not know in advance the value of the
maximum flow (or the capacity of the minimum cut)
in the graph. To overcome that, we guess an initial
value f which is the sum of the capacities of the edges
leaving the source. The spanning tree that redirects
the flow from the sink back to the source is now a path

q from s to t and we construct G’ and D' according to
steps 1-3 of Algorithm (I).

If our initial guess was too large, then in the dual
graph of G’ where the shortest paths are computed,
there must be negative weight cycles. (Otherwise, a
circulation can be computed and it would correspond
to a flow whose value is f). Hence, our aim is to find
the largest value of f such that the dual graph of G’
will not contain negative weight cycles. We can as-
sume without loss of generality that a flow of value
zero exists. The next lemma is not hard.

Lemma 6.1. Assume that the dual graph D’ was con-
structed according to steps 1-8 in Algorithm (1) and let
Wi be the weight of any simple cycle C in D’ when the
initial guess 1s f. Then Wy > Wo — f.

The computation of the shortest paths proceeds by
successive squaring of the adjacency matrix A of G’
until we get A™. Let k be the first iteration in which a
negative entry appeared in the diagonal of A% and let
[be the most negative entry of the diagonal in that it-
eration. We claim that by updating f by [and starting
the computation of the shortest paths from the begin-
ning, A?" will not have negative entries anymore in its
diagonal. Hence, at most logn computations of the
shortest paths algorithm suffice to compute the maxi-
mum flow function. Once the flow function is known,
computing the minimum cut reduces to a reachability
computation in the residual graph. The next lemma
establishes the claim.

Lemma 6.2. If the value of the flow is updated from
fto f+1, then AZ" has no negative entries.

To improve processor bounds, the same technique
can be applied with the method of parallel nested dis-
section of [PR].

Theorem 6.3. Compuling the mazimum flow in
a directed (or undirected) planar graph with a single
source, single sink can be done in O(log® nloglogn)
time using O(n'®) processors. The sequential running
time 1s O(n'® logn).

Notice that the sequential running time matches the
result of [JV].

References

[FF] L. R. Ford and D. R. Fulkerson, Mazimal flow through a
network, Canadian Journal of Mathematics, Vol. 8, pp.
399-404 (1956).

[Fr] G. N. Fredrickson, Fast algorithms for shortest paths in
planar graphs, with applications, Siam J. on Computing,
Vol.16, pp. 1004-1022 (1987).

(Ha]

138)]

[GSS]

K]

(Iv]

[IKa]

[KUW]

[LT]

[Me1]

[Me2]

[MVV]

(PR]

[Ra]

(Re]

(Va]

7y

R. Hassin, Mazimum flows in (s,t) planar networks,
Information Processing letters, Vol. 13, page 107 (1981).

R. Hassin and D. B. Johnson, An O(nlog?n) algorithm
for mazimum flow in undirected planar networks, Siam
J. on Computing, Vol. 14, pp. 612-624 (1985).

L. Goldschlager, R. Shaw and J. Staples, The mazimum
flow problem is log space complete for P, Theoretical
Computer Science, Vol. 21, pp. 105-111 (1982).

A. Itai and Y. Shiloach, Marimum flow in planar net-
works, Siam J. on Computing, Vol. 8, pp. 135-150
(1979).

D. B. Johnson, Parallel algorithms for minimum cuis
and mazimum flows in planar nefworks, Journal of the
ACM, Vol. 34, (4), pp. 950-967 (1987).

L. Janiga and V. Koubek, 4 note on finding cuts in
directed planar networks by parallel computation, Infor-
mation Processing Letters, Vol. 21, pp. 75-78 (1985).

D. B. Johnson and S. Venkatesan, Using divide and
conguer to find flows in directed planar networks in
O(n'®logn) time, Proceedings of the 20th Annual
Allerton Conference on Communication, Control and
Computing, University of Illinois, Urbana-Champaign,
M., pp. 898-905 (1982).

P. W. Kasteleyn, Graph theory and crystal physics,
Graph Theory and Theoretical Physics, Ed.: F. Harary,
Academic Press, New York, pp. 43-110 (1967).

R. M. Karp, E. Upfal and A. Wigderson, Constructing
a perfect matching is in random NC, Combinatorica,
Vol. 6, pp. 35-48 (1986).

R. I. Lipton and R. E. Tarjan, Applications of a planar
separator theorem, Siam J. on Computing, Vol. 9, pp.
615-627 (1980).

N. Megiddo, Optimal flows in networks with multiple
sources and sinks, Mathematical Programming, Vol. 7,
pp. 97-107 (1974).

N. Megiddo, A geod algorithm for lezicographically op-
timal flows in multi-terminal terminals, Bulletin of the
AMS, Vol. 83, pp. 407-409 (1977).

K. Mulmuley, U. V. Vazirani and V. V. Vazirani, Match-
ing 15 as easy as malriz inversion, Combinatorica, Vol.
7, pp. 105-113 (1987).

V. Pan and J.H. Reif, Fast and efficient parallel solution.
of linear systems, to appear, Siam J. on Computing.

V. Ramachandran, Flow value, minimum cuts and maz-
imum flows, An unpublished manuscript.

J. H. Reifl, Minimum s — t cut of a planar undirected
network in O(nlog® n) time, Siam J. on Computing,
Vol. 12, No. 1, pp. 71-81 (1983).

V. V. Vazirani, NC algorithms for computing the num-
ber of perfect maichings in K3 z-free graphs and related
problems, Scandinavian Workshop on Algorithm Theory
(SWAT), Helmstad, Swecen (1988).

