
ar
X

iv
:1

00
3.

49
42

v2
  [

cs
.D

S]
  3

 Ju
l 2

01
0

Approximate Dynamic Programming using
Halfspace Queries and Multiscale Monge decomposition

Gary L. Miller1, Richard Peng1, Russell Schwartz1,2 and Charalampos E.
Tsourakakis1

1 School of Computer Science, Carnegie Mellon University, USA
glmiller@cs.cmu.edu, yangp@cs.cmu.edu, ctsourak@cs.cmu.edu

2 Department of Biological Sciences, Carnegie Mellon University, USA
russells@andrew.cmu.edu

Abstract. Let P = (P1, P2, . . . , Pn), Pi ∈ R for all i, be a signal and let C be a
constant. In this work our goal is to find a function F : [n] → R which optimizes
the following objective function:

min
F

n
∑

i=1

(Pi − Fi)
2 + C × |{i : Fi %= Fi+1}| (1)

The above optimization problem reduces to solving the following recurrence,
which can be done efficiently using dynamic programming in O(n2) time:

OPTi = min
0≤j≤i−1



OPTj +
i

∑

k=j+1

(

Pk −

∑i
m=j+1

Pm

i− j

)2


+ C

The above recurrence arises naturally in applications where we wish to approx-
imate the original signal P with another signal F which consists ideally of few
piecewise constant segments. Such applications include database (e.g., histogram
construction), speech recognition, biology (e.g., denoising aCGH data) applica-
tions and many more.
In this work we present two new techniques for optimizing dynamic program-
ming that can handle cost functions not treated by other standard methods. The
basis of our first algorithm is the definition of a constant-shifted variant of the ob-
jective function that can be efficiently approximated using state of the art methods
for range searching. Our technique approximates the optimal value of our objec-
tive function within additive ε error and runs in Õ(n1.5 log (U

ε
)) time, where

U = maxi fi. The second algorithm we provide solves a similar recurrence
within a factor of ε and runs in O(n log2 n/ε). The new technique introduced
by our algorithm is the decomposition of the initial problem into a small (log-
arithmic) number of Monge optimization subproblems which we can speed up
using existing techniques.

1 Introduction

Dynamic programming is a widely used problem solving technique with applications
in various fields such as operations research, biology, speech recognition, time series

http://arxiv.org/abs/1003.4942v2


analysis and many others. Due to its importance a lot of work has focused on speeding
up naive dynamic programming implementations. Such techniques include the Knuth-
Yao technique[21,28,29], a special case of the use of totally monotone matrices [5],
the SMAWK algorithm for finding the row-minima of totally monotone matrices[4],
and several other techniques exploiting special properties such as the convexity and
concavity [12,15]. The basis of these techniques lies in the theory of Monge properties
for optimization [8], which date back to the French mathematician Monge [23].

In this work, we consider the following recurrence, where P ∈ Rn and C is a
constant:

OPT0 = 0, OPTi = min
0≤j≤i−1



OPTj +
i∑

k=j+1

(

Pk −
∑i

m=j+1 Pm

i− j

)2


+C, for i > 0

This recurrence arises naturally in several applications where one wants to approx-
imate a given signal f with a signal F which ideally consists of few piecewise con-
stant segments. Such applications include histogram construction in databases (e.g.,
[20,17,18]), determining DNA copy numbers in cancer cells from micro-array data
(e.g., [24,26]), speech recognition, data mining (e.g., [25]) and many others.

In this work we present two new techniques for optimizing dynamic programming
that can handle cost functions not treated by other standard methods. The basis of our
first algorithm is the definition of a constant-shifted variant of the objective function
that can be efficiently approximated using state of the art methods for range searching.
Our technique approximates the optimal value of our objective function within additive
ε error and runs in Õ(n1.5 log (Uε )) time, where U = maxi fi. The second algorithm we
provide solves a similar recurrence within a factor of ε and runs in O(n log2 n/ε). The
new technique introduced by our algorithm is the decomposition of the initial problem
into a small (logarithmic) number of Monge optimization subproblems which we can
speed up using existing techniques.

The remainder of the paper is organized as follows: Section 2 presents briefly exist-
ing work on the problem and the necessary background. Section 3 presents our proposed
algorithms and their theoretical analysis and Section 4 concludes the paper with a brief
summary and discussion.

2 Background

In this section, we briefly summarize existing work on speeding up dynamic program-
ming. First, we briefly present existing work on speeding up dynamic programming.
Then, we present state of the art results on reporting points in halfspaces, an important
case of range queries in computational geometry, and on optimizing Monge functions.

2.1 Speeding up Dynamic Programming

Dynamic programming is a powerful problem solving technique introduced by Bellman
[6] with numerous applications in biology (e.g., [24,19,27]), in control theory (e.g., [7]),



in operations research and many other fields. Due to its importance, a lot of research has
focused on speeding up naive dynamic programming implementations. A successful ex-
ample of speeding up a naive dynamic programming implementation is the computation
of optimal binary search trees. Gilbert and Moore solved the problem efficiently using
dynamic programming [16]. Their algorithm runs in O(n3) time and for several years
this running time was considered to be tight. In 1971 Knuth [21] showed that the same
computation can be carried out in O(n2) time. This remarkable result was generalized
by Frances Yao in [28,29]. Specifically, Yao showed that this dynamic programming
speedup technique works for a large class of recurrences. She considered the recur-
rence c(i, i) = 0, c(i, j) = mini<k≤j (c(i, k − 1) + c(k, j)) + w(i, j) for i < j where
the weight function w satisfies the quadrangle inequality (see Section 2.3) and proved
that the solution of this recurrence can be found in O(n2) time. Eppstein, Galil and
Giancarlo have considered similar recurrences where they showed that naive O(n2)
implementations of dynamic programming can run in O(n log n) time [12]. Further-
more, Eppstein, Galil, Giancarlo and Italiano have also explored the effect of sparsity
[13,14], another key concept in speeding up dynamic programming. Aggarwal, Klawe,
Moran, Shor, Wilber developed an algorithm, widely known as the SMAWK algorithm,
[3] which can compute in O(n) time the row maxima of a totally monotone n× n ma-
trix. The connection between the Knuth-Yao technique and the SMAWK algorithm was
made clear in [5], by showing that the Knuth-Yao technique is a special case of the use
of totally monotone matrices. The basic properties which allow these speedups are the
convexity or concavity of the weight function. The study of such properties data back
to Monge [23] and are well studied in the literature, see for example [8].

Close to our work, lies the work on histogram construction, an important problem
for database applications. Jagadish et al. [20] originally provided a simple dynamic
programming algorithm which runs in O(kn2) time, where k is the number of buckets
and n the input size and outputs the best V-optimal histogram. Guha, Koudas and Kim
[17,18] propose a (1 + ε) approximation algorithm which runs in linear time. Their al-
gorithms exploits monotonicity properties of the key quantities involved in the problem.

2.2 Reporting Points in a Halfspace
Let S be a set of points in d-dimensional space Rd. Consider the problem of prepro-
cessing S such that for any halfspace query γ we can report the set S ∩ γ efficiently.
This problem is a special case of range searching. For an extensive survey see [1]. For
d = 2, the problem has been solved optimally by [9]. For d = 3, [10] gave a solu-
tion with nearly linear space and O(log n + k) query time, while [2] gave a solution
with a more expensive preprocessing but O(n log n) space. For dimensions d ≥ 4,
[11] gave an algorithm that requires with O(n#d/2$+ε) preprocessing time and space,
where ε is an arbitrarily small positive constant, and can subsequently answer queries in
O(log n+ k) time. Matousek in [22] provides improved results on the problem, which
are conjectured to be optimal up to O(nε) or polylogarithmic factors. Now, we refer to
the main theorem of [22] on the emptiness decision problem, i.e., determining whether
S ∩ γ empty or not, phrased as theorem 1.3:
Theorem 1. [22] Given a set of S of n points in Rd, d ≥ 4, one can build in time
O(n1+δ) a linear size data structure which can decide whether a query halfspace con-



tains a point of S in time O(n1−1/& d
2 '2c′ log∗ n), where δ > 0 is an arbitrarily small

constant and c′ = c′(d) is a constant depending on the dimension.

2.3 Monge Functions and Dynamic Programming

Here, we refer to a theorem in [12] which we use in Section 3.2. A function w defined
on pairs of integer indices is Monge if for any 4-tuple of indices i1 < i2 < i3 < i4,
w(i1, i4) + w(i2, i3) ≥ w(i1, i3) + w(i2, i4). Then the following Theorem holds:

Theorem 2 ([12]).
Given aMonge functionw : {0 . . . n}×{0 . . . n} → R, and a vector (a0, a1 . . . an−1)

the value of minj<i{aj + w(j, i)} can be calculated for each i = 1, . . . , n given the
previous values a0, a1, . . . ai−1 in O(n logn) time total.

3 Proposed Method

In the following, let the initial vector be (P1, . . . , Pn) and let Si =
∑i

j=1 Pj . The
transition function for the dynamic programming for i > 0 can be rewritten as:

OPTi = minj<i OPTj +minx
∑i

m=j+1(Pm − x)2 + C

= minj<i OPTj +
∑i

m=j+1 P
2
m − (Si−Sj)

2

i−j + C (2)

The transition can be viewed as a weight function w(j, i) that takes the two indices
j and i as parameters such that w(j, i) =

∑i
m=j+1 P

2
m − (Si−Sj)

2

i−j + C. The dynamic
programming is then equivalent to a shortest path from 0 to n.

The weight function does not have the Monge property, as demonstrated by the
vector P0 = 1, P2 = 2, P3 = 0, P4 = 2, . . . , P2k−1 = 0, P2k = 2, P2k+1 = 1. When
C = 1, thee optimal choices of j for i = 1, . . . , 2k are j = i − 1, i.e., we fit one
segment per point. However, once we add in P2k+1 the optimal solution changes to to
fitting all points on a single segment. Therefore, choosing a transition to j1 over one to
j2 at some i does not allow us to discard j2 from future considerations. This is one of
the main difficulties for applying techniques based on the increasing order of decision
points, such as the method of Eppstein et al. [12], to reduce the complexity of the O(n2)
algorithm in [26].

Let DPi = OPTi −
∑i

m=1 P
2
m. We claim that DPi is the solution to a simpler

optimization problem:

Lemma 1. DPi satisfies the following optimization formula:

DPi =

{

minj<i DPj − (Si−Sj)
2

i−j + C if i > 0
0 if i = 0

(3)



Proof. As
∑0

m=1 P
2
m = 0, the result is true for i = 0. If i > 0, substituting in equa-

tion 2 gives:

DPi = OPTi −
i

∑

m=1

P 2
m

= min
j<i

OPTj −
(Si − Sj)2

i− j
+

i
∑

m=j+1

P 2
m −

i
∑

m=1

P 2
m + C

= min
j<i

DPj +
j

∑

m=1

P 2
m −

(Si − Sj)2

i− j
+

i
∑

m=j+1

P 2
m −

i
∑

m=1

P 2
m + C

= min
j<i

DPj −
(Si − Sj)2

i− j
+ C

Elimination of the terms
∑i

m=1 P
2
m from both sides gives our result. Observe that

the second order moments of OPTi are absent from DPi.
We can use w̃(j, i) to denote the shifted weight function, aka. w̃(j, i) = − (Si−Sj)

2

i−j +

C, it’s easy to check that w(j, i) = w̃(j, i) +
∑j

m=i P
2
m

3.1 Õ(n1.5 log (U

ε
)) algorithm to approximate within additive ε

Algorithm 1 Approximation within additive ε using 4D halfspace queries
initialize 4D halfspace query structure Q
for i = 1 to n do

low ← 0
high ← nU2

while high− low > ε/n do
m ← (low + high)/2
if Q.intersect((m, i, Si,−1)Tx ≤ m · i+ S2

i ) then
high ← m

else
low ← m

end if
end while
D̃P i ← (low + high)/2
x ← (i, D̃P i, 2Si, S

2
i + D̃P ii)

Q.insert(x)
end for

Our proposed method (as shown in Algorithm 1) uses the results of [22] to obtain
a fast algorithm for the additive approximation variant of the problem. Specifically,
the algorithm initializes a 4-dimensional halfspace query data structure. The algorithm



then uses binary searches to compute an accurate estimate of the value DPi for i =
1, . . . , n. As errors are introduced at each term, we use D̃Pi to denote the approximate
value of DPi calculated by earlier iterations of the binary search, and D̄Pi to be the
optimum value of the transition function computed using the approximate values of
˜DPj . Formally:

D̄P i = minj<i D̃P j −
(Si − Sj)2

i− j
︸ ︷︷ ︸

w̃(j,i)

+C.

Theorem 3 shows that it’s sufficient to approximate D̃P i to within an additive ε/n of
D̄P i in order to approximate DPn within additive ε. Let U = max {

√
C,P1, . . . , Pn},

the maximum value of the objective function is upper-bounded by the cost one would
incur from declaring there is single interval with x = 0, giving a bound of U2n. There-
fore O(log(U

2n
ε/n )) = Õ(log (Uε )) iterations of binary search at each i are sufficient.

To check whether D̄P i ≥ x+C, we need to solve the decision problem of whether
there exists a j < i such that the following inequality holds:

x+ C ≥ D̃P i

∃j < i, x ≥ ˜DPj −
(Si − Sj)2

i− j

∃j < i, x(i − j) ≥ ˜DPj(i− j)− (Si − Sj)
2

∃j < i, xi+ S2
i ≥ xj + ˜DPji+ 2SiSj − S2

j − ˜DPjj

The term on the right hand side can be interpreted as the dot product between
(x, i, Si,−1) and (j, ˜DPj , 2Sj , S2

j+j ˜DPj). If we think of the values (j, ˜DPj , 2Sj, S2
j+

˜DPjj) as points in R4, the decision problem becomes whether the intersection of a
point set with a halfplane is null. If the point set has size n, this can be done in Õ(n0.5)
per query and O(log n) amortized time per insertion of a point[22]. So the optimal
value of DPi can be found within an additive constant of ε/n using the binary search
in Õ(n0.5 log (Uε )) time. Therefore, we can proceed along the indices from 1 to n, find
the approximately optimal value of OPTi and insert a point corresponding to it into the
query structure, getting an algorithm that runs in Õ(n1.5 log (Uε )) time.

The following theorem states that a small error at each step suffices to give an over-
all good approximation. We show inductively that if D̃P i approximates D̄P i within
ε/n, D̃P i is within iε/n additive error from the optimal value DPi. For the proof of
Theorem 3, see the Appendix 4.

Theorem 3. Let D̃P i be the approximation of our algorithm toDPi. Then, the follow-
ing inequality holds:

|DPi − D̃P i| ≤
εi

n
(4)

By substituting in Theorem 3 i = n we obtain the following Corollary, proving that
our algorithm is an approximation algorithm within ε additive error.



Corollary 1. Let D̃Pn be the approximation of our algorithm to DPn. Then, the fol-
lowing inequality holds:

|DPn − D̃Pn| ≤ ε (5)

3.2 O(n log2 n/ε) algorithm to approximate within multiplicative ε

Once again, consider the transition function w in the optimization formula for OPTi.
Our approach is based on approximating w with a logarithmic number of Monge func-
tions, while incurring a multiplicative error of at most ε. When viewed from the context
of a shortest path problem, we are perturbing the weight of each edge by ε. So as long
as the weight of each edge is positive, the length of any path, and therefore the optimal
answer computed in the perturbed version, is off by a factor of ε as well.

The main idea of our algorithm is as follows: we break our initial problem into a
small (logarithmic) number of Monge optimization subproblems which we can speed
up using existing techniques, e.g., [12]. We achieve this by detecting which part of
w(j, i) causes w(j, i) not to be Monge, and then by finding intervals in which we can
approximate it accurately with a constant. We also make sure the optimal breakpoints
of the Monge sub-problems lie in the specified subintervals by making the function
outside that subinterval arbitrarily large while maintaining its Monge property.

Algorithm 2 Approximation within factor of ε using Monge function search
Maintain m = log n/ log (1 + ε) Monge function search data structures Q1, . . . , Qm {Each
Qk corresponds to a Monge function wk(j, i) such that wk(j, i) = (

∑i
m=j+1

(i − j)P 2
m −

(Si − Sj)
2)/(1 + ε)k) + C if (1 + ε)k−1 ≤ i− j ≤ (1 + ε)k, otherwise arbitrarily large .}

OPT0 ← 0
for k = 1 to m do

Qk.a0 ← 0
end for
for i = 1 to n do

OPTi ← ∞
for k = 1 to m do

localmink ← minj<i Qk.aj +wk(j, i).
OPTi ← min{OPTi, localmin + C}

end for
for k = 1 to m do

Qk.ai ← OPTi

end for
end for

We let w′(j, i) =
∑i

m=j+1(i − j)P 2
m − (Si − Sj)2. In other words, w(j, i) =

w′(j, i)/(i − j) + C. Since V ar(X) = E(X2) − E(X)2, an alternate formulation of
w′(j, i) is:

w′(j, i) =
∑

j+1≤m1<m2≤i

(Pm1
− Pm2

)2



Lemma 2. w’(j,i) is Monge, in other words, for any i1 < i2 < i3 < i4, w′(i1, i4) +
w′(i2, i3) ≥ w′(i1, i3) + w′(i2, i4).

Proof. Since each term in the summation is non-negative, it suffices to show that any
pair of (m1,m2) is summed as many times on the left hand side as on the right hand
side. If i2 + 1 ≤ m1 < m2 ≤ i3, each term is counted twice on each side. Otherwise,
each term is counted once on the left hand side since i1 + 1 ≤ m1 < m2 ≤ i4 and at
most once on the right hand side since [i1 + 1, i3] ∩ [i2 + 1, i4] = [i2 + 1, i3].

Also, as w′(i, j), i − j and C are all non-negative, approximating w′(i, j)/(i − j)
within a factor of ε gives an approximation of w(i, j) within a factor of ε. For each i, we
try to approximate i−j (j < i) with a constant c′ such that c′ ≤ i−j ≤ c′(1+ε). Since
1 ≤ i− j ≤ n, we only need log(1+ε) n = logn/ log(1 + ε) distinct values of c′ for all
transitions. Note that this is equivalent to j being in the range[l, r] = [i−c′(1+ε), i−c′].

Since c′ is a constant, w′(j, i)/c′ is also a Monge function. However, notice that
we can only use j when c′ ≤ i − j ≤ c′(1 + ε). This constraint on pairs (j, i) can
be enforced by setting wk(j, i) to arbitrarily large values when (j, i) do not satisfy the
condition. This ensures that j will not be used as a breakpoint for i. Furthermore, wk

needs to be adjusted to remain Monge in order to keep the assumptions of Theorem 2
valid. Since the [i1+1, i4] is the longest and [i2+1, i3] is the shortest range respectively,
one possibility is to assign exponentially large values to very long and short ranges. The
following is one possibility when M is an arbitrarily large positive constant:

wk(j, i) =







2n−i+jM i− j < c′ = (1 + ε)k−1

2i−jM i− j > (1 + ε)c′ = (1 + ε)k

w′(j, i)/c′ otherwise
(6)

Lemma 3. wk is Monge. That is, for any 4-tuple i1 < i2 < i3 < i4, wk(i1, i4) +
wk(i2, i3) ≥ wk(i1, i3) + wk(i2, i4).

Proof. As M is arbitrarily large, we may assume wk(j, i) ≥ w′(j, i). If c′ ≤ i3 −
i1, i4− i2 ≤ (1+ ε)c′, then wk(i1, i3)+wk(i2, i4) = (1/c′)(w′(i1, i3)+w′(i2, i4)) ≤
(1/c′)(w′(i1, i4) + w′(i2, i3)) ≤ wk(i1, i4) + wk(i2, i3)

We assume i3 − i1 ≤ i4 − i2 since the mirror case can be considered similarly.
Suppose i3 − i1 < c′ and i4 − i2 ≤ c′(1 + ε). Then as i2 > i1, i3 − i2 ≤ i3 − i1 − 1.
wk(i2, i3) = 2n−i3+i2M ≥ 2 · 2n−i3−i1 ≥ wk(i1, i3) + wk(i2, i4) The case of c′ ≤
i3 − i1 and c′(1 + ε) < i4 − i2 can be done similarly.

Suppose i3 − i1 < c′ and c′(1 + ε) < i4 − i2. Then i3 − i2 < i3 − i1 and
i4 − i1 > i4 − i2 gives wk(i1, i4) ≥ wk(i2, i4) and wk(i2, i3) ≥ wk(i1, i3). Adding
them gives the desired result.

So the equation for OPTi becomes:

OPTi = min
j∈[l,r]

OPTj +
w′(i, j)

i− j
+ C

≈ min
j∈[l,r]

OPTj + wk(j, i) + C



Note that storing values of the form 2kM using only their exponent k suffices for
comparison, so this adjustment does result in any change in runtime. By Theorem 2,
the Monge function optimization problem for each wk can be solved in O(n log n)
time, giving a total runtime of O(n log2 n/ε). Pseudocode for this algorithm is shown
in Algorithm 2. The algorithm uses m = logn/ε copies of the algorithm mentioned in
theorem 2 implicitly.

4 Conclusions

In this work we present two new techniques for optimizing dynamic programming that
can handle cost functions not treated by other standard methods. The first algorithm
approximates the optimal value of our objective function within additive ε error and runs
in Õ(n1.5 log (Uε )) time, where U = maxi fi. The efficiency of our algorithm is based
on the work of Jirı́ Matousek [22], since our binary search on the value of a costant-
shifted variant of the objected reduces to performing halfspace queries. The second
algorithm solves a similar recurrence within a factor of ε and runs in O(n log2 n/ε). The
new technique introduced by our algorithm is the decomposition of the initial problem
into a small (logarithmic) number of Monge optimization subproblems which we can
speed up using existing techniques [12].

While the recurrences we solve are not treated using existing techniques for speed-
ing up dynamic programming in an exact way, the results we obtain suggest that the
O(n2) bound is not tight, i.e., there exists more structure which we can take advantage
of. For example, the following lemma holds(see Appendix for a proof):

Lemma 4. If |Pi1 − Pi2 | > 2
√
2C, then in the optimal solution of the dynamic pro-

gramming using L2 norm, i1 and i2 are in different segments.

In future work, we plan to exploit the structure inherent to our problem to obtain a
faster, exact algorithm.

References

1. Pankaj K. Agarwal and Jeff Erickson. Geometric range searching and its relatives. In Ad-
vances in Discrete and Computational Geometry, pages 1–56. American Mathematical So-
ciety, 1999.

2. A. Aggarwal, M. Hansen, and T. Leighton. Solving query-retrieval problems by compacting
voronoi diagrams. In STOC ’90: Proceedings of the twenty-second annual ACM symposium
on Theory of computing, pages 331–340, New York, NY, USA, 1990. ACM.

3. A Aggarwal, M Klawe, S Moran, P Shor, and R Wilber. Geometric applications of a matrix
searching algorithm. In SCG ’86: Proceedings of the second annual symposium on Compu-
tational geometry, pages 285–292, New York, NY, USA, 1986. ACM.

4. Alok Aggarwal, Maria M. Klawe, Shlomo Moran, Peter W. Shor, and Robert E. Wilber.
Geometric applications of a matrix-searching algorithm. Algorithmica, 2:195–208, 1987.

5. Wolfgang W. Bein, Mordecai J. Golin, Lawrence L. Larmore, and Yan Zhang. The knuth-
yao quadrangle-inequality speedup is a consequence of total-monotonicity. In SODA ’06:
Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm, pages
31–40, New York, NY, USA, 2006. ACM.



6. Richard Ernest Bellman. Dynamic Programming. Dover Publications, Incorporated, 2003.
7. Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific, 2000.
8. Rainer E. Burkard, Bettina Klinz, and Rüdiger Rudolf. Perspectives of monge properties in

optimization. Discrete Appl. Math., 70(2):95–161, 1996.
9. Bernard Chazelle, Leonidas J. Guibas, and Der-Tsai Lee. The power of geometric duality.

BIT, 25(1):7690, 1985.
10. Bernard Chazelle and Franco P. Preparata. Halfspace range search: an algorithmic applica-

tion of k-sets. In SCG ’85: Proceedings of the first annual symposium on Computational
geometry, pages 107–115, New York, NY, USA, 1985. ACM.

11. K. L. Clarkson and P. W. Shor. Applications of random sampling in computational geometry,
ii. Discrete Comput. Geom., 4(5):387–421, 1989.

12. David Eppstein, Zvi Galil, and Raffaele Giancarlo. Speeding up dynamic programming. In
In Proc. 29th Symp. Foundations of Computer Science, pages 488–496, 1988.

13. David Eppstein, Zvi Galil, Raffaele Giancarlo, and Giuseppe F. Italiano. Sparse dynamic
programming i: linear cost functions. J. ACM, 39(3):519–545, 1992.

14. David Eppstein, Zvi Galil, Raffaele Giancarlo, and Giuseppe F. Italiano. Sparse dynamic
programming ii: convex and concave cost functions. J. ACM, 39(3):546–567, 1992.

15. Zvi Galil and Kunsoo Park. Dynamic programming with convexity, concavity and sparsity.
Theor. Comput. Sci., 92(1):49–76, 1992.

16. E.N. Gilbert and E.F. Moore. Variable-length binary encodings. Bell System Tech., 38:933–
966, July 1959.

17. Sudipto Guha, Nick Koudas, and Kyuseok Shim. Approximation and streaming algorithms
for histogram construction problems. ACM Trans. Database Syst., 31(1):396–438, 2006.

18. Sudipto Guha, Nick Koudas, and Divesh Srivastava. Fast algorithms for hierarchical range
histogram construction. In PODS ’02: Proceedings of the twenty-first ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, pages 180–187, New York,
NY, USA, 2002. ACM.

19. D. S. Hirschberg. A linear space algorithm for computing maximal common subsequences.
Commun. ACM, 18(6):341–343, 1975.

20. H. V. Jagadish, Nick Koudas, S. Muthukrishnan, Viswanath Poosala, Kenneth C. Sevcik, and
Torsten Suel. Optimal histograms with quality guarantees. In VLDB ’98: Proceedings of the
24rd International Conference on Very Large Data Bases, pages 275–286, San Francisco,
CA, USA, 1998. Morgan Kaufmann Publishers Inc.

21. Donald E. Knuth. Optimum binary search trees. Acta Inf., 1:14–25, 1971.
22. Jirı́ Matousek. Reporting points in halfspaces. In FOCS, pages 207–215, 1991.
23. Gaspard Monge. Memoire sue la theorie des deblais et de remblais. Histoire de lAcademie

Royale des Sciences de Paris, avec les Memoires de Mathematique et de Physique pour la
meme annee, pages 666–704, 1781.

24. F. Picard, S. Robin, M. Lavielle, C. Vaisse, and J. J. Daudin. A statistical approach for array
cgh data analysis. BMC Bioinformatics, 6, 2005.

25. Evimaria Terzi and Panayiotis Tsaparas. Efficient algorithms for sequence segmentation. In
SDM, 2006.

26. C.E. Tsourakakis, D. Tolliver, Maria A. Tsiarli, S. Shackney, and R. Schwartz.
Cghtrimmer: Discretizing noisy array cgh data. submitted, available at Arxiv:
http://arxiv.org/abs/1002.4438, 2010.

27. Michael S Waterman and Temple F Smith. Rapid dynamic programming algorithms for rna
secondary structure. Adv. Appl. Math., 7(4):455–464, 1986.

28. F. Yao. Speed-up in dynamic programming. SIAM J. Alg. Disc. Methods, 3:532–540, 1982.
29. F. Frances Yao. Efficient dynamic programming using quadrangle inequalities. In STOC ’80:

Proceedings of the twelfth annual ACM symposium on Theory of computing, pages 429–435,
New York, NY, USA, 1980. ACM.



Appendix

The proof of Theorem 3 follows:

Proof. We use induction on the number of points. Using the same notation as above, let
D̄P i = minj<i D̃P j − w(j, i) + C. By construction the following inequality holds:

|D̄P i − D̃P i| ≤
ε

n
∀i = 1, . . . , n (7)

When i = 1 it is clear that |DP1 − D̃P 1| ≤ ε
n . Our inductive hypothesis is the

following:

|DPj − D̃P j | ≤
jε

n
∀j < i (8)

It suffices to show that the following inequality holds:

|DPi − D̄P i| ≤
(i− 1)ε

n
(9)

since then by the triangular inequality we obtain:

iε

n
≥ |DPi − D̄P i|+ |D̄P i − D̃P i| ≥ |DPi − D̃P i|.

Let j∗, j̄ be the optimum breakpoints for DPi and D̄P i respectively, j∗, j̄ ≤ i− 1.

DPi = DPj∗ + w̃(j∗, i) + C ≤
≤ DPj̄ + w̃(j̄, i) + C ≤

≤ D̃P j̄ + w̃(j̄, i) + C +
j̄ε

n
(by 8) =

= D̄P i +
j̄ε

n
≤

≤ D̄P i +
(i − 1)ε

n

Similarly we obtain:

D̄P i = D̃P j̄ + w̃(j̄, i) + C ≤

≤ D̃P j∗ + w̃(j∗, i) + C ≤

≤ DPj∗ + w̃(j∗, i) + C +
j∗ε

n
(by 8) =

= DPi +
j∗ε

n
≤

≤ DPi +
(i− 1)ε

n

Combining the above two inequalities, we obtain 9. QED



The proof of Lemma 4 follows:

Proof. The proof is by contradiction. Suppose the optimal solution has a segment [i, j]
where i ≤ i1 < i2 ≤ j, and its optimal x value is x∗. Then consider splitting it into 5
intervals [i, i1 − 1], [i1, i1], [i1 + 1, i2 − 1], [i2, i2], [i2 + 1, r]. If we let x = x∗ in the
intervals not containing i1 and i2, their values are same as before. Also, as |Pi1 −Pi2 | >
2
√
2C, (Pi1 − x)2 + (Pi2 − x)2 > 2

√
2C

2
= 4C. So by letting x = Pi1 in [i1, i1]

and x = Pi2 in [i2, i2], the total decreases by more than 4C. This is more than the
added penalty of having 4 more segments, a contradiction with the optimality of the
segmentation. QED


	Approximate Dynamic Programming using  Halfspace Queries and Multiscale Monge decomposition
	Richard Peng, Russell Schwartz,Charalampos Tsourakakis 
	1 Introduction
	2 Background
	2.1 Speeding up Dynamic Programming
	2.2 Reporting Points in a Halfspace
	2.3 Monge Functions and Dynamic Programming

	3 Proposed Method
	3.1 (n1.5 log (U  )  ) algorithm to approximate within additive 
	3.2 O(n log2n / ) algorithm to approximate within multiplicative 

	4 Conclusions



