
Re from OF COMPUTER SCIENCES
Reserved by Academic Press, New York and London

13, No. 3, December 1976
in

Riemann's Hypothesis and Tests for

GARY L. MILLER

Department of Computer University of Waterloo, Waterloo, Ontario, Canada

Received October 20, 1975; revised January 30, 1976

In this paper we present two algorithms for testing primality of integer. The

first algorithm in steps; while, the second runs in n) step but assumes

the Extended Riemann Hypothesis. We also show that a class of functions which

includes the Euler phi function are computationally equivalent to factoring integers.

INTRODUCTION

Two classic computational problems are finding efficient for: (1) testing

primality (deciding whether an integer is prime or composite), (2) factoring integers.

The best upper bounds on the number of steps needed by algorithms for (1) or (2)
are due to Pollard Pollard proves an upper bound of steps for testing

primality and an upper bound of steps for factoring, where is any constant

>O. We give an algorithm which tests primality and runs in steps. By slightly

this algorithm and assuming the Extended Riemann Hypothesis (ERH)

we produce an algorithm which tests primality and runs in steps. Thus

we show primality is testable in time polynomial in the length of the binary representa-

tion of Using the terminology of Cook and Karp we say primality is testable

in polynomial time on the ERH.

One of the values of having a fast algorithm for factoring integers is that then

many other computational problems could be done quickly. For example, the Euler

phi function can obviously be computed quickly given the prime factorization of II.

As a of the work on tests for primality we show that in fact the converse

is true, assuming the ERH. Thus, computing the Euler phi function is

equivalent to factoring, assuming the ERH.

In the last section we discuss the relationship between recognition problems and

computational problems. We show that a class of functions which includes prime

factorization and the Euler phi function has the property that the graph of each

function in this class is recognizable in polynomial time on the ERH.

* Research sponsored by NSF This paper is a Dissertation submitted

to the University of California, Berkeley; a preliminary version was presented at the 7th ACM

Symposium on the Theory of Computing.

Copyright 1976 by Press, Inc.
rights of reproduction in any form reserved.

TESTS FOR PRIMALITY 301

TESTS FOR PRIMALITY

Our main goal in this section is Theorem 2, but first we make precise the notion

of a test for primality in steps.

DEFINITION. We say an tests primality in if there exists

a deterministic Turing machine which implements this algorithm, and this machine

correctly indicates whether n is prime or composite in less than K steps, for

some constant

Using this definition we can state Theorem 1:

THEOREM 1.

If we then assume the Extended Riemann Hypothesis (see the Appendix), Theorem 1

can be vastly improved. Since the running time is small it more convenient

to state the running time in terms of the length of the binary representation. Thus,

let n denote the length of the binary representation of n. Using this notation the

main theorem is:

There exists an algorithm which tests primality in steps.

THEOREM 2 (ERH). There exists an algorithm which tests in

n log log n steps.

The difficult step in the proof of the above two theorems is in demonstrating

that there is a “small” quadratic nonresidue. In Theorem 1, we appeal to the work

of Burgess, who uses proof of the Riemann Hypothesis over finite fields,

while in Theorem 2 we use reduction of the size of the quadratic

nonresidue to the Riemann Hypothesis.

Throughout the paper we will use the following conventions or notations:

Notation. We will assume that n, the number to be factored or tested for primality,

is odd, for the even case easily can be reduced to the odd case. We let q vary over

odd primes, and (a,b) denote the greatest common divisor of a and b. The

of in n will be denoted by =

We will also need the following functions:

DEFINITION. = be the prime factorization of the odd number n.

We let “prime factorization” denote the function from the natural numbers to some

fixed appropriate coding of the prime factors and their exponents. We also consider

the following three functions:

(i) = - 1) - +-function),

(ii) = - 1), - (The Carmichael A-function),

(iii) = - 1, - 1).

302 GARY L. MILLER

Motivation of

Fermat proved that for p prime

1 modp if = 1.

Therefore, if for some a, 1 < a n,

1 mod n,

then n must be composite. Now, mod n can be computed in n

steps (where denotes the cost of multiplying two numbers of length n

using standard techniques described in A possible technique for recognizing

composite numbers might be to systematically search for an a satisfying (1). This

technique could for composite n for two reasons:

There could be composite n which satisfies Fermat’s Congruence. That is,(a)

1 mod n for all (a,n) = 1.

(b) The first a satisfying (1) could be very large, which would give us an in-
efficient method.

The rest of this section will be devoted to handling these two problems. We start

by showing that in fact some composite numbers satisfy Fermat’s Congruence.

THEOREM(Carmichael if n - 1.

For example, the composite number 561 = 3 11 17 is such that =

16) = 80, and 80 divides It follows that (a, 561) = 1 implies

1mod 561 for all natural numbers a. Thus there are composite numbers

which satisfy Fermat’s Congruence. At first these numbers seem more to

recognize as composite. Not only will we recognize them as composite, but we will

quickly find a divisor. By what we have done it would seem that the obvious approach
would be to use Fermat’s test to recognize composite n such that n - 1 and

some other test for n such that n - 1. Instead we shall separate the composite

numbers into sets according to whether n - 1 or n - 1.

Since the algorithms used in Theorems 1 and 2 are essentially the same we shall

define the following class of algorithms:

DEFINITIONOF A,. Let be a computable function on the natural numbers.

Check if n is a perfect power, n = where 2. If n is a perfect

Carry out steps for each a If at any stage (i), (ii), or

We define on input n as follows:

power then output “composite” and halt.

holds output “composite” and halt:

(1)

(2)

TESTS FOR 303

(ii) 1 mod

(iii) mod - 1, n) # 1, for some 1 - 1).

(3) Output “prime” and halt.

Note. as defined above is a simplified version of the algorithm needed to get

Theorem 2. A, will give an algorithm for testing primality in n steps

ERH.
Before we prove Theorems 1 and 2 we must develop the technical hardware to

define and to show that there is an a which
We start by considering those composite numbers which satisfy n - 1.

In the following lemma we give a characterization of some of the which satisfy

1 mod n.

LEMMA If - 1 then there q so that:

(1) p p - 1 - p - n - 1 for some integer m 1;

(2) if a is any nonresidue mod p then 1 mod n.

See the Appendix for the definition of qth nonresidue modp and the definition .
of index of a mod p, which we will denote by ind, a, defined only when - 1)).

Proof of Lemma Let be the distinct prime divisors of n. Thus =

- 1, - - which implies - 1 - 1 for some By setting

= we have n and p - - 1. Since - 1 - 1, there must exist

a prime q and an integer m I so that - 1 and - 1. and

satisfy condition (1). We next show that p, satisfy condition (2).
Suppose the lemma is false, I mod Since p we have

Let be a generator modp; then by (2) we have 1 modp. Since

modp implies p - 1 we have

p - 1 (ind, -

Now a is a pth nonresidue implies ind, a. Thus

and

Applying (4) to (3) gives - 1, which is a contradiction.

Lemma motivates definition of the first qth nonresidue modp.

304 GARY L.

DEFINITION. Let be the least a so that a is a qth modp defined

only when q p - 1. Using index arguments it is not hard to show that q) is

prime.

THEOREM (Ankeny q) =

Using Ankeny's and Lemma 1 we have that if - then there

exists an a such that 1mod n.

We now return to a discussion of composite numbers which have the property that

-1. Let be the distinct prime divisors of n; then by the definition

of A' we know that = - l),..., - 1)). Thus for some

1 i m, - 1). We next make a distinction between two types

of numbers as follows:

DEFINITION. Let be the distinct prime divisors of We say is of

type A if for some 1 j m, > - 1). On the other hand, we say

n is of type if = - 1) =
Digressing for a moment to motivate the next three lemmas, suppose we have a

composite number n =pq. Suppose further that we have a number m so that

-

m 1 mod q and modp.

The first of the restrictions in (5) implies q m - 1 and the second implies

1mod n. Thus q (m- n). If we quickly compute some m satisfying

we would quickly know a divisor of In the lemmas we develop a

method for finding satisfying (5). We say b has a nontrivial GCD with if (b, n) 1
or n.

LEMMA 2A. Let be a composite number of type A q

= - 1) - 1). Assume further that 0 < a < so that =

-1 where is the symbol Appendix),then either a mod - 1

has a GCD n.

Suppose a has a trivial GCD with Since 1 a < n it must be that

(a, = 1. Since q - 1 and - 1) < we have q - 1

thus
q,

Since 1mod p then mod p. Suppose 1 mod p
then p - 1 (ind, which implies that ind, a is even. On the other hand,

=-1 implies ind, a is odd (see the Appendix). So

FOR 305

By mod n) - 1. By mod - 1 since is an odd

prime. Thus mod - 1 , 1, n.

LEMMA 2B. be a composite number at least

say and Further suppose is of type B and 1 < a < is so that =-1.
Then,either a or mod - 1 has a divisor

Proof. As in the proof of Lemma we assume that a has a GCD with

thus (a, = 1.Without loss of generality we assume that =-1 and = 1.

techniques similar to above we show -1modp and

1 mod p. The rest of the argument follows from the above proof.

LEMMA 3. If + 1 then mod

Proof. Since 1 m llows that modp. We consider

(1) If 1modp then 1modp, since by our choice of and

(2) If, on the other hand, we note that:

the two possible values of separately:

the fact that m we have

Since is odd,

Using and 3we seethat: if n is a type A compositenumber, - 1,
and a 2) then either a or mod - 1 , n) 1, For type B
numbers we will need the following definition.

be the so that where

is the Jacobi symbol and is defined only when Note again that
is prime.

THEOREM (Ankeny

Ankeny does not actually state the case but it follows without‘any

in his argument. We only need to use the stronger form of Selberg’s

referred to as Lemma Also see for the statement

theorem.

By Theorems of Ankeny we can pick

1 that

of Theorem 2 (weak form).

I I

Considkr = n

306 GARY L. MILLER

Analysis of Running Time

(1) A, must first check to see if is a perfect power which will take
steps. We leave it to the reader to verify this bound.

(2) A, must check (i), (ii), and (iii) for different a’s.

puted

least

Check (i) takes, say steps.

Check (ii) takes steps.

Check (iii) takes + steps since GCD can be

in steps, see and 1 < k < Now multiplication takes at

steps, thus check (iii) takes at most n n steps.

So A, runs in steps. If we use the Schonhage-Strassenalgorithm

for multiplying binary numbers, = log log log and we have

log log log steps.

of Correctness of A, . If is prime A, will indicate correctly that n is prime,

so we need only show that A, recognizes composite n. If is composite it will fall

into one of the following three cases.

(1) is a prime power,

(2) - 1,

(3) - 1 and is not a prime power.

Case 1. If is a prime power then is a perfect power and in this case A, will

indicate that A, is composite.

Case 2. If - 1 then by Lemma 1 we have a and such that if a =

then 1mod Thus we need only note that which
follows by our choice off.

3. If n - 1 and is not a prime power:

(A) Suppose is of type A then by Lemmas 2A and 3 we can choose and k
such that if a = 2) then either a or mod n)-1,n)

1,n. Since 2) will be recognized as composite by either step (i) or

that is not a perfect power, we can choose p, and k - 1) so that if

a = then either a or mod - 1, 1, Since

A, will indicate that is composite.

(B) Suppose is of type B. Then by Lemmas 2B and 3 and the assumption

To prove Theorem 1 we need the following results of Burgess.

.

TESTS FOR 307

Proof of 1. By the Theorem of Burgess we can pick an integer 1

so that

Set = Consider A, where = Since runs

in steps we need only show that A, tests primality. If n is prime then A,
will indicate that is prime.

Suppose that is composite. Then must lie in at least one of the following four

Case 1. is a prime power.

Case 2. has a divisor

3. - 1, has no divisor

By Lemma 1 there exist primes p , such that if a = then n.

So we need only show that a = We have

from above. Since is composite and for all a

p p .

Substituting (6)into (5) we have

a since 1.

Case 4. - 1 and n has no divisor and is not a prime power.

(A) Suppose is of type A. Then as in Case 3A of Theorem 1 we need only
show a = 2) where p Since in this case (5) and (6)hold we get

(B) Suppose is of type B. Since is not a prime power has at

distinct prime divisors, say We need to show that which

follow if we show pq

Claim. (see

308 GARY MILLER

Suppose =pq where p < q. Now q - 1 pq - 1, since - But this

implies q - 1 p - 1. Hence q p, which contradicts the assumption that q.

By claim = where I 1. Since we have I

to A,

First note that in step (2) of A, need not vary over all numbers but only

prime numbers Since the number of prime is by the

prime number theorem,we have the upper bound for Theorem 2 of log log

steps.

(1) If is perfect power output composite.

(2) Compute where is the ith number and is that
< Compute Q, so that - 1 = and Q is odd. Let = 1

and proceed to (ii) (let denote throughout).

(i) If i <m set i to + 1. If i = then output and halt.

(ii) If a n then output and halt.

If mod 1 then output and halt.

(iv) If mod = 1 go to (i).

(v) If mod = n - 1 go to (i).

Output “composite” and halt.

Compute mod n, mod mod

Set = mod 1).

As in the proof of Theorem 2 (weak form) the running time of A, is dominated

by step wheref is as before. Essentially, A, must compute the following:

(1) the first primes, which will take steps .by the sieve
method,

(2) where a varies over the first m primes, which will take
steps. Thus, the running time of A, is n log log

To show that A, tests primality we need only reconsider Case 3:

Case 3. - 1 and is not a prime power.

(A) Suppose n is of type A with = - 1) > - 1) and
q Let a = 2) (thus a is prime). Thus we need show that either

step (ii), (iii), or (vi) outputs “composite” for this a. So suppose a and

1 mod We show that A, reaches step If 1 modp then 2 S, since

= -1 and p is odd. Since p we have 1mod n. Thus will reach

TESTS FOR PRIMALITY 309

step (v). By Lemmas 2A and 3, we know there exists a so that 1mod q and

-1 modp. Suppose -1 mod then - 1 and q. Now

-1 modp implies = On the other hand, 1mod q and

-1 mod q implies > Thus by contradiction -1 mod Hence

A, reaches step (vi).

(B) Suppose is of type B. The proof in this case follows the argument in
Case A.

k

RELATIVE COMPUTATIONAL COMPLEXITY

In this section we discuss the relative computational complexity of certain functions

from number theory.

To begin, consider the following example: The Euler phi function, is defined

to equal the number of integers between 1 and which are relatively to n.

Computing via this definition, checking each number less than and seeing

if it is relatively prime to n, requires at least n steps. Thus this method requires

an exponential number of steps in terms of Now given the prime factorization

of say - we can evaluate via the product

= - 1) - 1)

in at most log, n multiplications, thus, in time at a polynomial in terms of

We can restate the product formula from a complexity point of view as: If the prime

factorization of could be computed “quickly” then could be computed “quickly.”

We now proceed to formalize the above statement and prove its converse, assuming

the ERH.
Definitions for reducibility amongst recognition problems (sets) have been

introduced by many authors, see in particular Cook [6] and Karp we are

primarily concerned with functions, we introduce the notation of functional
reducibility.

DEFINITION. Given functions and g we say that is time reducible

to g denoted f g, if there exists a Turing machine which on inputs and

computes in steps for some constant We say is polynomial time

equivalent to g g and g f and denote this relation by f g.

The above definition of polynomial time reducible is very strong. It says that

if two functions are polynomial time equivalent then upper (lower) bounds on their

running time differ by at most an additive polynomial uniformly. In a later example

we shall make a definition of polynomial time reducibility which need only preserve

the asymptotic running times.

We now formalize our statement about function.

310 GARY L. MILLER

4. Thefunctions+, A, A’ are time reducible to

A’ “prime factorization.”

p “prime factorization’’ follows by our discussion in the introduction

of this section. To show that A, A’ are reducible to prime factorization we note the

following two facts about the LCM function:

(1) b) = a b),

(2) = b), c).

By Lemma 4 we have that if the Euler function cannot be computed in polynomial

time then neither can we factor integers in polynomial time. But it may be the case

that computing can be done-quickly while factoring is difficult. The next lemma

shows that all functions from a certain class which includes are no easier to compute

than prime factorization, assuming the ERH.

LEMMA 5 (ERH). Let g be any function such that

I

(2) = n for some k.

Then “primefactorization“

Check if n is a perfect power.

(2) Carry out steps (i) and (ii) for each a (where f is as in the proof

Consider the following procedure on n and

of Theorem 1):

(ii) mod n)- n) 1 for some a k

I

If then we know by arguments similar to Case 3 of the proof of Theorem 2
that this procedure will produce a divisor of n if is composite. If we set =

then in n n steps we will either know that n is prime or that

is a divisor of n, for some n’. If in the above procedure we replace by n’ then

since n’ n implies Thus in n’ steps we

will either know n’ is prime or n” is a factor of n’. Iterating this procedure at most

times we will have all prime factors of n. Thus, we get a prime factorization

n n ())steps.Since = it runs n n

steps.

Thus we have the following theorem.

THEOREM 3 (ERH). The functions A, A’, and “prime factorization” are all

polynomial time equivalent, “prime A’.

TESTS FOR PRIMALITY 311

Another problem related to factoring numbers is finding the period of a rational

number. We know that every rational number is periodic in any base. Thus the

function (a,b) the minimum period of l / a base b is well defined. It

does not seem possible to prove equivalence between and factoriza-

tion” using the previous definition of reducibility. Thus we introduce a weaker

definition of reducibility similar to Turing reducibility from‘recursion theory.

DEFINITION. Given functions f and g we say that f is time Turing

reducible to g denoted f g if there exists a Turing machine the following
properties:

(1) the machine has a distinguished tape on which it can call for values of g,
where the cost of calling for is m + steps;

(2) the machine computes f (n)in steps for some constant

We say f and time Turing iff and f denoted

In Lemma 5 we made certain restrictions on the growth of the function g. We

required that the length of g grow by at most a polynomial in terms of the length

of its argument. We shall say that such a function has syntactic polynomial growth.

f

LEMMA 6. the class of with syntactic growth the relations

and are transitiverelations. Thus and are equivalence relations;

(3) the of computable in polynomial time forms an equivalence

, and have the following properties:

(1)

f

class mod and mod

period and prime factorization.
Using our second definition of reducibility we can now prove equivalence between

THEOREM 4 (ERH). “period” is polynomial time Turing .equivalent to “prime

factorization,” “period” “primefactorization.”

A standard theorem in number theory is (see Hardy and Wright

if a = where b) = 1 and u consists only of primes which divide b then

b) = 1 mod That is, the b) equals the order of

mod v.

We start by showing that “period” “prime factorization.’’ Assume the input

is [a, The machine first computes u, v as above by successive applications of

GCD. For completeness we give a possible method. Consider the sequences ,
and defined by = a, = and =

Proof.

312 GARY L. MILLER

Now a = and consists only of primes dividing b. If then

n i = a then = and = The machine now calls for the

torization of from which it computes It now calls for the prime

say We know by Theorem, see

f b mod divides Thus we need only determine which of the

his can be done by computing the satisfying

1 mod for each i

It follows that the order b mod equals

‘prime factorization” be as in the proof of Theorem 2
that has no factors between 2 andmber be factored by n.

just factor them out.

Let = 2), Then

Since i) for 2 i we have hence

Suppose Then p - 1 for some n. Let a be the minimum qth

nonresidue modp, a = n we have the following:

Extended Riem ypothesis a Thus a

(2) order of a modp since a is a nonresidue modp and p - 1.

Since n) = 1 by (1)
From these two facts

Since satisfies the hyp factorization” h. h

“period” since we can define a machine which simply calls for 2),
)) and computes their This machine runs in time

since = by Lemma 6 we have “prime factorization”

“period.”

FACTORING AND

Probably the most interesting open computational complexity theory

showed that a surprising number of
. One recognition problem which was not

was the set of composite numbers, {composites). Pratt

ers, {primes}, is in NP. Thus it unlikely

r this would imply that NP = where

ements are in NP. Further, by Theorem 2
ERH.These two facts to a certain extent settle

the relation of {composites) to the P-NP question. The complexity of factoring seems

more elusive.

TESTS FOR PRIMALITY 313

In light of Pratt’s work it seems natural to view factoring in terms of nondeter-

minism, not as a recognition problem, but rather as a function which is nondeter-

ministically computed. In the next definition we introduce the notion of deterministic

(nondeterministic) polynomial time computable functions.

DEFINITION. Let denote those total functions over the natural numbers

computable in polynomial time. We say a nondeterministic machine computes f
in T steps if the machine on input has some path which halts and any path which

halts must output in steps. Using this definition, we let NP* denote

those total functions over the natural numbers computable in nondeterministic

polynomial time.

As in the introduction of this section, we let P (NP)denote those subsets of the

natural numbers recognizable in deterministic (nondeterministic) polynomial time.

It is clear that the set of composite numbers is contained in NP, {composites) NP.

Pratt proved the following surprising result:

THEOREM [

Using Pratt’s result we get the following corollaries:

{primes} NP.

COROLLARY

Proof.

“primefactorization”

The machine simply guesses a prime factorization, recognizes each of the

factors as prime and then outputs the “prime factorization.’’ Since there are at most

logn factors the machine runs in polynomial time.

COROLLARY 2.

Proof. Since all four functions are polynomial time Turing reducible to the

function “prime factorization” and ”prime factorization” is in we need only

show the following lemma:

LEMMA 7. Iff g and g NP* then f

Let be a machine which computes f via the method given by

Let M‘ be a machine which computes g nondeterministically in polynomial time.

To construct a machine which computes f we simply replace the calls for values

of g in M by computations using M . Now the new machine runs in polynomial

time since M can call for at most a polynomial number of values of g each of which

can be computed in polynomial time.

At this time we introduce two different constructions for producing recognition

problems from functions and examine their properties in light of the results of the

314 GARY L. MILLER

preceding sections. Let (a, b) be some encoding of the ordered pair a, as a natural

number which is “efficient,” that is, we can encode and decode in time.

DEFINITION.Iff is a total function over the natural numbers, we let the graph

off be

= is a natural number)

Using these two definitions we get the following lemmas. (We let SPG denote

those total with syntactic polynomial growth, defined in the previous

section.)

LEMMA 8. Iff SPG then the statements are equivalent:

(3)‘ f

(4)

The cases (2) (3) (4) and (3) are straightforward. We

prove the case (4) (3). Since NP there exists a nondeterministicmachine

which computes the characteristic function of in polynomial time. Since is in

SPG there exist constants and such that n The value of lies

between 0 and Thus, using a binary search we need only compute

values of the characteristic function of .

LEMMA 9. g SPG then the hold:

P f P*,

(2) and then

Proof.

(2)

(1) P is clear whereas P follows by the same

argument used to show that NP f

Consider the following machine, say M, on input (n,m):

M (n, into n and m and attempts to compute by the

algorithm given by g on inputs and m. If it halts with a possible value for

say h, continues to step (ii). If the algorithm uses more than some

steps it rejects (n,m),where c, k are given by the reduction.

TESTS FOR PRIMALITY 315

(ii) M computes h) and checks if (n,h) by the algorithm given
by P . If h) then M rejects (n,m), otherwise it continues to and

we know =

(iii) M computes using by the algorithm given by f If
= m then M accepts m), otherwise it rejects (n,m).

It should be clear that runs in polynomial time and that it acceptsprecisely .
Using the last two lemmas and the reductions of the last section we get:

THEOREM 5 (ERH). Thegraphs of A, A‘, and “primefactorization)’ are recognizable

in polynomial time.

By Lemma 9 we need only show that the graph of “prime factorization”

is in since by Theorem 3 all four functions are polynomial time equivalent. But,

the graph of prime factorization is in P by Theorem 2.

Proof.

THEOREM 6. The projections of “period,” and are

of NP and if any of these projections are members of P then all the

functions are in P*.

Proof. The first part of Theorem 6 follows from Corollary 2 and Lemma 8 while

These results permit us to make a distinction between our two methods of

constructing recognition problems from functions. Theorem 5 suggests that the

graph of a function may be easy to recognize while the function may be difficult

to compute. Lemmas 8 and 9 show that projection is a natural complexity preserving

map from functions to relations. Theorem 6exhibits possible candidates for recognition

problems in (NP -P.

the second part follows from Lemma 9 part (1).

APPENDIX

Let denote the ring of integers mod Let denote the integers relatively

prime to under multiplication mod is a group and if is a prime then

is a cyclic group of order - 1. Thus, the only solutions to the equation 1 mod

are We may pick a generator of the cyclic group say b; then we define

ind, a = a modp}. We note that ind, a is dependent on our choice

of a generator. We say a is a qth residue mod if there exists with a (mod

Note. If q are primes and q p - 1 then a is a qth residue mod p if and only if

q a.

316 GARY L. MILLER

The Legendre symbol defined by:

= if a is a quadratic residue mod and = 1;

if- - a is a quadratic nonresidue mod and {a, = 1;

.

The symbol is defined by:

where and are the Legendre symbols.

The above two symbols for denominators define functions which fall into

a general class of functions called characters. We define one more character as follows:

if (a, = 1,

where - 1 and) is the exponential function.

L functions are defined by:

(ERH). The zeros of in the critical strip,

ie on the (real part of = where is any of

REFERENCES

1.

2.

3.

4.

5.

6.

7.

8.

N.C.ANKENY,The least quadratic non-residue, Am. of (1952). 65-72.
D. A. BURGESS, The distribution of quadratic residues and non-residues, 4

106-112.
D. A. BURGESS, On character and primitive roots, LondonMath. NO. 3

(1962). 179-192.
D. A. BURGESS, On character sums and L-series, Math. 12, No. 3
193-206.
R. D. On compositenumbers which satisfy the congruence

Math. Monthly 19 (1 2), 22-27.
S. A. The complexity of theorem-proving procedures, in “Conference of

Third ACM on Theory of Computing pp.

H. P. The distribution of quadratic and higher

Math. 2 (1
G. AND E. “An Introduction to the Theory of 1,

New 1968.

TESTS FOR PRIMALITY 317

9. R. M. KARP,Reducibility among combinatorial problems, in “Complexity of Computer
Computations” (R. E. Miller and J. W. Thatcher, Eds.), pp. Plenum, New York,
1972.

10. D. “The Art of Computer Programming, Vol. 2: Seminumerical Algorithms,”

Reading, Mass., 1969.
11. G. L. MILLER, hypothesis and tests for primality, in “Proceedings of Seventh

Annual ACM Symposium on Theory of Computing (1 pp.

12. H. MONTGOMERY,“Topics in Multiplicative Number Theory,” Lecture
Notes Vol. 227, p. 120, Springer-Verlag, Berlin, 1971.

13. J. An algorithm for testing the primality of any integer, Bull. Math. 3

14. J. Theorems on factorization and primality testing, Roc.
521-528.

15. V. Every prime has a succinct certificate, SIAM Computing 4
16. A. Contributions to the theory of DirichletL functions, Nor.

17. D. SHANKS,Class number, a theory of factorization and genera, Pure

18. AND V. Schnelle Multiplikation Grosser 7

Oslo (1934).

(1969); Number Theory Institute, American Mathematical Society

281-292.

-

Printed by the Catherine Press Ltd., Tempelhof 37, Belgium.

