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Every high school student knows how to express the roots
of a quadratic equation in terms of radicals; what is less well-
known is that this solution was found by the Babylonians a
millenia and a half before Christ [Ne]. Three thousand years
elapsed before European mathematicians determined how to
express ti)e roots of cubic and quartic equations in terms of
radicals, and there they stopped, for their techniques did not
extend. Lagrange published a treatise which discussed why
the methods that worked for polynomials of degree less than
five did not work for quintic polynomials [Lag], hoping to
shed some light on the problem. Evariste Galois, the young
mathematician who died in a duel at the age of twenty, solved
it. In the notes he revised hastily the night before his death,
he gave an algorithm which determines when a polynomial has
roots expressible in terms of radicals. Yet of this algorithm,
he wrote, “If now you give me an equation which you have
chosen at your pleasure, and if you want to know if it is or
is not solvable by radicals, I need do nothing more than to
indicate to mysell or anyone else the task of doing it. In a
word, the calculations are impractical.” [Ga].

They require double exponential time. Through the years

other mathematicians developed alternate algorithms all of
which, however, remained exponential. A major impasse was

the problem of factoring polynomials, for wntil the recent
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breakthrough of Lenstra, Lenstra, and Lovéss [L3], all earlier
algorithms had exponential running time. Their algorithm,
which factors polynomials over the rationals in polynomial
time, gave rise to a hope that some of the classical questions
of Galois theory might have polynomial time solutions. We
answer that the basic question of Galeis theory -is a given
polynomial, f(z), over the rationals solvable by radicals — has a

polynomial time solution.

Galois transformed the question of sdvability by radicals
from a problem concerning fields to a problem about groups.
What we do is to change the inquiry into several problems con-
cerning the solvability of certain primitive groups. Pélfy has
recently shown that the order of a primitive solvable group
of degree n is bounded by 24—!/3n° for a constant ¢ =
3.24399... [Pa] We attempt to construct the Galois group
of specified polynomials in polynomial time. Each polynomial
is constructed so that its Galois group acts primitively on its
roots. If we succeed, we use an algorithm of Sims to determine
if the groups in question are solvable. If any one of them is
not, the Galois group of f(z) over @ is not solvable, and hence
f(z) is not solvable by radicals. It may happen that we are
unable to compute the groups within the time bound. Then
we know that the group in question is not solvable, since it
is primitive by construction, and primitive solvable groups are

polynomially bounded in size.

We first observe that there is a polynomial time algorithm
for factoring polynomials over algebraic number fields by using
norms, a method due to Kronecker. We construct a tower of

fields between @ and @|[z]/f(z), by determining elements p;,
1 =0,...,7 4 1, such that @ = Q(po) C Qlp) C ...

Qo) C Qlor—1) = Q[zi}f{z) The tower of ficlds we find is




rather special. If g, 1(y) is the minimal polynomial for p;.4y
over Q(p.), then the Galois group of g,1(y) over @(p,) acts
primitively on the roots of g,41(y). The Galois group of f(z)
over @ is solvable iff the Galois group of g, 1(y) over Q(p,) is

solvable for 1 = 0,...,r.

Using a simple bootstrapping technique, it is possible to
construct the Galois group of g;4+1(y) over @(p;) in time poly-
nomial in the size of the group and the length of description of
gi+1(y). Since the p, are determined so that the Galois group
of g,41(y) over @(p:) acts primitively on the roots of g, 1(y),
if the group is solvable, it will be of small order. In that case,
we can compute a group table and verily solvability in poly-
nomial time. If it is not solvable, but it is of small order, we
will discover that instead. Otherwise we will learn that the
Galois group of g.41(y) over @(p;) is too large to be solvable,
and thus that f(z) is not solvable by radicals over @.

Qur approach combines complexity and classica!l algebra.
We introduce background algebraic number theory in Section
1. Section 2 begins the discussion of solvability. The al-
gorithmic paradigm of divide-and-conquer finds a classical
analogue in the group theoretic notion of primitivity. Galois
established the connection between fields and groups; permuta-
tion group theory explains the connection between groups and
blocks. Combining these ideas we present an algorithm to
compute a polynomial whose roots form a minimal block of

imprimitivity containing a root of f(z).

We use this procedure in section 3 to succinctly describe
a tower of fields between @ and Q|z]/f(z). A simple divide-

and-conquer observation allows us to convert the question of

solvability of the Galois group into several questions of sol-
vability of smaller groups. These are easy to answer, giving us
a polynormial time algorithm for the question of solvability by
radicals.

We discuss in section 4 a method for expressing the roots
of a solvable polynomial in terms of radicals. We present
a polynomial time solution to this problem using a suitable

encoding. We conclude with a discussion of open questions.

1. Background

If f(z) == anz™+...+ag is a polynomial with coefficients

in Z, then Lenstra, Lenstra, and Lovisz showed that:
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Theorem 1.1: A polynomial f(z) in Z[z| of degree n can
be factored in O(n®+¢ 4+ m7+<log? (3" a2)).

As we are concerned with expressing roots as radicals,
it is natural to ask is if the above can be extended to finite
extensions of the rationals. We recall some definitions. An
element « is algebraic over a field K iff o satisfies a polynomial
with coefficients in X . An extension field L is algebraic over
a field K iff every element in L is algebraic over K. It is well
known that every finite extension of a field is algebraic; the
finite extensions of @ are called the algebraic number fields.

Every algebraic number field is expressible as @(a) for a
suitable a. Q(o) is isomorphic to Q[t]/g(t), where g(t) is the
minimal (irreducible) polynomial for . Let the degree of g(t)
be m. The conjugates of a are the remaining roots of g(t):
@s...00, @ can be thought of as a;. By the minimality of
g(t), these are all distinct. (Note that the fields Q(cx) are
all isomorphic.) Every element 8 in @(a) can be uniquely

expressed as f = ag 4 aya + ... + @pm_1a™ !, with the
a,’s € @, that is, Q(a) is a vector space of dimension m over

@. This provides a third way to describe an algebraic number
field.

A number « is an algebraic integer iff it is a root of a
monic polynomial over Z. The set of algebraic integers of
K = Q(c) form a ring, frequently written Og. If we factor
f(z), 2 polynomial in a number ring, the factors of f(z) also
lie in the number ring. The ring of algebraic integers of @(a)
is contained in (1/d)Z[a], where

d | dise(g(t) = [ (en — ).

<7

We consider the question of length in greater detail. If
g(t) = t™ + am_1t™ ! + ...+ ag, a; in Z, then we define
the size of g(t), |g(t)] = 1 + max, |a,|. If f(z) = Gnz™+...+

m—1

Bo, B = E bi;07, then the size of f(z), [f(z)] = (1 +

3=0
max, ; |b;;|)(1 +max; |a,|)™. Note that the size of f(z) in @[z]
includes the size of o as a factor. Following Weinberger and
Rothschild, we define the size of 3, [4]), to be the maximum
of the absolute values of the conjugates of 3.

A classical technique to reduce questions in number fields
to questions in the rationals is the norm . If the conjugates of
a over K are (@ =)ay,...,&m, thenif 8 =ag+aja+...+
a@m—10™ ! is an element of K(a), the Normg(ay x(B) =

Na(f) = [1i(eo + e10: + ... + a,,,_lor_:"‘*‘]. By extending

e
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the definition of norms to polynomials over algebraic number

fields we have:

Theorem 1.2 : Let g(t) be a monic irreducible poly-
nomial of degree m over Z, with discriminant d, and let
f(z) be in Z(a)(z] be of degree n. Then f(z) can be
factored into irreducible polynomials over (1/d)Z(a)(z] in
O(mo+endte log? T ¢(m2n?[7(x)]|g(t)])) steps.

Let K be an algebraic number field, and let f(z) be a
polynomial with coefficients in K, with roots @y, ...0m. Then
K(ew) = K|z]/ f(z) = K(ay), but in general, K (o) 7 K(aj)
for i % j. The field K(ay, .., om) is called the splitting
field of f(z) over K. We consider the set of automorphisms of
K (@i, ..y &) which leave K fixed. These form a group, called
the Galois group of K(a1, ..., &m) over K. As we can think of
these automorphisms as permutations on the o, this group is
sometimes referred to as the Galois group of f(z) over K. The
Galois group is transitive on {ay,...,Cm }, that is, for each
pair o; and o; there is an element ¢ in G, with o(a;) = oy.
Galois' deep insight was to discover the relationship between
the subgroups of the Galois group G, and the subfields of
K (01 ey Cm)s

Let H be a subgroup of G. We denote by Ko, v am)?
&) which are fixed by H.
This set forms a field. Furthermore H fizes K so that we have

the set of elements of K({e,..«
K g K(C!l,-”

:am)H c Klaiy . n Cm)

Conversely suppose that K(7) is a field such that K C
K{"f} C K{le vevy Om
mial in @1, ..., &m, and H, the subgroup of G which fixes K ()

). Then 7 can be written as a polyno-

consists of those elements of G which fix 7. The relationship
between the fields and the groups can be more formally stated

asl

Fundamental Theorem of Galois Theory: Let K be a field,
and let f{z) with roots a1, ..., &m, be irreducible over K|z].
Then:

(1) Every intermediate field K(f), K C K(8) C
K (e, .y am) defines a subgroup H of the Galois group G,
namely the set of automorphisms of K which leave K (8) fixed.

(2) K(B) is uniquely determined by H, for K(B) is the
set of elements of K (ay, .. etrn) Which are invariant under the

action of H.
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(3) H is normal iff K(a1,. am) over K(B) is a Galois
extension, that is, iff the minimal polynomial for § over K
splits into linear factors over K(ei, -y 0tm)- In that case, the
Galois group of K(B) over K is G/H.

4) |G| = [K(a1,.., am) : K], and |H| =
K(B)l
Once the Galois group is known, the Fundamental

[K (e, em)

Theorem allows us to determine all intermediate fielda:

Theorem A: Let the hypothesis be as in the Fundamental

Theorem, and let
K C Li,La C K(o1, s m)

with G, the group which fixes Ly, G3, the group which fixes
Lg. Then G1 C Gz iﬁLg C L1.

Theorem B: Let the hypothesis be as in the Fundamental
Theorem. Then:

(1} Let Ly and Ly be two subfields of K (ay,-- . @m) which
contain K. Suppose H; and H, are the subgroups of G which
correspond to Ly and L respectively. Then H, N H, ie the
subgroup of G corresponding to LyLa.

(2) The field corresponding to HiHz is L1 N La.

We want to know the answer to the following question:
What irreducible equations have the property that their roots
can be expressed in terms of the elements of the base field K
by means of rational operations and taking radicals. Let us
be more precise. In general {/a is a many valued function, a8
in, for example \/1. We will require that all solutions to the

equation in question be represented by expressions of the form:

Vo )

(or similar ones), and that these expressions are to represent
solutions of the equation for any choice of the radicals appear-
ing. (If a radical appears more than once, it is assigned the
same value each time.)

Since Toots of unity can always be expressed in terms
of radicals, consider determining expressibility of a root in
radicals over Q(g), where ¢ is a primitive mt* root of unity.
This simplifies the situation. (We will discuss the question of
expressing roots of unity in terms of radicals in Section 4.)
Suppose a root « is expressible in radicals, and the expression

is an m*"* root. If m is not prime, m = m;m;. Then taking an



mt

% root could be broken into two steps, first taking an m‘l"
root, then an m3¢ root, By further decomposition, one need
only take roots of prime degree. This would give rise to a series
of field extensions, Q(¢m) = Fy C Fre{ C ... C Fy, where
Fy_1 is an extension of F, which arises by taking a p* root
of an element in F,_;. Each F,_1 is a Galois extension of F}.
The accompanying lattice of groups, Gy C GiC.. CGr=
G, where G, is the subgroup of G which fixes Fy_,; satisfies
the following two important conditions: G,—1 is normal in
Gi, and G;/G;_; is of prime order. A group which satisfies
these two conditions is called solvable. Galois showed that flz)
is solvable in radicals iff the Galois group of f(z) over Q is

solvable.

Fundamental Theorem on Equations Solvable by Radicals:
(1) If one root of an irreducible equation f(z) over K can

be represented by an expression of the form (*), then the Galois
group of f(z) over K is solvable.

(2) Conversely, if the Galois group of f(z) over K is solv-
able, then all roots can be represented by expressions (*) in
such a way that the successive extensions Fy_1 over Iy are ex-
tensions of prime degree, with F,_, = Fi(v/a,), with a; € F},

and 2 — g, irreducible over F,.

The problem of checking solvability by radicals can be
converted to a problem of determining if a group is solvable.
Yet on first glance, it is not obvious that this reduction is
useful. How does one check solvability of a group? Various
algorithms exist [Sims|, [FHL] which do so in polynomial time
given generators of the group. We do not use this approach
since there is at present no polynomial time algorithm for
determining the generators of the Galois group. Instead, sol-
vability provides a natural way to use divide-and-conquer. If
H is a normal subgroup of G, then G is solvable ifft H and
G/H are. Finding the right set of H’s is the key to solving

this problem, and is the subject of the next section.

2. Finding Blocks of Imprimitivity
The Galois group, G, is a transitive permutation group on
the set of roots,
{o,. . yon}=0
We define:
Ga={0€eG|o(a)=a)
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and we call G reguler if G is transitive and G, = 1 for all a.
A fundamental way the action of a permutation group on a set
breaks up is into blocks: a subset B is a block iff for every o
in G, o(B)N B = B or 0. It is not hard to see that if B is a

block, oB is also. Every group has trivial blocks: {a} or 1.
The nontrivial blocks are called blocks of imprimitivity, and

a group with only trivial blocks is called a primitive group.
The set of all blocks conjugate to B: B,03B...04B, form a
complete block system. The idea is to construct minimal blocks
of imprimitivity, and to consider actions on the blocks. We
first present several well-known theorems about permutation

groups.

Theorem 2.1: Let @ € 1, |Q] 3£ 1. Then the transitive

group G on {1 is primitive iff G, is maximal.

‘Proposition 2.2: The lattice of groups between G, and G

is isomorphic to the lattice of blocks containing a.

Let o be a root of f(z). If f(z) is a normal polynomial,
i.e. f(z) factors completely in Q()[z], the Galois group can be
computed easily. Suppose f(z) = (r — a)(z — a3).. .(z — am)
in Q(a)[z], then the a,'s will be expressed as polynomials in
a, a, = p;(a). Since the Galois group is a permutation group
of order n on n elements, for each o, there is a unique o; in
G with 0,(a) = a; = p(a). Then o,() = p,() implies that
ai(a;) = ou(p;(@)) = p;(ex(a)) = p;(ps(a)), and the action of
o, on {1 is easily determined. We can construct a group table
for G and identify a set of minimal blocks in polynomial time.
Of course, it is rare that f(z) is normal. But the general case is
not much more difficult. Theorem 2.1 gives a characterization
of primitive groups. We offer as an alternate characterization

one that will allow us to compute blocks of imprimitivity.

Theorem 2.3: Let o be an element of (1, (1] #£ 1. Then
the transitive group G on 1 is primitive iff Vo # B, GuGp =

G, or G is regular of prime order.

Proposition 2.4: Suppose G acts transitively on {1, and
G has no fixed points exeept o. Let A be a minimal non-

trivial block conl,ain_ing o. Then for all yin A, v o, A =
{o(a) |0 € GaGy ).

Proposition 2.4 provides the backbone of our algorithm.
The orbit structure of G, can be determined from a factoriza-

tion of f(z) in @(«)[z], since the roots of the irreducible factors



of f(z) form the orbits of G,. We can likewise deduce the or-
bit structure of Gg from a factorization of f(z}in Q(P)[z]. By
considering a factorization of f(z) in @(a, #)[z] it is possible
to tie together the orbit structures of Ga and Gg in such a
way as to determine if GoGp = G. Since G is transitive,
may be fixed, and only 8 need vary.

Let f(z) be an irreducible polynomial over @, with roots
Q1,. .. On. Suppose

fz) = (z — e )ga(z). . .9r(2) in Q(a4)[z], and
f(2) = (& — as)ha(z).. .he(2) in Qes)z],

with gy(z) = £ — @i, and hy(z) = = — ;. We consider
G, the Galois group of f(z) over @, acting on the roots of
f(z). We propose to determine a minimal nontrivial block of
imprimitivity containing c, if it exists. Observe that the fac-
torization of f(z) over @(s)[z] is the same as the factorization
of f(z) over @(a1)[z], with o,’s substituted in for ay’s.

Suppose (z — p;(c;)) is 2 linear factor of f(z) in @(a1)|z];
then p,(z) = (z — o) is fixed by G,,. The linear factors of
f(z) form a block. Suppose the block A consists of the roots
@1, ..., 0. Let us consider the induced action of G4 on A.
Since G is transitive on ey,..., &n, G, must be transitive on
@1,.., 0. The action of G, on A can be determined, since
fori=1,...,k, a; = p;(a;). Let o be in G, and let & be
the induced action of ¢ on ay,... ax. Then if F(oy) = a; =
p,(e1), we have &(n) = &(pi(e1)) = pj(p(e1)). We determine
the group table of the induced action of G, on A, and find a
minimal block ' of G, which contains e, in polynomial time
[At.]

Finally we observe that T' is a block of G. For suppoese
N7l 5% ¢ for some 7 € G. Since A is a block of G, and
I' C A, it must be the case that 7T C A. But T is a block of
Gy, thus'NTT =T.

Next suppose f(z) has no linear factors in Q(ey)[z] ex-
cept (z — ;). Let us consider a factorization of f(z) over
Q(c1,@5)[z] for as 7 a;. This will tie together the factoriza-
tions of f(z) over Q(a;)(z] and @(e.)[z]. In particular, this
will enable us to compute the block fixed by G4, Ga,.

Define a set of graphs 'y, s = 1,...,7 with vertices V,
and edges E by:

V ={gz)i=1,..,r}U {h‘{z],1.= 1,..,7}
E = {{g:(2), hy(2)) | ged(g:(z), hy(z)) 7 1 over Q(a, ) }
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Then we compute the set of vertices connected to gg(z). Let

9(z) = II

gi(z)is
connectedto ga(z)

gi(z) ,

and let Ay = {o; | o isarootof g(z)}. We claim A; =
{o(a1) | 0 € Ga,Ga, }- To prove this we observe the follow-

ing:

Lemma 2.5: Let o, be a root of g;(z) in @(a;)[z]. Then

the roots of g;(z) are precisely Gq, ().

It follows immediately that ged(gs(z), h,(z)) # 1 iff
Ga, (o) N Ga, (o) 7 0, where @, is a root of g;(z) and ay

is a root of h,(z). This implies:

Lemma 2.6: Let a; be a root of g;(z), a factor of f(z) in
@(e1)[z]. Then

a; €A, = {o(a1) | 0 € Ga,Ga, }
iff g;(z) is connected to go(z).

If we compute T'y for 5 = 1,...,7, we are cycling over all
@; # o which are roots of f(z) and computing Ga,Ga,. By
Proposition 2.4, this will give us a minimal nontrivial block
containing ay, if one exists. Algorithm 2.1, which appears in

the Appendix, determines minimal blocks of imprimitivity.

Theorem 2.7: If f(z) € Z[z] of degree n is irreducible,
Algorithm 2.1 computes B(z) a polynomial in Z(e)[z] whose
roots ay. . .0, are elements of a minimal block of imprimitivity
containing o. It does so in the time required to factor f(z)
over @[z]/f(2) and to calculate n® ged’s of polynomials of
degree less than deg(f(z)) and with coefficient length less than

n?log [f(z)] over a field containing two roots of f(2).

The Fundamental Theorem established the correspon-
dence between fields and groups, and we know now that the
lattice of groups between G, and G is isomorphic to the lat-
tice of blocks of G which contain a. In the next section we use
the minimal blocks of imprimitivity to obtain a tower of fields
between @ and @(c). Having this tower of fields will enable
us to check solvability of the Galois group in polynomial time.

Zassenhaus [Za] suggests a method for computing Galois
groups which also uses blocks of imprimitivity. His method
prima facie is exponential; although using our techniques it s

running time can be improved.



A generalization of Algorithm 2.1 gives a method to com-
pute the intersection of @(c;) and @(a,). Since G, is the
subgroup of G belonging to the subfield Q(a;), and G,, is the
subgroup of G belonging to @(as), Ga,Ga, is the subgroup of
G belonging to @(a;) N @(a,) [Theorem B.] We can compute

Q(e) N Q(B) even when o and § are not conjugate over Q.
Since the minimal polynomial for § over @ may factor over

@(a) (in which case the problem is ambiguous), we must have
a description of a field containing & and §. The description
Q|z,y]/(f(z), h(y)), where o satisfies the irreducible polyno-
mial f(z) over @, and [ satisfies the irreducible polynomial
h(y) over Q|z]/f(z) suffices.

Suppose [Q(a) : Q] = m, and let ay,..., o, be the con-
jugates of a = a; over Q. Suppose also that § satisfies h(z),
an irreducible polynomial over @(x), and assume that the con-
jugates of 3 over Q(a) are fy,..., fa, with § = §;. We know
there exists a ¢ less than mn such that whenever H(z) =
Nga(h(z — ce)) is squarefree, then H(z) is irreducible. If v =
B + ca, then Q) = Q(e, f). Furthermore, since the degree

of H(z) is mn, and

H(z) = [[ [Tz — (8, + cas)),
1)

the roots of H(z) are precisely {8, +co; |1 =1,...,n; i=
1,...,m}

To compute the intersection of @Q(a) with @(F), we fac-
tor H(z) over @(a) and @(f), and compute a connected com-
ponent in the same way as we did in Algorithm 2.1. This yields

the algorithm INTERSECTION, which runs in polynomial time.

3. Determining Solvability

We consider a tower of fields, F;, between @ and Q(a),
where o is a root of f(z) and has conjugates ag, ..., @m, With
& = o;. The subgroup of G determined by @(a) is G.. Each
subfield between @ and Q(«) corresponds to a subgroup of G
which contains G,. Finally, each subgroup corresponds to a
block of imprimitivity containing . This statement can be
made more precise.

Lemma 3.1: Let K be a field, and let f(z) with
roots ai,...,0cm be an irreducible polynomial over Klz].
Let B = {aj,..,cr} be a block of the roots. Then

K(ai,- - om)®® = K(symmetric functions in {a1,..., 0k 1.
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This means that all the fields F;, @ = F, G
Fryr C ... C Fy C Fy = Q(a) can be described as
@(symmetric functions in elements of B), where B is a block
of roots containing a. We have already observed that if B is
a minimal block, and if G, is the Galois group for f(z) over
Q(symmetric functions in elements of B), then G, acts primi-
tively on B. We would like to find a set of elements p;, i =
1,...,k, such that if g;(y) is the minimal polynomial for p; over
Q(pi+1), then the Galois group G; of g,(y) over Q(pi-+1) acts
primitively on the roots of g,(y). These elements p, will be
primitive elements for F; over @, i.e. F; = @(p,). We already
have a description of the F; from Lemma 3.1; what we seek is a
succinct description. We would like a set of p;'s whose minimal
polynomials over @ have polynomial length coefficients. (Since
Q(p) C @a) for each i, we know that the degree of aily) is
less than n.) We will describe the p,’s in terms of their minimal
polynomials, h;(z), over Q. There is an inherent ambiguity as
to which root of hi(z) we are referring, but this difficulty is
resolved by linking the fields @(p,) and @(p,4;) through the

polynomial g,(y). Fortunately, there is a simple way to do this.

Lemma 3.2: Let f(z) € Q[z] be irreducible with roots & =
@1, ..., Cm, and Galois group G. Let Q(p), @(r) be subfields
of Q(a), with Q(r) C Q(p), and let hy(z) be an irreducible
factor of f(z) in @(p)[z]. Then the roots of hy(z), ay,..., ax,,
form a block By. The set of roots of Ng(,/o(r)(hi(z)) form

a block of aj,..., an which contains By. Let g{z) be the
minimal pelynomial for o over @(r). If the Galois group of

g(z) over Q(r) acts primitively on the roots of g(z), the roots

of Ng(p);q(=)(h1{z)) form a minimal block containing B;.

This lemma allows us to compute the blocks of a, ..., am
directly. As the coefficients of B(z), fx,—1,..., Bo are elements
of Qu)/hi(y) = Qlo), and Q(Bk,—1,....B) = Q(r) is 2
subfield of Q(p), i 7o,..., T;k—1 are the symmetric functions

in ay,...,ak,, we can determine
="t c1m + ... Ckka Ve kay

where Q(p2) = @(70,.--, Tk, k,), 2nd the ¢,’s are integers less
than n*. We let hy(z) be the minimal polynomial for p; over

Q.



We have found fields Fy = Qo) = @Qlz}/hi(z) =
Q|z,y]/ha(z)g1(y) and F = Q(p2) = Q[z]/ha(z) such that

1) the Galois group of f(z) over @(p1) acts primitively on
the roots of f(z),

2) the Galois group of hy(z) over Q(p2) acts primitively
on the roots of hi(z).

We may now repeat this process with hy(z) playing the
same role as hq(z) did, and determine a minimal block of roots
of hp(z). Iterating this process until BLOCKS (hi(z)) returns
a polynomial in @[z], determines a set of fields F; = Qlp),
i=1,...,k, such that if g,(y) is the minimal polynomial for p;
over @(pi+1), and G, is the Galois group of g(y) over Q(pit1),
then G, acts primitively on the roots of g;(y). Furthermore
Fy = Q(e), and F, = @.

It is not hard to show that the h,(z) have succinct descrip-
tions. This is because the roots of h;(z) are sums of symmetric
functions of the roots of f(z). We claim:

3) [ha(2)] < (=)™ fori=1,2, and

1) loa(=)} < LA™

but omit the proof.

Generalizing this procedure yields an algorithm for deter-
mining h;(z) and g?-[y), i =1,...,7 which satisfy:
1) @z, yl/h1(=)0ly) = Q[21/f(2)
2) hi(z) € @[], and
a—1(y) € Qlz,y]/ hi(z), fori=1,...,r
3) The Galois group of g;—1(y) over Q[z, yl/hs(z)
acts primitively on the roots of g —1(y)
4) The Galois group of h.(z) over @ acts primi-
tively on the roots of h.(z).

The algorithm appears in the appendiz.

Theorem 3.3: Let f(z) € Z(z) of degree m be irreducible.
Algorithm 3.1 computes { hy, gi—1 [t = 1,7 } which satisfy
conditions 1,2,3 and 4 above. Let BLOCKS(g(z)) be the running
time for BLOCKS on input g(z). Then the running time for
FIELDS is O(logmBLOCKS(g(x}}), where degree(g(z)) < m, and
the coefficients of g(z) are less than m® log(m![f(=)]).

We can now determine all the fields between € and
Q(e). This enables us to check solvability by a simple divide-

and-conquer observation. Let Q(f) be a field such that

l4e

Q C Q(B) C Q(a). Every element in @(a) can be written
in radicals iff every element of @(f) can be written in radicals
over Q, and every element of Q(e) can be written in radicals
over Q(f8). The divide-and-conquer terminates when no more
fields can be included in the chain between @ and @(a), that is,
when the Galois group of the normal closure of Q(B;—,) over
Q(p.) acts primitively on the roots of the minimal polynomial

of B,y over Q(f;).

Qvr+1)
Q(Gl}: | Q)
Q)
Q1)
B Q)
QB)” | e
~ -
Q) |
~Q

Figure 3.1: The Primitive Extensions Between Q@ and @(a)

We consider what this means group-theoretically. Suppose
{B: | i=1,...,7+ 1} are such that if gi(y) is the mini-
mal polynomial for §; over @(Ai—1), then the Galois group
of g;(y) over @(B;—1) acts primitively on the roots of gi(y).
If the set {7 | i = 1,..,7 + 1} is chosen so that Q(7s)
is the splitting field for @(f,) over Q(Bi—1), let {e,...,ax}
be the block of imprimitivity associated with Q(p41), and let
{ Ckg1r - 2k bheo{ap—nk+1rcnom }, be the conjugate
blocks. Then, if @(d2), . .., @(0¢) are the fields associated with
the conjugate blocks, we know that @(6;) C Q(m1), for i =
1,...,t. This means that the Galois group Hy of Q(ay, .. .,a,,,]\
over Q(7:) fixes each of the @(6,). Assume Ly is the sub-
group of the Galois group which fixes Q(B1). Clearly Hy C
L,; furthermore, H;C (induced action of Ly on ;... ag)t.
If K, is the Galois group of @(ai1,.., ay) over @(f1), then
H; C K¢, and H, is solvable if K, is. The question of
whether a particular polynomial is solvable by radicale can
be transformed into log m questions of solvability of particular

primitive groups: if G, is the Galois group of Q(Bi+1) over
Q(8,), then f(z) is solvable by radicals iff G; is solvable for

i = 1,...,r. This is suprisingly easy to answer, for primitive

solvable groups are highly structured, which limits their size.

g -1



Theorem 3.4 [Palfy]: I G is a primitive solvable group
which acts transitively on n elements, then |G| < 24—/3p¢,

for a constant ¢ = 3.24399....

This result is sufficient for us to obtain a polynomial time
algorithm for checking solvability by radicals. Although no al-
gorithms which compute the Galois group in time polynomial
in the size of the input are known, a straightforward bootstrap-
ping method yields an algorithm whose running time is poly-
nomial in the size of the group. We factor f{z) in Q[v]/f(v).
If f(z) does not factor completely we adjoin a root of f(z),
different from y, to @[y]/f(y), compute a primitive element,
and factor f(z) over the new field. We continue this process un-
til a splitting field for f(z) is reached. (The algorithm, GALOIS,
is a generalization of Corollary 6 [La] , and we do not repeat
it here.)

Theorem 3.5: Let f(z), a polynomial in O [z], be monic
and irreducible of degree m, where K = @Q(4),  is an algébraic
integer of degree | over @, and O is the ring of integers
of K. Algorithm 3.2, FIELDS, returns g(y) and {r; }, where
K|y]/a(y) is the splitting field for f(z) over K, and the {7 |
i=1,..,n}, form the Galois group of f(z) over K. It does
so in O((|GI)*+<(1G|10g |G|/ (=)] + * log [81)2+) steps.

Let f(z) € Z[z] be monic and irreducible, with roots
Q1,...;0m. We have shown how to compute field extensions
Q(f:), i =1,...,7+1, such that Q(f,+,) = @, and Q(B;) =
@(a), and for j = 1,...,7, the Galois group of Q(f;) over

@(B;+1) acts primitively on the conjugates of 8, over @(f,;41)
[Algorithm 3.1.] We have shown that if f(z) is a monic, ir-

reducible polynomial in Ox[z], where K = Q(f) is an al-
gebraic number field, then we can compute the Galois group
of f(z) over K[z] in time polynomial in the size of the Galois
group, [f(z)] and [#]. We know that primitive solvable groups
are small.

It fits together quite simply. We call FIELDS on f(z) to
determine a tower of fields each one of which has the Galois
group acting primitively on the roots of the polynomial which
generates it from the field below. For each one of these exten-
sions, we call GALOIS with a clock. Let g;(y) be the polynomial
described in FIELDS, and suppose the degree of g;(y) is n;. By
construction the extension @[z]/h:—1(z) over @[z]/hi(z) has
Galois group which acts primitively on the roots of g;—1(y). By

Theorem 3.4, if this group is solvable, then its order must be

147

less than 24 —1/313-2% Foreachi, i =1,...,r, we call GALOIS
on input g;_(y), @[z]/hi(z). We allow this procedure to run
while the extension is of degree less than 24—'/3n3-25. If the
procedure fails to return a Galois group in that amount of time,
we know that the Galois group of g;_;(y) over Q[z]/#;(z) is not
solvable, and hence neither is f(z) solvable over @. If a group
is returned, we call any of the standard algorithms for test-
ing solvability of a group [Sims],[FHL]. Since the order of the
group is polynomial size in n,_,, these algorithms can check
solvability of the group in polynomial time. Let SOLVABLEGP
be the reader’s favorite algorithm for testing if a given group
is solvable. We assume that the input to SOLVABLEGP is a set
{ri | i=1,...,n} which forms the Galois group for g;_;(y)
over Q[z]/h,(z). Then SOLVABLEGP returns “yes” if the gronp

is solvable, and “no” otherwise.

Algorithm 3.2 SOLVABILITY

input:  f(z) € Z[z], monic irreducible of degree m

Step 1: Call BLOCKS(f(z))

Step 2: Fori=1,...,r, do:

For (degree(gi—1(y)))* steps, do:
Step 3:  Call caLoIs(g;—1(y), @[z]/hi(z))

If no return, return f(z) “IS NOT SOLVABLE
BY RADICALS"
Else call SOLVABLEGP{ 7; }
If SOLVABLEGP{7; } =“no”, return f(z) “IS
NOT SOLVABLE BY RADICALS”

Step 4: return f(z) “IS SOLVABLE BY RADICALS”

Theorem 3.6: Let f(z) in Z[z] be monic and irreducible of
degree m over @. Then Algorithm 3.2 determines whether the
roots of f(z) are expressible in radicals in time polynomial in

m and log|f(z)|.

4. Expressibility

If f(z) is an irreducible solvable polynomial over the ra-
tionals, it would be most pleasing to find an expression in
radicals for the roots of f(z). In this section we outline a
method for obtaining a polynomial time straight line program
to express the roots of f(z) in radicals. We begin with the

classical:



Theorem 4.1: Every cyclic field of n** degree over an
algebraic number field can be generated by an adjunction of
an n*® root provided that the n** roots of unity lie in the base
field.

The method we use to express ¢ as radicals over @ relies

on the effective proof of Theorem 4.1. Clearly roots of unity
play a special role in the question of expressibility; it is well-

known that:

Lemma 4.2: The p** roots of unity, p a prime, are express-

ible as “irreducible radicals” over K.

We assume f(z) is an irreducible solvable polynomial of
degree m over the rationals, and we let o be a root of f(z).
In §3 we presented an algorithm which found a tower of fields
QB.)i=1,...,, where @ C Q(8,) C .- € Q(A1) C Q(a),
and the Galois group of Q(f;) over @(fi41) acts primitively on
the roots of the minimal polynomial of f§; over Q(Bit1). We

also described a polynomial time algorithm to find the fields-

Q(1:),i =1,...,r, where Q(:) is the splitting field for Q(Bs)
over @(fi+1). In light of Theorem 4.1, we first adjoin to @ the
1tk roots of unity, where [ = [@(%/) : Q]. We claim that there
is a straight line program which expresses ¢, a primitive [**
root of unity, in radicals in polynomial time. Since the proof is
similar to that for expressing f, as radicals in polynomial time,
we begin by showing a bound for the Bi's. We find elements
5‘, such that Q(El‘-) = Q(¢, B:). To write straight line code to
express o as radicals over @, it suffices to present straight line
code for expressing J; as radicals over Q[Ii‘_,_l}. If we can solve
the latter problem in time polynomial in m and log | f(z)|, the
former can also be solved in polynomial time, because there
are at most logm fields between @ and Q(a). (The bounds we
present are not best possible, but are simplified for the sake of

readability.)

Lemma 4.3: If hy(z) is the minimal polynomial for B
over Q, then |hy(z)| < O[|f{z)|’"e). If §,(z) is the minimal
polynomial for B, over Q(B; 1), then [3,(z)] < O(lf(::)|"‘u}.

Lemma 4.4: If fc.(:} is the minimal polynomial for 7; over

QB.11), then [R(=)] < OF@I™).
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Suppose that H is the Galois group for Q() over
Q(B;+1), and that H is solvable. In polynomial time we can
find a set of subgroups of H which satisfy {e¢} =Ho C H1 C
... C H, = H, where Hy, is normal in Hi1, and Hiy1/He
is of prime order [Sims|,[FHL]. We let

i) = T[ eoolz—mn)
o0.€ Hy
then Q(B, 4 1)[z]/Jk(z) is the subfield of Q(A,) corresponding to
Hy. Since we can compute the Hi's in polynomial time, we
can also compute polynomials ji(z) in polynomial time. We
can find a primitive element 8 for the field Q(Bi41)[2l/3u(2)
in polynomial time.

We conclude:

Lemma 4.5: Let j,(z) be the minimal polynomial for 6
over Q. Then |7(2)] < O{if(:r]!"'“]. If ix(z) is the minimal
polynomial for 8 over Q(B._1), then [ix(z)] < O{|f{z)|"‘ﬂ}.

We have determined primitive elements 6; such that @(7;)
is a cyclic extension of Q(f,), @(f;41) is 2 eyelic extension of
Q(6,), and Q(6;) is a cyclic extension of Q(B,41)- (For the
sake of simplicity, let 6 = B, ;) Denote [Q(8;) : Q(8i—1)]
by d;.

We inductively express 11, ..., fr41 such that Q(05,n5) =
Q(6;+1), and n; = 3/p;(8;), where pj(z) € Q[z]. Since
#y is small in absolute value, its minimal polynomial over @
has polynomial size coefficients. This polynomial factors over
Q(8). Since z — 11 = z — pi(fo) is a factor, we conclude
by Weinberger and Rothschild [Theorem 1.3] that pi(z) has

polynomial size coefficients.

Theorem 4.6: There exists a polynomial time straight
line program to express a, a root of a solvable irreducible

polynomial over @, in terms of radicals.

We have not yet shown how to express the [** roote of
unity as radicals over @, but Lemma 4.2 is effective. We ob-
serve that in order to express the {** roots of unity as radicals
over @, we need to have the pf* roots of unity expressed as
radicals, where p; is a prime divisor of (l). Of course, this re-
quires that q}" roots of unity are expressed as radicals, where
g, is a prime divisor of p, — 1. This inductive construction

requires no more that log! steps. Therefore we conclude that



¢t can be expressed as radicals over @ in a field of degree no

greater than ['°8! over .

It would be much more pleasing to express & in polynomial

time in the form:

’V—l ‘2‘5 + V5537

rather than what we have proposed here. However, certain
examples the field which contains ¢ expressed in radicals in
the usual way will be of degree {1°5! over Q. This indicates

that Theorem 4.6 may be the best we can do.*

5. Open Questions

If now you give us a polynomial which you have chosen at
your pleasure, and if you want to know if it is or is not solvable
by radicals, we have the techniques to answer that question
in polynomial time. We have transformed Galois’ exponential

time methods into a polynomial time algorithm. Furthermore,
if the polynomial is solvable by radicals, we can express the

roots in radicals using a suitable encoding. Although we have
provided a polynomial time algorithm for the motivating prob-
lem of Galois Theory, we leave unresolved many interesting
questions. In light of the running times presented in Section
3, we hesitate to claim practicality for our polynomial time
algorithm. This suggests the following set of questions:

1) All of our running times are based on the time needed by
the L3 algorithm for factoring polynomials over the integers.
Can the present time bound be improved?

2) In Section 2 we presented an algorithm which deter-
mines a minimal block of imprimitivity of the Galois group of
the irreducible polynomial f(z) over the field K. Is there a
faster algorithm than Algorithm 2.1 for determining the mini-
mal blocks of imprimitivity? We conjecture that any algorithm
that determines minimal blocks of imprimitivity must facter

f(z) over K|[z]/ f(z); we would like to see a proof of this.

The divide-and-conquer technique used to determine sol-
vability answers the question without actually determining the

order of the group. We ask:

*The second author claims to have shown that polynomial size repre-
ssr!t.a.t.ion of roots of radicals is possible given symbols ¢ for roots of
unity.
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3) Is there a polynomial time algorithm to determine
a) the order of the Galois group
b) a set of generators for the Galois group,

in the case of a solvable Galois group?
tually determining the group. For example, the Galois group

of an irreducible polynomial f(z) of degree n over the ration-
als is contained in A,, the alternating group of order n, iff
disc( f(z)) is a square in . This means that the Galois group
of an irreducible polynomial of degree 3 over @ may be found
by simply calculating the discriminant. Various tricks and
methods have been used to determine the Galois group of poly-
nomials over @ of degree less than 10 [Mc],[St], [Za], but until
the recent results concerning polynomial factorization there
was no feasible way to compute the Galois group of a general
polynomial of large degree. It would be most exciting if a poly-
nomial time algorithm were found for computing the Galois
group. We offer no further insights on this problem, but we
hope for, and would be delighted by, its solution.
Appendix

The algorithm we present computes a minimal block of

imprimitivity. It can be easily modified to compute a tower of

blocks at once.
Algorithm 2.1 BLOCKS
input:  f(z) € Z[z], f(z) irreducible of degree n over Z

Step 1: Find ¢ 7 0 such that Nigs)/s(2))/0(f(z — c2))
is squarefree and factor Nigs);7(2))@(f(z — c2))

over @,
]

Ngisi/sanself(@ — c2) = ] Gilz —c2)

[At most n® ¢’s in Z do n‘otlsa.tisfy this condi-
tion.)
Step 2: For 1 = 1...l do: g3(z) «— ged(f(z), Gi(z)) over
Ql=)/ 1 (z)-
[Thus f(z) = [] g:(z) is a complete factoriza-
tion of f(z) over @|z]/ f(z).]



Step 3:

Step 4:

Step 5:

Step B:

Step T:

Step 8:

If f(z) has more than one linear factor, compute
the induced action of Galois group and Cayley
table, and find maximal block by inspection.
Then
B?*(z) < 1a,eblock(® — ), and
return B*(z)
[In this case, the fixed points form a block,
and the induced action of the full group on the

block can be determined by substitutions.]

For each G;(z—cz) a factor of Niep=)/s=y/elflz—
cz)) do steps 5-9:

g;(t) « constant term of ged(g5(z), F(t — cz))

over Q[t, z}/G;(t)

ps(t) + t — cq;(t)
[This computes y and 2 in terms of a primi-
tive element for the field @[y, 2]/ (9(¥)93(2))
= QI/G)]

Fori=1...l, do:

gi(z) — o (2)

HE R
[This rewrites the factorizations of f (z) over
Ql2]/f(z) and Q[y]/f(y) as factorizations
over Qt]/G;(t).]

Compute the graph I'; = (V;, E;), with ver-
tices, V;, and edges, E; given by:

Vi = {g¥(z) } U {gi(2) }

E; = {{g¥(2), 9}(z)) | ged(g} (z), 6(<)) # 1}

¢ —p,{t)in Ty}

Step 9:  Bjlz) « H gi(z)

EeY

Step 10: B(z) + Bi(z), of minimal degree

return

B*(z) € Qlz,2l/f(2), 2 polynomial whose roots
form a minimal block of imprimitivity containing

]

Compute Y; = {1 | g(¢) ie connected to gilz) =
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Algorithm 3.1 FIELDS

input:

Step 1:

Step 2:

Step 3:
Step 4:

Step 5:

Step 6:

Step T:

Step 8:

Step 9:

Step 10:

Step 11:

Step 12:

Step 13:

f(z) € Z|z], a monic, irreducible polynormial
i1

ho(z) « f(z)

C=(t) + BLOCKS(f(2))

golt) — t* + a_i(2)t— 1+ .. eo(2) — cx(t)
[C?(t) will be the polynomial whose norm we com-

pute in order to determine the chain of fields.]

While C*(t) ¢ Q[t], do steps 3-17

Else go to return
¢ 4 gp 1 (2)tF + ...+ ao(2) — C*(t)
B(2) + ao(2)

Forj=1,..,k—1, do:

While aj(z) ¢ {1,8(2),- LA™ Y(2) }, do:

B(2) «~ B(2) + as(2)

[This computes an element B(z) such that
Qlar—1(2), - - a0(2)]/ f(2) = QIB(2))/ /(2) ]

l+1

While {1,5(2),...,#'(2)} is a linearly indepen-
dent set over @, do:
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Else if 84(z) + i1 B2 (2) + .-+ do =10,
hi(z) < z* + d_z 1+ ...+ do

[This determines the minimal polynomial for §(2)
over Q; we have Q[8(2)l/f(2) = Qlz)/hilz)]
Forj=0,..,i—1, do:

Find p;(z) such that p,(B(2)) = ¢5(2)

gimily) ~ ¥ + Pl + -+ pola)
[Then Q[t]/h.—1(t) = Qlz, yl/hs(2)gi—1(v)]
Forj =0,...,k—1,do:

Find g;(z) such that g;(B(2)) = a4(2)-

C*(t) — t* + qer (@t + - + 20(2)

[This expresses C#(t), a polynomial in Q|B(2))/ f(z) =

Q|z)/hi(z) in terms of the element z.]

B*(t) « BLOCKS(hi(2));
o by (z)t " + ..+ bo(z) < B3(t)



Step 14:

Step 15:
Step 16:
Step 17:

return:

For j =0,...,!1 — 1, do:

¢5(2) = b,(8(2)

[This will allow us to express B*(t) as a polynomial
with coefficients which are polynomials in z and

which has root .|
B*(z) « 2t + ey (z)t~1 ... + co(z)
C*(t) «— Res(B*(z), C*(t))
te—i+41
{hi(z),g:i—1(y) | i =1,...,7}, where
1) @[z, yl/h1(z)go(y) = Q[21/ f(2)
2) hi(z) € Q[z], and
gi—1(y) € @[z, y]/hi(2), for i =1,.,.,r
3) The Galois group of g,_,(y) over Q|z, y]/hy(z)
acts primitively on the roots of g, ()
4) The Galois group of h,(z) over @ acts primi-
tively on the roots of h,(z).
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