
Dynamic Mesh Refinement

Benoı̂t Hudson

CMU-CS-07-162

December 2007

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:
Gary L. Miller, Chair
Anupam Gupta

Daniel D.K. Sleator
Umut A. Acar, Toyota Technological Institute at Chicago
Jonathan R. Shewchuk, University of California, Berkeley

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2007 Benoı̂t Hudson

This work was supported in part by the National Science Foundation under grants
ACI-0086093, CCR-0122581, and CCR-0085982.

Keywords: Computational Geometry, Scientific Computing, Mesh Refinement,
Dynamic Algorithms

Abstract

Mesh refinement is the problem to produce a triangulation (typically De-
launay) of an input set of points augmented by Steiner points, such that every
triangle or tetrahedron has good quality (no small angles). The requirement
arises from the applications: in scientific computing and in graphics, meshes
are often used to discretely represent the value of a function over space. In
addition to the quality requirement, the user often has input segments or poly-
gons (generally, a piecewise linear complex) they would like see retained in
the mesh; the mesh must respect these constraints. Finally, the mesh should
be size-conforming: the size of mesh elements should be related to a particular
sizing function based on the distance between input features.

The static meshing problem is increasingly well-understood: one can down-
load software with provable guarantees that on reasonable input, the meshes
will have good quality, will respect the input, and will be size-conforming;
more recently, these algorithms have started to come with optimal runtimes of
O(n lg(L/s) + m), where L/s is the spread of the input. As a first result, I
present experimental results of the first time-optimal code, available online at
sparse-meshing.com.

Increasingly, static meshing is insufficient: users want to modify the mesh
over time. Throwing away the old mesh and remeshing from scratch is a com-
mon approach, but that suffers from slow runtime, and from reinterpolation
error because the old and new meshes may be almost unrelated. Mesh sta-
bility analyzes the correspondence between meshes for two inputs. The main
theoretical result of this thesis is an algorithm that has provable bounds on
stability: upon inserting or removing a feature that in the final mesh is repre-
sented using k points, the mesh only modifies O(k lg(L/s)) mesh simplices.

Finally, stability can be exploited to produce an efficient dynamic algo-
rithm. Under the self-adjusting computation framework, with a small amount
of additional effort, I show that my algorithm can be dynamized to run in
O(k lg(L/s)) time per update, using O(n lg(L/s) + m) space.

I owe a great debt to my parents, Richard Hudson and Gisèle Chevalier, who raised me
a scientist and an academic. It took me 23 years, but when I said I’d write a thesis when
I’d grow up, I wasn’t kidding.

My best teachers in France and in Canada all taught me geometry, which speaks well
for the field. At Brown, Roberto Tamassia showed me you could both be a geometer and a
computer scientist; he and the rest of the CS department gave me an early taste for teaching
and research. Mark Johnson in Linguistics and Carlé Pieters in Geology let me discover
that though I was a computer scientist by training and trade, applying my knowledge to
the pursuit of the sciences made it all the more exciting.

My advisor, Gary Miller, somehow managed to instill upon me the ability to do re-
search. Through constant meetings occasionally turning into shouting matches with him
and with Todd Phillips, we have muddled through vast wastelands of bad ideas and some-
howmanaged to pick out one or two good ones in passing. Umut Acar, for reasons unclear,
took a chance that perhaps we should work together; no algorithms would have been dy-
namized without his help. Jonathan Shewchuk has always been in the background, if not
the foreground. Much of my meshing work bears his imprimatur, as does my tea cabinet.

iv

Contents

1 Introduction and background 1
1.1 Quality measures . 2
1.2 Input description . 5
1.3 Sizing functions . 7
1.4 Static and dynamic algorithms . 9
1.5 Bucketed priority queues . 12
1.6 Claims . 15
1.7 Related work . 15

1.7.1 Relations to prior work . 20

2 The SVR algorithm 23
2.1 Traditional Delaunay refinement . 23
2.2 SVR intuition . 27
2.3 Algorithm Listing . 29

3 A Practical Implementation of SVR 35
3.1 Point location structure . 35
3.2 Design and implementation . 39
3.3 Numerical robustness . 41
3.4 Experiment inputs . 42
3.5 Parameter settings . 43

v

3.6 Experimental results . 45
3.6.1 Cache performance and profiling 49

3.7 Extensions and future goals . 51

4 Dynamic Meshing for Point Clouds 53
4.1 Building a quad-tree for point location 54

4.1.1 The quad-tree is size-conforming 57
4.1.2 BUILDQT runs in O(n lg L/s) time 58
4.1.3 BUILDQT is O(lg L/s)-stable 59
4.1.4 BUILDQT response time is O(lg L/s) 62

4.2 Choosing Steiner points . 66
4.3 Efficient algorithm . 70

4.3.1 Delaunizing . 73
4.3.2 Static runtime . 74
4.3.3 Dynamic stability . 74
4.3.4 Main theorem . 78

4.4 Bounding box to ignore boundary effects 79

5 Handling Input Segments 81
5.1 Building the quad-tree . 83

5.1.1 Analysis . 83
5.1.2 Practicalities . 86

5.2 Choosing Steiner points with segments 87
5.2.1 Conceptual algorithm . 88
5.2.2 A complete mesh with segments is size-conforming 89

5.3 Efficient algorithm . 92
5.4 Remarks . 97

6 Dynamic Meshing for PLC Input 99
6.1 Building the quad-tree . 101

vi

6.2 Choosing Steiner points with features 102
6.2.1 A complete mesh is a good mesh 103

6.3 Efficient algorithm . 106
6.3.1 Dependency paths are short . 107

6.4 The main result of the thesis . 110

7 Closing Remarks 111

Bibliography 115

vii

viii

Chapter 1

Introduction and background

In scientific computing, graphics, and in many geometric processing problems, a key task
is to take an input geometry and tile it with a collection of small objects that are easier to
handle, such as triangles, tetrahedra, or perhaps cubes — a mesh. The ancients already
did this in order to produce mosaics (using tiles instead of the more modern tendency to
use pixels). Topologically, each of the smaller elements should have a small description,
to make them easy to manipulate and easy to reason about, hence the use of triangles and
cubes. Geometrically, applications impose requirements on the shape of each element: in
the applications I consider, the requirement will be that adjacent elements have similar size
(for an appropriate definition of size), and that each element has bounded distortion (for
an appropriate definition of distortion).

The goal here is to represent a function f that is continuous over space, and operate
on it. On each triangle (or on each tetrahedron, in three dimensions), we can set a value
at each vertex and linearly interpolate within the element. This yields a piecewise linear
approximation f̂ to f . Assuming that f has bounded first and second derivatives in all
directions, if every element of the mesh is not too large, and matches a certain quality
criterion described below, then f̂ is a good approximation to f under theH1 norm: that is,
the gradient of f approximates the gradient of f̂ .

Mesh refinement is the task of taking as input the description of a geometric object,
possibly refining it by adding additional vertices, and producing as output a set of vertices
and triangles (or tetrahedra) that tile space and all have good quality. Of course, applica-
tions using the mesh will run in time governed by the size of the mesh, so it is desirable to
output as few additional vertices and as few triangles as possible. Finally, in a timestep-
ping finite element simulation, such as would be used to solve a hyperbolic PDE, under
some commonly-used solution methods, the maximum allowed length of the timestep is

1

governed by the size of the smallest element. Therefore, mesh elements must not be too
small.

1.1 Quality measures

In a finite element application, f will be a property such as heat whose value we are trying
to calculate while simulating a physical process. The approximation quality of f̂ defines
how accurate the simulation is. Classically, Babuška and Aziz [BA76] proved that in order
for the Finite Element Method to produce an accurate solution, the mesh over which the
simulation is run must not contain any angles between two segments that are close to
180◦ — that is, if the largest angle in the mesh is 180 − ε◦, they proved an error bound
that is a constant function of ε. This gives rise to the no large angles condition in mesh
refinement. In three dimensions, the angles of interest are face angles (the angles between
two segments on a triangular face) and dihedral angles (the angles between two triangular
faces on a tetrahedron). Solid angles do not affect the solution quality.

Typically, the values at each vertex that define f̂ will be computed by solving a linear
system of equations Ax = b, where the entries of A are affected by the shape of the
elements. Many solvers have their runtime regulated in part by the condition number of
A. While large face or dihedral angles will cause f̂ to be a bad approximation of f , small
face, dihedral, or solid angles will cause the condition number to degenerate [She02].
Therefore, in meshing, the goal is usually to produce meshes with no angle close to 0◦,
which is called the no small angles condition. A mesh with no angle of any type close to
zero has no angle of any type close to 180◦: the no small angles condition is strictly harder
to satisfy than the no large angles condition.

The analyses of meshing algorithms are much simplified by using different notions
of quality than the angles. In two dimensions, saying that every angle in a triangle is
larger than α is equivalent to saying that it has radius/edge ratio no larger than ρ (see
Figure 1.1). In such a case, I say the triangle has “good” radius/edge ratio. Another
equivalent definition is the aspect ratio, which is variously defined (see Figure 1.2). In
three and higher dimensions, these definitions all generalize in the obvious way. However,
their correspondences are not maintained. In particular, a simplex with good radius/edge
ratio may have a small angle; such a simplex is called a sliver. See Figure 1.3.

Since the early days of theoretically-proved automatic meshing, it has been known
how to provably produce meshes with good radius/edge ratio (although developing soft-
ware to do so has been a greater challenge); techniques can typically prove that they will
output a mesh with radius/edge ratio no worse than

√
2 in two dimensions, or 2 in three

2

r

e

θ

Figure 1.1: Illustration of the radius/edge ratio quality criterion. Draw the circumscribing circle
of a triangle; it has radius r. Let e be the length of shortest edge of the triangle. The radius/edge
ratio is r/e. In two dimensions, if θ is the smallest angle, then r/e = 1

2 sin θ . Therefore, a tri-
angle with small radius/edge ratio has no small angles. The correspondence only holds in two
dimensions.

r

r′ h

A

Figure 1.2: Illustration of two common definitions of the aspect ratio criterion. Draw the
circumscribing circle of a triangle; it has radius r. (A) Draw the inscribed circle of a triangle; it has
radius r′. A triangle has good aspect ratio if r/r′ ≤ σ for some constant σ. This is often also called
the radius ratio. (B) Alternatively, let A be the area of the largest (d− 1)-face of the simplex. Let
h be the height of the simplex — the distance from the remaining point to the plane defined by the
smallest face. Then the simplex has good aspect ratio if A/hd−1 ≤ σ. The two quality measures
are equivalent up to constants. Unfortunately, the literature uses the same term for both, and also
sometimes a for different power of these criteria, including their reciprocal.

3

Figure 1.3: A sliver in three dimensions. The four points are equally spaced about the diameter
of the sphere. Therefore, the radius/edge ratio is

√
2. However, the largest ball inscribed to the

tetrahedron has zero radius, so the aspect ratio is infinite (equivalently, the height of the fourth
point off any face is zero). Note also that the sliver has dihedral angles of both 0◦ and 180◦, but
any two neighbouring segments form a 45◦ or 90◦ angle. In higher dimension, a sliver is defined
by Li to be a simplex that has good radius/edge, but either the entire simplex has bad aspect ratio,
or one of the faces is itself a sliver [Li03].

r

R

v

Figure 1.4: The Voronoi aspect ratio of v is defined by the distance R from v to the farthest
point in its Voronoi cell (i.e. the largest radius of any Delaunay simplex around v) and by the
radius r of the largest ball at v that does not leave the Voronoi cell (which is half the distance to
the nearest neighbour). If R/r ≤ τ , the Voronoi cell has good aspect ratio. Note that if for all
cells, R/ NN(v) ≤ ρ, then the Delaunay triangulation has radius/edge ratio at most ρ. Conversely,
for any Delaunay mesh with radius/edge ratio bound ρ, there is a constant τρ that bounds the
Voronoi aspect ratio of the same point set [Tal97] (this fact is trivial in two dimensions but requires
substantial proof in higher dimension).

4

dimensions. Much less is known about eliminating slivers; see the Related Work section
for details. However, many techniques exist that take as input a mesh with every element
having good radius/edge ratio, and produce as output one with no slivers, with varying lev-
els of theoretical and practical success (the provable aspect ratios are tiny, but in practice
they generally eliminate dihedral angles smaller than about 1◦ to 5◦, and larger than about
175◦ to 179◦ depending on the technique and implementation). Furthermore, as proved by
Miller et al, slivers do not affect solution quality in the Control Volume Method, which
is a simulation technique comparable to the Finite Element Method [MTT+96]. All that
matters for the Control Volume Method is that the Voronoi cell of every point have good
aspect ratio (as defined in Figure 1.4), a quality that is implied by ensuring the simplices
all have good radius/edge ratio. Alternatively, we can directly achieve good aspect ratio
Voronoi cells. As we discovered while developing SVR, and I also found while develop-
ing this thesis, it is substantially more convenient to theoretically analyze the use of the
Voronoi aspect ratio condition.

1.2 Input description

The task of describing the input geometry is a field of its own (namely, CAD). At mini-
mum, an input geometry should allow for specifying points that will appear in the mesh.
The mesh should then fill a certain domain Ω. I take the domain to be a box, sufficiently
larger than the input geometry that no meshing activity occurs near the boundary of the
box (see Section 4.4). Quite naturally, the user may also want to ensure that certain seg-
ments, denoted as a pair of points, appear in the mesh. In three dimensions, the user may
also want to ensure that certain polygons appear. Such an input is termed a Piecewise
Linear Complex by Miller et al [MTT+96]. Copying their definition:

Definition 1.2.1 (Piecewise Linear Complex [MTT+96, Definition 3.2]) A piecewise lin-
ear complex (PLC) is a set X of polytopes with the following properties:

• The set is closed under taking boundaries: For each f ∈ X , the boundary of f is a
union of polytopes in X .

• X is closed under intersection: For any two f and f ′ in X , the intersection f ∩ f ′

is itself a polytope in X .

• If dim(f ∩ f ′) = dim(f) then f ⊆ f ′ and dim(f) < dim(f ′)

5

The algorithms and software I present in this thesis further require that if two polytopes
f and f ′ intersect, then either f ⊆ f ′ or they form an angle of at least 90◦ — they must
intersect at non-acute angles. This has two effects. For one, it limits the number of higher-
dimensional polytopes that are incident on any single polytope (for instance, it limits the
number of segments incident on a point). The other effect is that if we place the center of
a ball b on a feature f , and b does not intersect the boundary of f , then any other feature
f ′ that b intersects is disjoint from f .

The input description is somewhat restrictive: it does not allow for curves, nor does it
allow for for even moderately sharp angles. It is likely possible to extend the algorithms
herein with relatively minimal difficulty to allow for input that also allows arcs and Bézier
curves, perhaps building upon the work of Ollivier-Gooch and Boivin [BOG02]. There
is substantially less work on meshing with curved surfaces, but there does not seem to be
a fundamental difficulty to overcome. Acute angles are a much harder problem; see the
Related Work in Section 1.7.

Given a PLC X , I need to define a notion of what it means to represent X using a
mesh. A mesh M is itself a PLC. Following the literature, I say that M respects X if
every polytope in X appears as a union of polytopes in M . For example, a segment in
X should show up as a set of edges of the mesh simplices, and a polygon in X should
appear as a set of triangles in the mesh. In practice, this is essentially impossible: due to
numerical error, it is very likely that the set of segments in the mesh that ostensibly respects
a segment in X in fact do not coincide. Using exact arithmetic would solve this issue, but
requires asymptotically more time and space. Using robust numerical predicates [She97a]
only somewhat mitigates the issue. In the algorithms, I assume a model of computation
where we can apply the standard arithmetic operations to real numbers of exact precision
in constant time, and leave it to future work to analyze the algorithms under a floating-
point model.

A useful metric for the input space is its spread. Let L be the length of a side of
the box that defines the meshing domain. Let s be the shortest distance between any
two disjoint features. Then the spread is L/s. The quality measures each imply that at
most, two neighbouring elements in the output mesh have about the same size, to within
a constant. Therefore, the quantity log L/s appears repeatedly in this thesis and in the
literature. Assuming integer inputs with words of lengthw, L ≤ 2w while s ≥ 1. Normally
the assumption is that w = O(lg n), so L/s ∈ poly(n). With floating point input (where a
floating-point number consists of a word-sized integer for the exponent, and a word-sized
integer for the mantissa), the spread can be exponential in n.

In the application at hand — meshing for scientific computing and graphics — the
length of a timestep is commensurate with the size of the smallest element, which must

6

of course be commensurate with s. If we intend to simulate a period of simulated time of
about Θ(L), then it will take Θ(L/s) timesteps to do this. This motivates taking on the
assumption, common in computational geometry, that even when accepting floating point
or real input we can consider the spread to be only polynomial in n.

1.3 Sizing functions

A very important definition, from Ruppert [Rup95] and extended to higher dimension
by Miller et al [MTT+96], is that of the local feature size, which produces a continuous
function over space that describes the spacing between input features near any point.

Definition 1.3.1 (Local feature size) Given a PLC X , the local feature size at a point x
in space, denoted lfs(x), is the radius of the smallest ball centered that x that encloses a
pair of disjoint features f and f ′ (i.e., f ∩ f ′ = ∅). The local feature size is a Lipschitz
function: for any two points x and y, lfs(x) ≤ lfs(y) + ||xy||.

In two dimensions, the following holds: consider a mesh of a domain Ω, where the
mesh respects the input X and every element has good radius/edge quality. It may or
may not be Delaunay. Ruppert proves [Rup95] that every point x ∈ Ω lies in a triangle
τ that has circumradius r such that r ≤ O(lfs(x)). This implies, not entirely trivially,
that even in the smallest possible valid mesh, the number mopt of triangles obeys mopt ∈
Ω(

∫
Ω

1
lfs2(x)

dx). At the same time, Ruppert shows an algorithm that produces a mesh where
every point x ∈ Ω lies in a triangle with radius r ≥ Ω(lfs(x)). This implies that the mesh
his algorithm produced had size m ∈ O(

∫
Ω

1
lfs2(x)

dx). In other words, m ∈ Θ(mopt): the
mesh that Ruppert’s algorithm produces is constant-competitive with the optimal mesh
that any algorithm could produce.

The proof depends on the mesh being of good aspect ratio. In three dimensions, it still
holds for any good aspect ratio simplicial mesh. However, the statement that r ∈ O(lfs(x))
is no longer true when demanding only good radius/edge meshes. Shewchuk [She98b]
shows an example of two skew edges, which generate tiny local feature size where the
two edges almost meet. However, a sliver can resolve both edges. This discorrespondence
complicates the analysis of the size guarantees of higher-dimensional meshing algorithms.
Meshing algorithms that produce good radius/edge meshes, including the ones I mention
here, typically still prove that r ≥ Ω(lfs(x)).

Instead of discussing the size of the meshes my algorithms produce relative to the
optimal radius/edge mesh, I will show that the meshes are size-conforming. That is, the

7

local feature size defined by the vertices of the final output mesh is a function not far
different than the local feature size defined by the input. More formally, define the local
mesh size at x ∈ Ω, lms(x) as the distance from x to the second-nearest vertex of the
output mesh.

Definition 1.3.2 (Size-conforming) A mesh made up of a finite set of vertices V ⊂ Rd,
such that the mesh respects an input PLC X and tiles a domain Ω, is size-conforming if
for every x ∈ Ω,

lms(x) ≤ lfs(x) ≤ c lms(x)

for some constant c.

As proved by Ruppert (after the obvious generalization to higher dimension), a size-
conforming mesh contains Θ(

∫
x∈Ω lfs−d(x)dx) elements. This is the same number of el-

ements as in the smallest mesh that respects X and has good aspect ratio. Algorithms
exist that take as input a size-conforming mesh with good radius/edge quality, and pro-
duce a good aspect ratio mesh of either exactly the same size or only linearly more ver-
tices [ELM+00, CDE+00, LT01, Li03].

An interesting aside is that in the field of surface reconstruction, the local feature size,
defined only on the manifold being reconstructed, is the distance to the medial axis. This
alternative description matches the description I gave here everywhere on X , assuming
the angle between intersecting segments is obtuse (strictly larger than 90◦); but if the
angle is right or acute, the medial axis touches the surface and thereby defines regions
with lfs(x) = 0. The surface reconstruction definition of local feature size is well defined
on curved inputs. This is another reason to expect that extending the techniques here to be
able to mesh curved input will be a smaller change than finding algorithms that can handle
acute angles.

Often in scientific computing, the local feature size is insufficiently fine: to visualize
why, think of an eddy swirling in the middle of the ocean. We will need small elements
simulate it accurately, even though the geometry suggests using huge elements there since
the coastline is so far away. In the present work, I abstract away from such requirements;
they can be imposed for instance by adding a few additional points where further refine-
ment is needed.

8

1.4 Static and dynamic algorithms

Traditionally, the meshing problem has been to take an input description (such as a PLC)
and produce a quality mesh. Practitioners assume that a mesh will be used for hundreds
of simulations, each one running for minutes to hours. Therefore, the computation time
spent generating the mesh is no object; instead, mesh quality, mesh size, and most of all
correctness are far more important than runtime.

Increasingly, however, we are interested in simulating processes where the geometry
changes during the simulation: blood cells moving through a channel, pump blades ro-
tating, valves opening, etc. Another realm of interest is in optimizing the shape of an
engineering component: the task is to take an input geometry, run a simulation and com-
pute a quantity of interest (such as, for a heart pump, the maximum strain any blood cell
will suffer), then to automatically change the geometry slightly and re-run the simulation.
If the new geometry is better with respect to the quantity of interest, repeat the process, in
a hill-climbing approach.

In the algorithms literature, there are two closely related concepts that are sometimes
conflated into the term “dynamic.” According to the definitions I prefer to use, in the
dynamic setting, we take a fixed input and compute the solution to a problem. Then, the
adversary can add or remove part of the input, and ask us to update the solution accordingly
the problem. Let n be the greater of the size of the input before or after the change. An
algorithm responds to the change in time O(f(n)) if it can, starting with the initial output
and some other data structures, change the output to be a valid answer to the new problem,
in time O(f(n)). In terms of meshing, one could use a dynamic meshing algorithm to
maintain a quality mesh as, for example, a crack creeps through the domain, one break at
a time; or when a solenoid valve is essentially instantaneously opened. It is in this sense
that the algorithm I present that forms the core of the thesis is a dynamic algorithm.

In a kinetic setting, the input size does not change over time [Gui98]. Instead, the input
(assumed to be geometric) changes continuously over time. It is assumed that the input
will change discontinuously only at specific points in time. The goal is to maintain a valid
output and some internal data structures as the input continuously moves. The analysis will
normally compare the number and cost of changes in the internal data structures, against
the number of changes to the output. A kinetic mesher would be one that maintains a
quality mesh as fluid entrains a blood cell, for example. The kinetic meshing problem (or,
more commonly, themoving mesh problem) is beyond the scope of my thesis, though there
are deep links between the dynamic and kinetic settings.
History independence, in the sense defined by Micciancio [Mic97], states that an

9

algorithm will produce an identical output given an input without regard to the history of
changes. That is, if after a long series of changes, kinetic or dynamic, we were to rerun the
algorithm from scratch on the current input, it would produce an output that is equivalent
to the one that was dynamically maintained. The notion of equivalence is usually obvious:
In the meshing problem, equality is defined by the coordinates of the mesh vertices, and
the topology of the mesh. The advantage of history independence is that it limits the need
to analyze the correctness of our algorithms to the simpler, static case; the disadvantage is
that in some cases — meshing might come to mind, the algorithm has a lot of freedom in
choosing the output. Specifying that the dynamization will be history-independent limits
that freedom.

When an algorithm is history independent, it is well defined what the output is, given
the static algorithm that is needed to compute the initial solution. This brings up the
question of automatically dynamizing a static algorithm. The task is to simulate rerun-
ning the static algorithm from scratch, while hopefully spending time related to a notion
of a difference between the two runs of the algorithm. Acar et al formalized one such
approach, calling it self-adjusting computation (SAC), and provided algorithms to in-
deed efficiently simulate a static algorithm under dynamic or kinetic changes to the in-
put [Aca05, ABBT06, ABT06]. We can describe the run of a program essentially as a
circuit (I use more formal notions later), where each gate reads in a bounded number of
operands and produces a result. Updating to run on a new input involves propagating val-
ues through the circuit, but also creating new sub-circuits (operations that are performed
in one but not the other run), and eliminating old sub-circuits. The algorithm that performs
this propagation of changes is imaginatively called the change propagation algorithm. In
order to avoid propagating changes through parts of the circuit that it will later decide are
not needed, SAC maintains an order maintenance structure that defines a total ordering on
the gates — namely, the order in which the static algorithm initially ran the corresponding
operations. The change propagation algorithm uses a priority queue to ensure that it re-
executes the program in order, and thereby avoids updating a computation present in the
old circuit, but no longer present in the new one. Efficient updates depend on the following
definitions:

Definition 1.4.1 (Trace [Aca05, Definition 8]) The trace is an ordered, rooted tree that
describes the execution of a program P on an input. Every node corresponds to a function
call, and is labeled with the name of the function; its arguments; the values it read from
memory; and the return values of its children. A parent-child relationship represents a
caller-callee relationship.

Definition 1.4.2 (Cognates and Trace Distance [Aca05, Definition 12]) Given two traces

10

T and T ′ of a program P , a node u ∈ T is a cognate of a node v ∈ T ′ if u and v have
equal labels. We say a program is concise if a node u ∈ T does not have a cognate in T
other than itself. The trace distance between T and T ′ is equal to the symmetric difference
between the node-sets of T and T ′, i.e., distance is |T | + |T ′|− 2|C| where C is the set of
cognates of T and T ′.

Definition 1.4.3 (Monotone Programs [Aca05, Definition 15]) Let T and T ′ be the trace
of a concise program with inputs that differ by a single insertion or deletion. We say P is
monotone if operations in T happen in the same order as their cognates in T ′ during a
pre-order traversal of the traces.

The main theorem of Acar [Aca05] states that for monotone programs, the time for
change propagation is the same as the trace distance if the priority queue overhead can
be bounded by a constant. For the theorem, we say that a program is O(f(n))-stable for
some input change, if the distance between the traces T , T ′ of the program with inputs I
and I ′, where I ′ is obtained from I by applying the change, is bounded by O(f(n)). For
the proofs, I will generally abstract away from trace nodes and use a more fuzzy notion
of an “operation,” and show that there are at most a constant number of trace nodes per
operation.

Theorem 1.4.4 (Update time [Aca05, Theorem 34]) If a program P is monotone under
a single insertion/deletion, and is O(f(n))-stable, and if the priority queue can be main-
tained in O(1) time per operation, then change propagation after an insertion/deletion
takes O(f(n)) time.

Given that SAC is history-independent, the space usage of SAC is bounded by the static
runtime of the algorithm. Even if the update time is large, SAC stores only an amount of
memory linear in the length of the current trace. In some cases, it may be possible to
further reduce the memory usage, as I will briefly discuss when dynamizing the quadtree
algorithm.

The method I use to prove my algorithm are O(f(n))-stable will be an exercise quite
familiar to anyone who has designed a parallel algorithm. Indeed, the key idea is to define
a notion of dependency: operation a depends on operation b if b must be computed before
a. To prove a parallel bound, we must quite explicitly reason about dependencies and
show that any path of dependency is short. The dynamic setting is both more stringent
and more permissive: not only must every dependency path be short, there must not be
too many paths, because the change propagation is run in series. On the other hand, a

11

dependency path may be long without causing issues in the dynamic response time if
change propagation can stop propagation (because an operation being propagated wrote
the same value to its output as it had written before).

In this thesis, I will give stability bounds for various algorithms. The way in which they
are written strongly implies that the algorithms are also parallelizeable. Naively paralleliz-
ing them at the moment will add a logarithmic term in the runtime. It is likely that one
could use methods other than SAC to dynamize (for instance, a hand-coded specialization
thereof), without substantially changing the theoretical analysis. In particular, the bounds
I give also imply that even after throwing away the mesh re-running the static algorithms
from scratch, the new mesh will mostly match the old, avoiding reinterpolation error.

1.5 Bucketed priority queues

Meshing algorithms (my own included) frequently recommend performing operations
in a particular order that depends on the geometry of the items in the queue. For in-
stance, it may be advantageous to process tetrahedra in order of largest radius first as per
Miller [Mil04], or shortest shortest-edge first as per Har-Peled and Üngör [HPÜ05]. The
most natural approach is to put the tetrahedra to be processed in a priority queue, keyed
by their characteristic length (the length of the shortest edge, or the reciprocal of the ra-
dius). Then the algorithm can INSERT all the tetrahedra into a priority queue, and call
DELETEMIN to decide which element to process next. Generally in meshing, the DE-
CREASEKEY operation is not needed; a DELETE operation may be useful for tetrahedra
that are destroyed before being processed, but it is in practice both simpler and faster to
simply ignore a result from DELETEMIN that refers to a deleted simplex.

In a comparison model, computing the exact minimum will take O(lg |Q|) per opera-
tion, where |Q| is the number of items in the priority queue. However, it is often the case
that we need only approximate the order in the priority queue: if the true minimum has
key l, then it is safe to report another item if the other item has key l′ < γl, for some
constant γ > 1 that depends on the application. On its own, this allowance to approximate
exponentially reduces the runtime, but the runtime still depends on |Q|.

However, in my application we know yet more: when an item with key l is removed
from the queue and processed, the processing may add new items on the queue. Those
new items will have key Θ(l), so they will go near the “front” of the priority queue. This
allows achieving constant-time approximate priority queue operations. The structure is as
follows: I store a sorted linked list. Each node in the linked list is a pair consisting of
a number l, by which I sort; and a bucket — an unsorted set of items whose key lies in

12

[l, γl). INSERT on an item with key k searches from the head of the list until it finds the
bucket that contains k, then adds the item to that bucket. If there is no such bucket, the
insertion algorithm creates a new bucket and links it into the list. Adding to a bucket will
take constant time, and by the assumption that new items have key with a constant factor
of the previously-deleted item’s key, only O(1) buckets will need to be considered before
finding the appropriate bucket or determining there is no such bucket. A DELETEMIN
operation simply looks up the head of the stored list and removes an arbitrary item from
that bucket, deleting the linked list node if the bucket is thereby emptied. Therefore, under
these two assumptions— that we may approximate the priority queue order, and that items
are created close in keyspace to the previously-deleted item— the priority queue costs are
O(1) per insertion and deletion.

When creating a new bucket, the question arises as to what number the bucket should
take. For simplicity, we would prefer that buckets do not overlap; this is not critical, but
shedding this requirement complicates the analysis without simplifying the implementa-
tion. The easiest way to ensure the non-overlap condition is for the first insertion into the
bucketed queue to use a bucket number equal to the key of the item being inserted, and
to subsequently use powers of γ times the first bucket number. Thus, when a new bucket
is to be created, we look at the number of the next-smaller (or next-larger) bucket, and
multiply (or divide) by γ until we find an appropriate number. We should be careful for
the case of removing the item in the queue that has the smallest key, and there remaining
only items with much larger keys — the repeated division approach would then take time
logarithmic in the ratio between the deleted key and the next-smallest key. To handle this,
we can simply remember the number of the last bucket that we deleted.

Alternately, if numbers are in a floating-point representation, then the bucket number
can be read directly as the exponent of the key. For example, in the SVR implementation,
I use a bucketed priority queue on tetrahedra in which the key is r2, the square of the cir-
cumradius. Reading the floating-point exponent as an integer therefore buckets according
to [r,

√
2r). This can be a substantial constant factor faster than repeated division, and

only requires storing a small integer rather than a floating-point double.
In the static case, there are many possible implementations of such a priority queue

beyond the one I have mentioned. The details are immaterial to my later proofs, so I
generalize to the following definition:

Definition 1.5.1 (γ-bucketed priority queue) A γ-bucketed priority queue is a structure
that supports INSERT and DELETEMIN calls. When the smallest key in the set is l, then
DELETEMIN is guaranteed to spend O(1) time before returning a value whose key is in
[l, γl). Having deleted an item with key [l, γl), we can now INSERT items with key Θ(l) in

13

A bucket is a pair 〈 R, a set of items 〉
Q is a record { buckets: sorted list of buckets, last: R }
The list is sorted by the bucket numbers, smallest first.

INSERT(Q, k: real, v: item)
1: Find the bucket 〈l, S〉 such that k ∈ [l, γl)
2: if there is no such bucket then
3: S ← nil
4: if there is no bucket then
5: l ← k
6: Set the “last” field to k
7: else
8: Compute i such that k ∈ [γilast, γi+1last)
9: l ← γilast
10: end if
11: Insert the bucket 〈l, S〉 into the buckets list in sorted order
12: end if
13: Add v to the list S

DELETEMIN(Q)
14: Read the first bucket of Q as 〈l, S〉
15: Set the “last” field to l
16: Remove the first element v of S
17: If S is now empty, remove the bucket
18: return v

Figure 1.5: The γ-bucketed priority queue described in the text. DELETEMIN is clearly
deterministically constant-time. INSERT has a potentially expensive operation in finding
the appropriate bucket; the assumption that new items will be close in size to the current
minimum limits this cost to be constant. Computing i may be expensive or inexpensive,
depending on machine model: with γ = 2 on an floating-point machine, it is constant
time, whereas if only multiplication is allowed, it has the same asymptotic cost as finding
the appropriate bucket.

14

constant time. More generally, when the minimum key in the queue is min, we can insert
an item with key k in time O(| logγ

k
min |).

In the dynamic case, it is difficult to analyze the stability and response time of this
γ-bucketed priority queue without knowing how it will be used. I therefore defer these
questions until the dynamic analysis of my meshing algorithms, which will refer to the
specific algorithm I described here.

1.6 Claims

Here are the claims I make for this thesis:

• The first implementation of a time-optimal Delaunay refinement code in two and
three dimensions. On point clouds in three dimensions, it is the fastest known re-
finement code.

• The first dynamic algorithm for maintaining a size-conforming quadtree or octree
over a point cloud, or over a suitable PLC X . If a feature f intersects mf quadtree
cells when it is present, then adding it to the PLC or removing it from the PLC takes
O(mf lg L/s) time. The data structures to support this consume O(n lg L/s + m)
space.

• The first dynamic algorithm for maintaining a quality, size-conforming simplicial
mesh that respects a suitable PLC X , in the same time and space bounds as to pro-
duce the quadtree. The algorithm works in any fixed dimension d.

• A sufficient condition for being able to provably ignore boundary effects while
meshing.

• A new framework to use to guide the choice of Steiner points. The new framework
gives somewhat greater freedom than traditional approaches, which is likely to be
useful from both the theoretical and practical point of view.

1.7 Related work

Chew gave the first algorithm to provable produce a quality mesh in two dimensions
[Che89]. His algorithm did not however produce a size-conforming mesh; instead, it pro-

15

duced a nearly uniform mesh, where all triangles were about the same size. Meshes gen-
erated by Chew’s algorithm are therefore often must larger than needed. Ruppert adapted
Chew’s algorithm and proved that his own algorithm produces a graded mesh of good
quality, with only a constant factor more vertices than is optimal [Rup95, first published
1992]. He lay the foundations (discussed in Section 1.3) for analyzing the size of a mesh as
compared to the optimal. Both these algorithms use so-called Delaunay refinement: as an
invariant, they maintain the Delaunay triangulation [Del34] or Constrained Delaunay trian-
gulation [Che87] of the input and any additional Steiner points inserted so far. Iteratively,
they detect a triangle t which is unsatisfactory (has bad radius/edge quality, for example).
Recall that the Delaunay triangulation is defined as those triangles whose circumscribing
disc is empty. Therefore, if a triangle is unsatisfactory, it is quite natural and effective to
insert the center of that disc, and recompute the Delaunay triangulation. In three dimen-
sions, the pattern was repeated by Chew [Che97] and later Shewchuk [She98b], who first
showed how to produce a quality radius/edge mesh with uniform element size, then with
graded elements. None of these algorithms claim any interesting runtimes, and indeed
some lower-bound examples exist that can make the algorithms take quadratic time. The
situation is even worse in three dimensions, where the initial Delaunay triangulation can
have size Ω(n2) even as the output has size only O(n).

The chief practical difficulties with the Delaunay refinement algorithms have been the
difficulty they have handling of small input angles, and the tendency in three dimensions
to produce slivers. It is known in two dimensions that Ruppert’s algorithm works as-is on
inputs with angles of 60◦ or more between any two segments. The same holds in three
dimensions, but this is small comfort since two polygonal facets must meet at non-acute
angles, and segments are normally only used to bound facets. Various simple tricks can
be used to ensure that Ruppert’s algorithm terminates despite much smaller angles. Even
defining what the proper input should be in these cases is tricky: if the input has an angle
of 1◦, it is fundamentally impossible to both respect the input and produce a mesh with no
angle less than 20◦. Simple tricks such as Shewchuk’s “terminator” can produce meshes
with no small angles except “near” a small input angle. Sadly, in three dimensions, no
simple tricks are known that have interesting provable bounds. Eliminating slivers from
three-dimensional meshes is an industry unto itself. Among results that can provably
eliminate slivers, I outline the work of Edelsbrunner et al and of Cheng et al [ELM+00,
CDE+00], which showed that slivers are brittle objects that disappear when faced with
minor perturbations, even without adding new Steiner points. Alternatively, Chew showed
how to eliminate slivers in a uniform mesh by being careful when adding Steiner points,
inserting not the circumcenter but a point close to the circumcenter [Che97]. Randomly
choosing a point near the circumcenter, checking whether it will created a sliver, and
trying again if it did, we can be assured that no slivers will remain in the output. Li

16

and Teng extended this to graded meshes by allowing the creation of slivers, if they are
substantially larger than the simplex being processed; the larger slivers can then recursively
be addressed [LT01, Li03]. While these techniques provably produce meshes with aspect
ratio at most some constant σ, the value of σ they prove they can achieve is miniscule.
Labelle [Lab06] demonstrated that by running standard Delaunay refinement but using
lattice points rather than circumcenters, he can prove that the output mesh will have no
dihedral angle less than 30◦ for point cloud input. Lattice refinement has not yet been
extended to handle PLC features. It is very likely that both the Li-Teng technique and
Labelle’s lattice refinement can be used in a dynamically-stable code.

Closely related to the Delaunay meshing algorithms are the ball-packing algorithms
[MTT+96, Tal97, LTU99b, LTU99a]. These operate by computing a set of non-overlapping
balls with radius driven by a spacing function such as the local feature size. The mesh
vertices are at the center of each ball. These can be also made to take account of PLC in-
put [MTT+96]. In spirit, Delaunay refinement is just a flavour of ball-packing refinement:
both involve inserting points at the center of an empty ball. Unfortunately, ball packing
quite explicitly adds as many points as possible and has in practice been found to create
large meshes [LTU99b]. Related to dynamic updates, Miller, Talmor, and Teng [MTT99]
showed how to use ball packing techniques to coarsen a mesh, as might be required to do
after removing a feature from the input.

Simultaneously with the developments in the realm of Delaunay refinement, Bern,
Eppstein, and Gilbert showed how to use a quadtree to produce a quality mesh [BEG94,
first published 1990]; Bern, Eppstein and Teng later parallelized the algorithm [BET99,
first published 1993]. The technique defines a quadtree whose squares are size-conforming,
then warps the corners of the quadtree cells to respect the input points. In the presence of
segments, it treats the intersection between a segment and the side of a quadtree cell as
an input point. Finally, they use a stencil to show how to triangulate the resulting shapes.
Mitchell and Vavasis soon extended this to higher dimension [MV00, first published 1992].
Bern et al. showed that if the input is defined by n vertices, and the output containsm cells,
then their algorithm runs inO(n lg n+m) time on integer or floating-point input. Mitchell
and Vavasis show the same assuming constant-time tests to see whether a quadtree cell
and a polygon intersect, barring which their algorithm can degenerate to O(mn) time; it
is sufficient to require that the polygons are defined by a bounded number of segments on
their boundary. In other words, quadtree-based meshes have asymptotically the same opti-
mal size as Delaunay-based meshes, but can be produced asymptotically faster. However,
in practice, algorithms based on quadtrees output many more points than do Delaunay
refinement algorithms.

The first interesting running time proved on Delaunay refinement was by Spielman,

17

Teng, and Üngör, who showed that Ruppert’s algorithm can be run in O(lg2 L/s) paral-
lel rounds, with each round running in O(polylog(m)) parallel time [STÜ07, first pub-
lished 2002]. They did not explicitly show a bound on the work, though one can trivially
deparallelize the algorithm to find that in two dimensions, it runs in near-linear work,
albeit with large polylogarithmic factors. Miller [Mil04] proved the first practical sub-
quadratic sequential time bound on a variant of Delaunay refinement, with time essentially
O((n + m) lg L/s) on PLC input in two dimensions. Around this time, Üngör showed
that by choosing a different point in the circumball, one that he termed the off-center, he
could produce a somewhat smaller mesh in practice than what Delaunay refinement can
offer [Üng04]. The new point has the advantage that computing it is a more local opera-
tion: its coordinates depend only on the shortest edge, unless the triangle is of almost good
radius/edge quality. The locality allowed Spielman, Teng, and Üngör to shave one loga-
rithmic factor off their analysis [STÜ04]. More excitingly, it also allowed Har-Peled and
Üngör to use a quadtree for point location and off-centers for Steiner points to choose a set
of points whose Delaunay triangulation forms a quality radius/edge mesh inO(n lg n+m)
time [HPÜ05]. Finally, using the Delaunay triangulation plus a very naive point location
structure, Hudson, Miller, and Phillips developed the first optimal-time O(n lg L/s + m)
Delaunay meshing algorithm that handles PLC input (also, the first subquadratic space al-
gorithm in three or higher dimensions) [HMP06]; this quickly led to the development of a
parallel algorithm in O(lg L/s) rounds of parallel depth O(lg m) each, with no additional
work [HMP07b].

Various other meshing techniques have been proposed. Longest edge bisection chooses
a Steiner point for a bad-quality triangle by bisecting the longest edge, rather than insert-
ing the circumcenter. Adding a number of details, it appears that this technique is soon to
be proven correct and size-conforming in two dimensions. Advancing front methods start
at the boundary of the PLC features and build triangles or tetrahedra from there out toward
the boundary of the domain. These methods typically face some difficulties on compli-
cated geometries, though they are not insurmountable. The Har-Peled and Üngör tech-
nique is reminiscent of an advancing-front technique in that the off-centers it inserts are
spawned from regions with small local feature size and grow outward to regions with larger
local feature size. Labelle and Shewchuk recently showed how to mesh an implicitly-
defined surface, rather than a PLC, in such a way as to obtain strong guarantees on the
dihedral angles [LS07]. Given a poor-quality mesh, a huge number of mesh optimization
passes have been proposed that move the mesh vertices around in hopes of improving the
quality of the elements: at the International Meshing Roundtable, there are normally sev-
eral sessions each for tetrahedral and hexahedral mesh optimization. Many are guaranteed
never to reduce mesh quality, and most are guaranteed not to insert or delete any vertices.
Typically, they act locally, which implies that it should be dynamically stable to run a few

18

passes of a mesh optimizer after running my algorithms.
Shewchuk implemented Ruppert’s algorithm for two dimensions [She96], and his own

in three dimensions [She98b]. Triangle has been quite successful. Pyramid has not yet
been publicly released. Mitchell and Vavasis implemented QMG [MV00], also known as
Qmesh, which is based on the octtree algorithm; this code is sadly no longer supported.
Hang Si has implemented Delaunay refinement algorithms along with substantial engi-
neering to handle real-world inputs, and packaged it as TetGen [Si06].

Commercially, the most successful codes are based on TetMesh. This is a major
piece of software encompassing a huge number of heuristics and mesh optimization passes
which, in practice, appear to often produce small and good quality meshes. TetMesh lacks
theoretical guarantees; when one meshing heuristic fails, the advice is to change which
heuristic to use. Many in the scientific computing world, especially in National Labs run
by the US Department of Energy, prefer to use so-called hexahedral meshes, which use
distorted cubes as their basic element. Producing hexahedral meshes appears to be very
difficult both from a theoretical and a practical standpoint.

Kinetic meshing has attracted some attention. There are two main approaches taken in
the literature. The easiest is to remesh from scratch [KFCO06, BWHT07]. Unfortunately,
it is of course quite wasteful to entirely throw away an almost good mesh. Worse, the two
meshes may differ in every triangle, causing reinterpolation error when copying values
from the old mesh to the new. Another approach is to locally remesh [CCM+04, MBF04].
It is easy to implement locally improving the quality. However, to be size-conforming (and
size-optimal), we must also coarsen the mesh [MTT99, LTU99b]. Sadly, it is unclear how
to make mesh coarsening a local operation: coarsening runs in O(m lg m) time, which is
asymptotically more expensive than remeshing, although in practice is much faster.

Dynamic meshing is a much less well-trodden field. Topological changes during
kinetic meshing are typically handled in an ad hoc manner, and not seen as dynamic
changes. Chew has mentioned in personal communication that in a fracture simulation
project with which he collaborated, many of the mesh updates were exactly dynamic up-
dates as I have described; to those, their technique was to remesh from scratch. Nienhuys
and van der Stappen describe a technique to remesh locally to simulate the new surfaces
caused by a scalpel cut through simulated tissue; they remesh locally and add a few new
points [NvdS04]. Experimentally, they claim interesting results; unfortunately, they theo-
retically prove neither runtime nor correctness. Coll, Guerrieri, and Sellarès described a
dynamic remeshing algorithm based on mesh optimization [CGS06]. Sadly, they did not
analyze the runtime of their technique, though they did prove its correctness.

19

1.7.1 Relations to prior work

The SVR algorithm is something of a hybrid of quad-tree and Delaunay refinement tech-
niques. Like the naive quadtree algorithm, SVR always maintains a quality mesh (with,
therefore, low degree) and refines top-down, only at the last step recovering the input. Like
a Delaunay refinement approach, SVR maintains the Delaunay triangulation of the set of
points it has thus far processed, and uses circumballs of simplices as its fundamental ob-
jects. The code is in the tradition of Triangle, Pyramid, TetGen, and QMG: cross-platform
codes implementing provably good algorithms, and cost-free for research use.

My dynamically stable mesher has a longer pedigree, even ignoring proof techniques.
It directly uses a quadtree, and therefore is a quadtree algorithm. Borrowing the idea
of Har-Peled and Üngör, however, the quadtree points are never inserted the output, and
instead it is only used for point location in lieu of maintaining a Delaunay mesh. The gap
balls with which I define legal insertions are from Talmor and her thesis work (with Miller
et al.) on ball-packing and Delaunay refinement. Mine is a parallel algorithm, though I use
the parallelism only in order to get good dynamic stability; it fits under the paradigm first
developed by Spielman et al [STÜ07, STÜ04]. Finally, the encroachment and yielding
rules of Chapter 6 are from SVR. As with the algorithm of Har-Peled and Üngör, a claim
could also be made that mine is an advancing front algorithm, though it was not conceived
as such.

The general technique I adopt is to use a graded, size-conforming quadtree as a point
location structure to choose Steiner points. A number of other dynamic point location
structures have been developed, some of them based on quadtrees. In particular, Eppstein,
Goodrich, and Sun show how to dynamically maintain what they term a skip quadtree
under point insertions and deletions [EGS05], work that shares a surprising number of
keywords with this work. Because of the highly restrained way in which I use the quadtree
I build, it can answer the relevant range queries in O(1) time (see Lemma 4.3.3), and can
support insertions of new Steiner points also in constant time. It is unclear how to use skip
quadtrees to support these operations without paying an additional O(lg n) term in the
runtime; it is equally unclear how to represent higher-dimensional PLC features in a skip
quadtree. My algorithms run in two phases: first they build the point location structure,
then they query the structure and build the mesh. The runtime (both static and dynamic) is
at the moment dominated by the first phase. A faster point location structure may speed it
up in practice. However, any replacement structure must take care to keep the query cost
in constant time: an additional logarithmic term on queries would make the time of the
second phase dominate the asymptotics.

Those who have witnessed the slow development of dynamic convex hull algorithms

20

may be surprised by my claims of having discovered a relatively simple algorithm that out-
puts a Delaunay triangulation (note that the Delaunay problem in dimension d is equivalent
to the convex hull problem in dimension d+1). The dynamic Delaunay triangulation prob-
lem is famously difficult, because the insertion of a single point can cause linear change in
the output triangulation. However, examples of this behaviour require maintaining a mesh
with very skinny triangles. In a quality mesh, no skinny triangle is present in the output.
Indeed, the algorithms I present never represent a very skinny triangle even in intermediate
stages of the algorithm.

21

22

Chapter 2

The SVR algorithm

The first result of this thesis is an implementation of the Sparse Voronoi Refinement (SVR)
algorithm, which is the first optimal-time Delaunay refinement algorithm. This chapter re-
views the previously published algorithm [HMP06] including sketches of the proofs to
clarify the degrees of freedom we can work with in the implementation. The main new
content of this chapter are a longer description of the intuition behind SVR and the prob-
lems faced by traditional Delaunay refinement methods; and a more exhaustive algorithm
listing that has previously appeared.

2.1 Traditional Delaunay refinement

Traditional Delaunay refinement algorithms first construct a conforming Delaunay trian-
gulation of the input (or a constrained Delaunay mesh), which respects the input but has
elements of arbitrarily bad quality. Next, the algorithm iteratively finds a simplex of bad ra-
dius/edge condition, and removes it from the mesh by calling SPLIT. A simplex appears in
the Delaunay triangulation if and only if its circumball is empty of any other points, so by
inserting any point in the circumball and recomputing the Delaunay triangulation will re-
move the bad-quality simplex. Chew [Che89, Che97] showed that a procedure that inserts
the center of the circumball will terminate; Ruppert [Rup95] showed it would terminate
with a mesh of nearly optimal size (within a constant factor), while Shewchuk [She98b]
first extended Ruppert’s technique to three dimensions.

To handle features, the algorithms will snap candidate circumcenters to the boundaries
as the need arises. A simplex of a PLC feature will appear in the mesh if and only if it has
some circumscribing ball that is empty of any mesh vertices; in particular, it will appear if

23

TRADITIONALDELAUNAYREFINEMENT(X ⊂ Rd, ρ)
1: LetM be a conforming Delaunay triangulation of X
2: Q ← the set of all bad-quality Delaunay simplices ofM
3: while Q is non-empty do
4: Let s ← TOP(Q)
5: if s is no longer in the mesh, skip
6: SPLIT(s)
7: end while
8:
SPLIT(s: a simplex of dimension i)
9: Let p ← circumcenter(s)
10: if p encroaches a feature’s simplex s′ of dimension i′ < i then
11: Yield: SPLIT(s′)
12: else
13: Perform a Delaunay insertion of p intoM , creating a vertex v
14: for each simplex s ∈ link(v) do
15: if s has bad radius/edge quality, add s to Q
16: end for
17: end if

Figure 2.1: The traditional Delaunay refinement algorithm, due to Chew [Che89], Rup-
pert [Rup95], and Shewchuk [She98b], and refined by many others. The algorithm first
computes a conforming or constrained Delaunay triangulation of the input (for simplicity,
I describe the conforming Delaunay case here), then iteratively improves it, taking care
that the triangulation continues to conform to the input. In three dimensions, this is not
always possible, which requires an auxiliary structure to maintain unresolved boundary
facets [She98b, MPW02].

the smallest-radius circumscribing ball is empty. Though this is not a necessary condition,
it is relatively easy to describe and analyze. Accordingly, it is common in the literature
to define the circumball of a lower-dimensional simplex as that (unique) smallest-radius
circumscribing ball. To maintain the invariant that the circumball of a lower-dimensional
simplex is empty, when inserting a triangle’s circumcenter would violate the invariant,
traditional refinement (and also SVR) will yield and insert the segment’s midpoint first.
In higher dimension, this procedure may recursively yield from circumcenters of full-
dimensional simplices to (d−1)-dimensional ones down to segments (1-dimensional sim-
plices).

The runtime of traditional Delaunay refinement has been difficult to analyze. In two

24

dimensions, it is clear that each insertion can be made to run in time linear in the size of the
mesh at that point, which gives us an uninteresting time bound of O(m2). When the order
of operations is left arbitrary as in Chew’s, Ruppert’s, and Shewchuk’s algorithms, exam-
ples (see Figure 2.2) exist where the output size is Θ(n) — just under 3n, using Triangle
—, yet each vertex insertion modifies a linear number of triangles, giving us a lower bound
of Ω(n2). Miller worked around this difficulty by proposing to order the work queue Q
largest circumradius first. This produces an optimal-time O(n lg n + m) algorithm when
there are no segment features (because the priority queue can be approximate), and one
that runs in a logarithmic factor slower than optimal when there are features (because the
priority queue must then be strict). Conversely, Üngör recognized that one gets a smaller
output size by working on the shortest edge first, in which case the worst-case example
applies. Therefore, practical codes can deterministically be made to take quadratic time
on admittedly non-practical inputs.

In three or higher dimensions, the situation is far simpler. It is well known that there
are point sets where the Delaunay triangulation has sizeΘ(n%n/2&) [McM70]. In particular,
the moment curve, where point pi has coordinates 〈i, i2, . . . , id〉, achieves this bound. For
an example that comes up in application, consider a galaxy with a central quasar. Almost
all the mass of the galaxy except the quasar will be concentrated almost on a circle, while
the quasar will emit jets perpendicular to the galactic plane. We can model this as a set
of n1 points on the circle x2 + y2 = 1 with z = 0, and another set of n2 points on the
line x = y = 0. See Figure 2.3. The Delaunay triangulation of this input has exactly
n1(n2 − 1) tetrahedra (which is Θ(n2) when n1 = n2): consider a consecutive pair of
points on the line, and another consecutive pair of points on the circle. We can expand a
ball out with on its surface the two points on the line by moving normal to the line. In this
plane, we can choose to move in the direction of the midpoint between the two points on
the circle. Clearly, the ball will never intersect any other points on the line, since it is being
grown orthogonal to it. Equally clearly, the first points on the circle that ball will intersect
are the pair that we have chosen. This witnesses that the tetrahedron formed by the four
chosen points is Delaunay. By symmetry, we have proven that every successive pair on the
circle forms a Delaunay triangle with every successive pair on the line. On the other hand,
after refining this pathological example, we can prove [HMP07a] that the output size (both
number of vertices and number of tetrahedra) will be only linear in the number of vertices
in the input. This prediction is borne out by experiments using the SVR implementation,
which show that the answer ism = 42n tetrahedra.

25

(0, n̄) (n̄2, n̄)

(1
2

√
3, 0.5)

(a)

(1
2

√
3, 1.5)

(b) (c)

 0

 20

 40

 60

 80

 0 250 500 750 1000

(d)

 0

 20

 40

 60

 80

 0 250 500 750 1000

(e)

Figure 2.2: An example, modified from one of Jernej Barbic (personal communication),
that can require Ruppert’s algorithm to run in quadratic time when processing triangles
in order of shortest edge first (which is what Triangle approximates). Ruppert reportedly
previously developed an equivalent example, also unpublished. (a) Let n̄ = n − 4. We
place n−3 points along the y axis so that the separation between successive points is about
1 but grows slightly, by a tiny ε (not pictured). We place a point at the off-center of the
bottom-most edge, so that it subtends a quality triangle. To complete the area, we place
two more points far enough that every point on the y axis has a Delaunay edge with the off-
center point. (b) When choosing to process triangles shortest edge first, the shaded triangle
will be chosen, which inserts a new vertex directly above the old off-center. Note that this
new point is the off-center of the shaded triangle, not just its circumcenter. (c) Inserting
the chosen point requires updating all but a small number of triangles, and leads us to
essentially the same situation as before, proving the quadratic runtime. (d) Runtime of
Triangle, version 1.5, running on an unloaded Mac Pro 3 GHz Intel Core2 Duo. I presume
the runtime is highly variable because Triangle only approximates the smallest-first order
required to exhibit the pathology. (e) The upper envelope of the runtimes, compared to a
Θ(n2) fit.

26

Figure 2.3: Pathological example with 50 points on a line and 100 on a circle.

2.2 SVR intuition

The difficulty of analyzing, even in two dimensions, the runtime of traditional Delau-
nay refinement comes from the fact that in the intermediate meshes, vertices have almost
arbitrary degree — up to linear. Indeed, the problem in three dimensions is that every
vertex has linear degree. However, in the final output, every vertex has bounded degree:
at most 12 in two dimensions when the angle bound is 30◦ (easily computed by dividing
360◦ into 30◦), and still a constant function of ρ in higher dimension [MTTW95, Tal97].
The last statement suggests that one way to bound the degree, a topological quantity that
affects runtime, is to bound the quality, a geometric quantity perhaps easier to analyze.
SVR is thus built around the following invariant: every intermediate mesh has reasonable
radius/edge quality — this implies that the mesh is always sparse. Achieving the user-
demanded bound ρ is too demanding and unnecessary, so we allow intermediate meshes
to degrade to some ρ′ that is a constant function of ρ, of the dimension d, and of other
user-specified parameters independent of the input configuration.

We can thus describe SVR as an algorithm that alternates between two goals: first
and foremost, it must maintain quality. Thus, the initial state is to hold a good-quality
triangulation of a bounding box around the input, which does not resolve the input at all.
Whenever the mesh contains an element of bad quality (worse than ρ), SVR states that we
must process that element first, as if running traditional Delaunay refinement (albeit with
a slightly modified SPLIT procedure). Only once the mesh is again of good quality will
SVR try to resolve the input. A simplex that contains an input point in its circumball is
clearly not a simplex that will be output, so SVR will also SPLIT that simplex.

Recall that to eliminate a simplex, we need only insert some point within its circumball.

27

Traditional methods insert the circumcenter. However, in SVR, not all of the input is
included in the mesh; the circumcenter may be very close to an input point, which would
create an artificially small feature. Conversely, if indeed there is an uninserted input point
within the circumball, SVR may as well use it instead of the circumcenter — unless the
input point lies too near a current mesh vertex (namely, a previously-inserted input point).
To preferentially use an uninserted input point, but ensure that it is far from any existing
mesh vertex, SVR searches for a point in the shrunken ball B(c, kr) where B(c, r) is the
circumball of the given simplex, and k is a positive constant less than 1. See the next
section (Figures 2.5 through 2.8) for a full algorithm listing and description.

Proofs are much simplified by using the Voronoi diagram as the intermediate mesh,
rather than using the Delaunay triangulation; thence the name of our algorithm. The two
are duals of each other, so a data structure for one is a data structure for the other. The
type of the intermediate structure is an implementation detail: its purpose is not to be
triangular (or tetrahedral, or Voronoi), but rather to provide for fast range queries when
looking for a point in B(c, kr), to provide a mechanism for determining whether the mesh
is locally of good quality, and to drive recovery of uninserted points and features. A key
philosophy of the design of SVR was that implementation details should not be enshrined
within the algorithm or its proofs, in the hopes that this would allow substantial room for
constant-factor improvements.

The proof that SVR produces a quality mesh of small size is relatively unenlightening;
it follows the same line of argument as Ruppert’s original algorithm [Rup95]; see also
the size-conformance proofs in the later chapters of this thesis. In essence, the algorithm
works because it inserts roughly the same vertices that traditional refinement would insert.
The difference is that SVR inserts the vertices in a different order.

SVR’s runtime is bounded to be in O(n lg L/s + m). Fundamentally, there are only
two proofs underlying this runtime. First, we prove that the mesh quality never get worse
than some ρ′ which is a constant function of ρ, k, and the dimension. Individual insertions
may degrade the quality of the mesh, but an inductive argument shows that the degrada-
tion is limited. In essence, splitting a good-quality element may create mediocre-quality
elements, but splitting mediocre elements cannot create bad elements. This implies that
the mesh is of bounded degree. The bounded degree in turn implies that most operations
are constant time: in particular, inserting a vertex will take only constant time, establish-
ing the O(m) term of the runtime. Second, we show, using a packing argument, that any
input point participates in only O(lg L/s) range queries, and that Steiner points inserted
on lower-dimensional features are involved in only O(1) range queries; using a similar
argument, we show the same holds for updating the range query structure. Given the
bounded-quality assumption, each query is constant time; this provides the O(n lg L/s)

28

term, and also contributes to the O(m) term. In other words, point location is almost the
entire cost of mesh refinement using SVR.

2.3 Algorithm Listing

SVR suffers from some schizophrenia as to whether it is truly a Voronoi-based or a
Delaunay-based algorithm. Generally, it is easiest to state the proofs in the Voronoi and
the algorithms in the Delaunay. Converting between the two is generally not hard; I use the
word ‘cell’ to be deliberately vague about which I mean, whereas I use the term ‘Voronoi
cell’ or ‘Delaunay simplex’ in those few times where it is important to be specific.

The fundamental invariant in SVR is that the mesh being maintained in memory always
has good quality. To achieve this, we initially only represent part of the input. Points of
the input that are not yet inserted are kept in a point location structure related to the mesh;
see Section 3.1 for a discussion of a few different such structures; in the present chapter,
the structure is deliberately left vague. While the intermediate mesh always has bounded
radius/edge ratio (or bounded Voronoi aspect ratio), that quality bound is in general some
ρ′ > ρ. To maintain quality ρ′, and to eventually recover the input, the mesher must
alternate between ensuring good quality by eliminating skinny cells (those with quality
worse than ρ) and eliminating crowded Voronoi cells (those that contain an uninserted
point of the input). Priority is given to eliminating skinny cells. For ease of analysis and
programming, the crowded and skinny cells are all put onto a queue, whose responsibility
it is to properly prioritize the different types of events.

A cell on the queue needs to be either eliminated (if it is a simplex) or shrunken (if
it is a Voronoi cell). To shrink a Voronoi cell V (v), we must insert a mesh vertex u
such that some points in V (v) will be closer to u than to v; this corresponds exactly to
inserting a point in the circumball of one of the Delaunay simplices that has v as a vertex.
Therefore, eliminating a Delaunay simplex or shrinking a Voronoi cell are fundamentally
the same operation. Inserting a new vertex anywhere within a circumball eliminates the
corresponding Delaunay simplex; however, we must take care of two things:

• If the vertex corresponds to a Steiner point (a point not in the input), it must not
violate the size conformality requirement by being close to an input feature.

• If the vertex is an input point, it must not violate the intermediate quality guarantee
by being close to a mesh vertex.

We defined a procedure that accounts for both these requirements, illustrated in Fig-

29

s c
p

qu

v

w

Figure 2.4: If a simplex s is undesirable for some reason, we wish to insert a point in its cir-
cumball, the outer circle pictured. Any point in the ball will destroy the simplex, but inserting an
uninserted point q very near a current mesh vertex would create a new simplex of arbitrarily bad
quality. Therefore, the search is over the shrunken ball of radius kr, shown shaded. If there is an
uninserted p as there is in this illustration, it will be inserted; if not, the center c will be inserted.

ure 2.4. Given an undesirable Voronoi cell V (v), we say that the largest-radius Delaunay
simplex that has v as a vertex is itself undesirable. Given an undesirable Delaunay simplex,
the two most natural points to insert are the circumcenter of the simplex being eliminated,
or an input point that lies within the circumball. The rule is described as follows: first,
consider the circumcenter. Search out to a radius kr, with k < 1, from the circumcenter.
Upon finding an input point within that radius, warp to the input point and use it instead; if
there is no such input point, insert the center. Setting k = 0 violates the first condition (we
create arbitrarily small features that should not exist); setting k = 1 violates the second
(we emulate Ruppert/Shewchuk refinement, allowing arbitrarily bad intermediate quality).
The proofs of correctness and runtime apply for any k ∈ (0, 1), which means that choosing
k is an engineering question that I relegate to the next chapter.

A critical detail is that we must, when processing a crowded Voronoi cell V (v) of a
Steiner point, insert an uninserted input point p ∈ V (v). Intuitively, we know this is safe,
because pmust be far from v (otherwise, the warping procedure would have chosen p over
v); it is therefore desirable from a constant-factor standpoint to blindly insert p. The fact
that it is required for termination is less obvious, and holds only for some k: essentially,
without this rule, we might insert Steiner points in rings bracketing p but never inserting p
itself.

The method for implementing the query for whether B(c, kr) contains a point, or
whether a cell V (v) is crowded, is purposely left undefined here as an implementation
detail; I overview several alternatives in the next chapter.

Handling input features is done by maintaining a mesh Mf for each polytope f ∈ X .

30

SVR(X , ρ, k)
1: Create Q, ordered according to COMPARE
2: INITIALIZE the meshes, the point location structures, and the work queue Q,
3: while Q is not empty do
4: w ← the highest-priority work item
5: SPLIT(w)
6: end while
7: OutputM

Figure 2.5: The SVR main loop.

Skinny cells in low-dimensional meshes are prioritized ahead of skinny cells in the higher-
dimensional and the full-dimensional mesh. When a new vertex v appears in the mesh for
f , meshes for the polytopes that contain f (i.e. that have f on their boundary) add v to their
list of uninserted points. Given a Delaunay simplex s ∈ Mf , consider the circumball of s.
If, in a meshMf+ for a higher-dimensional feature f+, that ball contains no points, and if
all the vertices of s appear inMf+ , then clearly s is Delaunay and thus appears as a simplex
in Mf+ . SVR maintains the invariant that every mesh Mf+ protects the diametral balls
of all the Delaunay simplices of all its lower-dimensional features and keeps those balls
empty. To achieve this, whenMf+ considers adding a mesh vertex v, it first checks whether
that vertex lands within a diametral ball b that it is protecting. If indeed v encroaches
upon the protected ball, then Mf+ enqueues the simplex corresponding to b, giving it the
highest possible priority, and also re-enqueues whatever work it was processing that led it
to encroach on a protected ball, with obviously lower priority.

Encroached cells are processed before skinny cells, which are processed before crowded
cells. In the event of a tie, events are processed lowest-dimension first (an encroached
segment before an encroached triangle, but an encroached tetrahedron before a skinny tri-
angle). It should be noted that we need not explicitly handle low-dimensional crowding:
if the ambient-dimensional meshM decides to insert a point p that crowds a simplex s in
low dimension, it will immediately cause encroachment of p on s, which will be resolved
by inserting p into the lower-dimensional mesh.

I divide the algorithm into four parts. The main loop initializes, then iterates until the
queue is empty (Figure 2.5). Initialization creates the data structures needed for the algo-
rithm (Figure 2.6). The SPLIT operation handles checking for encroachment and warping
(Figure 2.7). The INSERT operation performs the mesh and point location structure up-
dates when we finally do in fact insert a vertex (Figure 2.8). The work queue is ordered
according to COMPARE.

31

INITIALIZE
1: Create a bounding box B large enough to ignore boundary effects
2: LetM ← Delaunay(B)
3: For each f ∈ X , letMf ← Delaunay(f)
4: Initialize the point location structure P withM and X
5: For each f ∈ X , initialize Pf withMf , f , and subpolytopes of f
6: for every vertex v ∈ M do
7: If v is crowded, add a work item CROWDED(v)
8: end for
9: for every simplex s in every meshMf do
10: If s has radius/edge quality worse than ρ, add SKINNY(s)
11: If s is encroached in a higher-dimensional mesh, add ENCROACHED(s)
12: end for

Figure 2.6: Initialization: create the meshes for each feature and for ambient space.
Create point location structures. Seed the work queue.

32

SPLIT(w)
1: if w = CROWDED(v) and v has containing dimension d then
2: Choose an arbitrary point p that crowds v
3: Find a simplex s around v whose circumball includes p
4: Call SPLIT(p, s)
5: If SPLIT did not insert any points, add w back to the work queue
6: else if w = CROWDED(v) and v has containing dimension i < d then
7: SPLIT the simplex around v with largest radius
8: else {w refers to a simplex s inMf}
9: if w also refers to a point p then
10: let c ← p
11: else
12: Compute the circumcenter c of s, with radius r
13: if Pf knows about a point p in the ball B(c, kr) then
14: Warp: c ← p
15: end if
16: end if
17: if c encroaches upon a simplex s′ of a lower-dimensional feature f ′ then
18: Add w back to the work queue
19: Yield: Add ENCROACHED(s′) to the work queue
20: else
21: INSERT(c, s)
22: end if
23: end if

Figure 2.7: Handling a work item, which will inevitably lead to splitting a simplex by in-
serting a point in its circumball. Splitting may warp to an input point, or it may temporarily
yield to one or more lower-dimensional simplices it encroaches upon.

33

INSERT(p, s)
1: LetMs be the mesh of which s is an element, and fs the corresponding PLC polytope.
2: Perform a Delaunay insertion of p intoMs

3: Let (K,C) be the sets of simplices resp. destroyed and created by p
4: Update Pfs

accordingly
5: for each feature f+

s that has fs as a subpolytope do
6: Update Pf+

s
to ignoreK and take account of C and p

7: end for
8: if p has containing dimension dim(fs) < d then
9: Look up in P the vertex v whose Voronoi cell contains p
10: Add CROWDED(v) to the work queue
11: end if

Figure 2.8: Inserting a point into a mesh in SVR. This requires updating the appropri-
ate mesh, but also updating the set of protected balls and uninserted points that higher-
dimensional meshes maintain via the point location structures. Also, when points are
created, we mark a corresponding vertex of the top-dimensional mesh as being crowded.

COMPARE(w1, w2)
1: ENCROACHED comes first. If both are encroached, lower dimension comes first.
2: SKINNY comes first; if both are skinny, lower dimension comes first.
3: CROWDED comes last.
4: Break ties arbitrarily.

Figure 2.9: Items on the work queue are ordered according to COMPARE. Two work items
that match both on reason (ENCROACHED, SKINNY, or CROWDED) and on dimension are
ordered arbitrarily. This ordering can be computed in constant time.

34

Chapter 3

A Practical Implementation of SVR

Having reviewed the algorithm and proof sketches, I now report on a C++ implementation
of the static algorithm, and some significant constant-factor runtime improvements we
developed for the implementation. This chapter is expanded from a report presented at the
International Meshing Roundtable [AHMP07].

3.1 Point location structure

During SPLIT, two types of point location query must be performed: first, we ask whether
there is an uninserted point in the warp region, as described in Figure 2.4. Next, we ask
whether the point chosen to be inserted encroaches upon any lower-dimensional protected
ball. Updating these structures is left to INSERT and INITIALIZE. Recall that SVR runs
in O(n lg L/s + m) time. The first term is due entirely to these range queries and point
location operations; the second term also includes some such costs. This suggests that
these operations will drive the runtime, and indeed we were able to extract substantial
speedups by focusing on them. This section overviews the development of a data that in
practice offers great advantage over the more naive methods described in the theoretical
papers. To date, the best technique is only applied to the uninserted points; the code to
handle input features is still young.

In order to retain the asymptotic guarantees, the query structure must be able to respond
to a range query looking for an uninserted point in an empty ballB(c, kr) in constant time,
plus the time to consider the points themselves. During a range query, every uninserted
point p that is considered (and potentially rejected) must be at distance ||cp|| ∈ O(r). The
same holds also for updates: upon inserting a vertex v, the structure must only perform

35

reads or writes relating points p such that ||vp|| ∈ O(NN(v)). Finally, the analogous
statements must be true for checking for encroachment.
By circumball: When we perform the queries, we have in hand a simplex that we are

destroying, and even after warping, any point that we insert will be within the circumball of
the simplex. Therefore, it is intuitive to maintain points and lower-dimensional protected
balls associated with the circumballs of the mesh simplices. Then, to check whether we
need to warp, we simply look up the set of points in the circumball of the present simplex
and find one that lies in the kr shrunken ball. To check whether the chosen point en-
croaches, we query each of the protected balls that intersect the circumball. The simplicity
of this approach is obvious. There are some significant disadvantages unfortunately: an
uninserted point may be present in the circumballs of several simplices, which duplicates
the storage. It also requires duplicate elimination when updating, to make sure that the
same point is not added repeatedly to a single circumball. Some care must be taken to
make sure that points are indeed assigned to the circumballs in which they lie: it is best to
use a robust INSPHERE predicate for this.
By simplex: The traditional point location structure for triangulations, dating back at

least to Kirkpatrick [Kir83], uses the triangles to drive point location. That is, points are
kept in the triangles. To test whether a point lies within the query region, is somewhat
more complicated than above: we iterate over the set of triangles that intersects the query,
and in each triangle, iterate over all the points it contains. Conversely, updates are cheaper:
we simply reallocate the points in all the triangles that were destroyed. Each point appears
exactly once, and will lie in exactly one of the new triangles (if it lies on a segment, break
ties arbitrarily). During this reassignment, it is critical to ensure that numerical errors do
not cause a point to fail to be assigned to any triangle. I used robust ORIENT3D predicates
for this. In my admittedly inexaustive experiments, the savings in memory and reassign-
ment time compared to using circumballs were quite substantial. Recognize that there is
a tradeoff between reassignment time and query time: storing in the circumballs gives for
faster queries, but slower reassignment, as compared to simplices. However, every query
leads to the destruction of a large number of simplices (on average six in two dimensions,
about 18 in three dimensions in our experiments). In other words, substantially more re-
assignment is performed than queries.
By Voronoi: Determining whether a point p lies within a simplex, or determining

whether it lies within the circumball of a simplex, is an expensive operation: both involve
solving the determinant of a dense rank d+2matrix. Using the dual Voronoi diagram gives
a substantially cheaper update: when a new mesh vertex is inserted, uninserted points in
the affected Voronoi cells (that is, the cells of the vertices that in the Delaunay triangulation
form the link of the new vertex) need only be tested to see whether the new vertex is closer

36

Figure 3.1: Illustration of the intuition for why using the Voronoi with concentric shells
can give a dramatic benefit over naively using the Voronoi diagram. Any concentric shell
that the query ball does not intersect need not be searched; this allows SVR to avoid
checking the dense cluster of points.

or further than the vertex that currently owns them. This is also an operation that requires
far less numerical robustness: being off by a small ε may position the point in the wrong
Voronoi cell, but will never entirely lose track of the point; and queries are essentially
unaffected by such small errors, since they will search both Voronoi cells in any case.
Queries are more expensive even than the simplex-based structure, for the simple reason
that the set of Voronoi cells that covers the query disk also covers a much larger area
outside the query disk than do the equivalent simplices. In implementation, there was no
immediate benefit to using the Voronoi diagram for point location instead of using the
simplices.

The definition of crowding needs to be changed when using Voronoi cells: now, a
Voronoi cell is crowded, rather than a simplex. When a Voronoi cell of a Steiner vertex is
crowded, it is guaranteed that any uninserted input point is far from the vertex (or it would
have warped), so we can blindly insert any one of the vertices. When it is a Voronoi cell
of an input point, the SVR algorithm specifies to insert the farthest Voronoi node. Since
the code now uses Voronoi cells for point location, this is what I described in Figure 2.7.

One pitfall which befell me was that vertices have a long lifetime, unlike simplices;
but they only lose vertices over that lifetime. Therefore, the structure that stores the set of
points in the Voronoi cell must shrink over time. In particular, the standard std::vector
class does not shrink, which then causes the point location structures to require asymptot-
ically more space.
By Voronoi, in concentric shells: Consider a dense cluster of points, as in Figure 3.1.

37

Early in the run of SVR, some simplex will warp to one of the points, call it v, when
choosing a point to insert, and all the remaining points will be assigned to v. Those
points will then be checked for relocation O(lg L/s) times each, and will each time reply
that they are closer to v than to the new vertex. A fix for this is to assign the points in
concentric shells around v, with the radius of each being a constant factor larger than
the previous. When a new vertex v′ appears, we know not to check any point in any
concentric shell that is entirely closer to v than to v′. In other words, points will only be
checked for reassignment when the local mesh size has shrunk to be commensurate with
their distance from v. Similarly, queries inspect all the points in each concentric shell, from
the outermost until reaching a concentric shell too close to the vertex for the query to give
a positive answer. Asymptotically, this is no change: constructing the concentric shells
takes O(lg L/s) per input point to find the appropriate shell, using a structure very similar
to the γ-bucketed priority queue described earlier (Section 1.5). However, the operations
are cheaper, and it allows the memory hierarchy to safely evict from cache the geometric
coordinates of the uninserted points. During development, switching to concentric shells
immediately halved the runtime as compared to using the Voronoi diagram naively, or
using simplices.

Despite the saluatory effect of concentric shells with respect to the number of point
relocations that are performed, relocations are still a large expense. On an IEEE floating
point machine given a point p, we can find the index of the appropriate concentric shell
around v by computing the square of the distance, then right-shifting by 53 bits to retain
only the exponent of the squared distance. Using this directly means that the concentric
shells grow by a factor

√
2; I did not experiment with changing the growth factor by

modifying the exponent. Note also that the exponent is an integer rather than a double,
which reduces the memory overhead of each concentric shell. Such low-level tricks as this
one, which only avoids computing a square root and a few divisions, have a surprisingly
important effect.
Other ideas: In some circumstances, no point location needs to be done at all. In

particular, if there is no remaining uninserted input, we can short-cut the query. On the
bunny dataset, this occurs in the final 10% of point insertions; on the pathological input,
this is closer to 30% of insertions (see Section 3.4 for the description of the experimental
inputs). Detecting this situation is cheap: simply a mesh-wide counter.

The concentric shells avoid wasting time negatively answering range queries with re-
spect to points close to a mesh vertex. Another weakness in Voronoi-based point location,
which the concentric shells do not improve, is that a query originating from one side of the
Voronoi cell will touch points on the opposite side of the cell. Worse, if the Voronoi cell
is of mediocre aspect ratio, and the query comes from a short side, the outermost shells

38

will still be inspected. In other words, we do not yet have a good solution to point location
for points far from a vertex. Possibilities include using a hybrid: Voronoi shells near the
vertices, simplices in open space. Another possibility is to use the Voronoi cells of both
mesh vertices and element circumcenters. These remain future work. Given the success of
the prior speedups, Amdahl’s Law currently limits the effect of any further improvement.
However, I optimistically claim that point location will likely become the limiting factor
again as SVR proceeds to tackle increasingly large problems.

3.2 Design and implementation

The goal of the SVR codebase, beyond merely implementing the algorithm, is to provide
a useful library for writing arbitrary-dimensional meshing code, and to provide a richer
API than is often provided in meshing codes for accessing the mesh (in particular, for
modifying it). For ease of interface with other codes, the SVR implementation is in C++.
For efficiency in the face of generality, I heavily use the parametric polymorphism of the
C++ template mechanism, which modern compilers can compile reasonably well; I avoid
polymorphism based on dynamic dispatch due to its runtime cost. The code can be roughly
divided into four modules: (1) support classes and I/O. (2) The mesh topology. (3) The
mesh geometry, and geometric predicates. (4) The meshing algorithm itself.

Given that the code is in C++, I made extensive use of the Standard Template Library
(STL) and of the Boost libraries. These provide for type-safe and reasonably efficient
data structures. However, “reasonably” was not always fast enough; as the need arose, I
replaced certain components with my own. In particular, I implemented a memory alloca-
tion routine based on a global freelist, for fast allocation of small items (up to and including
the size of a simplex). I also created a hash table that for some uses is substantially faster
than the GCC implementation of the standard hash table, and other similar structures.
When iterating over a set maintained as a hash table, no order is explicit. The default STL
implementation is to order them in an order related to their hash values, which in turn are
often based on pointer values. Given that any change in memory allocation may change
all pointers subsequently allocated, this makes debugging and performance profiling dif-
ficult: a seemingly innocent printf may cause quite different behaviour. I therefore
make a concession in the direction of debuggability here: I never iterate over hash tables,
but rather I simultaneously maintain a linked list for any set over which iteration will be
required.

The topological structure is a standard pointer-based simplicial complex, with d + 1
vertices and d+1 neighbour pointers per mesh element. It takes template arguments for the

39

dimension d, the type of the vertices, and for optional user data to attach to each simplex.
In an attempt to avoid memory errors, simplices are reference counted. This means it is
safe to hold a handle to a simplex even after destroying it during meshing; conversely, it
means that accidentally holding a handle to a simplex leads to memory overuse. Access to
the simplicial complex is via two mechanisms: a generic depth- (or breadth-) first search
routine which takes a closure as an argument, which is the one client code usually uses;
and safe low-level access to navigation routines for specialized use. Simplices are kept in
a fixed topological orientation. All access is properly oriented, which avoids sign-flipping
bugs. I implement the “switch” access routines defined by Brisson [Bri93]. A handle
to a simplex in three dimensions can be used to denotes a vertex, edge, triangle, and
tetrahedron. A 0-switch changes which vertex is being denoted, but leaves fixed the edge,
triangle, and tetrahedron. A 1-switch changes only the edge, etc. A single switch operation
flips the orientation of the handle, so I require that switch operations occur in pairs. The
topological structure implements insertion of a vertex by deleting a given set of simplices,
and replacing them with the star that has the new vertex at its apex, and a simplex for each
of the exterior faces of the deleted set. I do not implement flips or deletion of vertices.

I define the geometric structures on top of the topology. In this layer, vertices must have
coordinates. A Delaunay triangulation has two, possibly distinct, associated dimensions:
the ambient dimension of the points, and the dimension of the object it is meshing (a
polygon in three dimensions, for example). I call the latter the topological dimension. For
triangulations with topological dimension less than the ambient, we compute a basis for
the plane in which the triangulation lies using repeated squaring of the moment matrix
to compute the largest eigenvectors. While points are maintained in ambient space, the
INSPHERE test used while updating the Delaunay triangulation is defined in the basis,
which, using Shewchuk’s predicates [She97a], allows for consistent predicate calculations.
Circumcenter computations are done directly in ambient space, in the hope of avoiding
accumulating error from projecting into the basis of the plane, computing the circumcenter,
then projecting back to the ambient basis.

The library includes a number of geometric primitives — points, matrices, circum-
center computation, and geometric predicates such as incircle or orient3d. These
are largely based on suggestions or published work by Shewchuk [She96, She99]. As a
runtime optimization — one with major effect — each simplex also maintains its circum-
center and radius. On a 32-bit machine, this data approximately doubles the in-memory
size of a simplex; in future work, I intend to implement a way to use an LRU cache to
reduce the overhead.

The API of the geometric structures is arbitrary-dimensional. However, for the most
part, they currently only work in one, two, or three dimensions, and will give a compiler

40

error in four or higher dimension. Circumcenter computation will work in higher dimen-
sion, but it is currently implemented using LAPACK. I replaced that code with special-
dimensional code because the data marshalling costs to communicate between my code
and LAPACK dwarfed the cost of the numerical computation itself, by a factor of almost
4:1. LAPACK assumes that matrices will be large, whereas these geometric primitives
typically involve at the most a 5 × 5 matrix. Fast geometric predicates could be produced
in higher dimension, albeit at high labour cost; an automatic technique [NBH01] exists but
is at the moment unimplemented due to bitrot. For working but slow code, one could use
one of the many generators of exact predicates, such as those bundled with CGAL.

The mesh algorithms and structures are described in great detail in other sections. The
API of the mesh algorithms takes in a description of a PLC and a set of constants regulating
the meshing (this is for development, as the default settings are acceptable), and returns an
instance of a Delaunay triangulation. The user then has access to the same APIs I used to
implement the refinement algorithms.

3.3 Numerical robustness

SVR requires accurately making a number of numerical computations, particularly in-
sphere tests and computing the circumcenter of a simplex. For a sphere defined by a
full-dimensional simplex, Shewchuk has defined a fast but exact numerical predicate and
released the code into the public domain [She97a]. However, this code does not com-
pute, for example, whether a point p lies within a ball B(c, kr) where c is defined based
on a triangle in space, and r is the circumradius of that triangle, reduced by a factor k.
Nanevski et al. extended Shewchuk’s work, and designed and implemented an automatic
method of generating new fast but exact predicates [NBH01]. Sadly, the code no longer
works due to bit-rot. Various other authors have produced support and compilers for exact
predicates, which generally produce correct but very slow code.

A minor issue is that Shewchuk’s predicates assume that computations will not un-
derflow into denormalized numbers (and that neither will they overflow into infinity). In
experiments, I started seeing underflow issues occurring when points were separated by a
distance of about 10−5; simply scaling the entire space fixed this problem. It appears that
the problem of generating fast numerical predicates for numbers with small exponents is
not yet solved in a downloadable package.

Most of the predicates used by SVR are robust by nature. The key invariant of SVR,
that elements in intermediate meshes have good quality, ensures that every computation
will return unambiguous results in two dimensions; indeed, profiling information indicates

41

that Shewchuk’s predicates almost always give the correct answer even only using the non-
robust calculation, except when computing the initial triangulation, which has a number
of cocircularities.

Unfortunately, slivers bypass that guarantee in three dimensions by being of bad as-
pect ratio but being present in our intermediate meshes. The standard computation of the
circumcenter involves solving a linear system Ax = b where det A is the volume of the
simplex. A sliver has (almost) zero volume, which makes this a degenerate system. Simi-
larly, the in-sphere predicate on a sliver tries to compute the determinant of a matrix whose
rows, on a perfectly flat sliver, are linearly dependent. Consequently, even exact compu-
tation returns that every point in space is on the surface of the circumsphere of the sliver.
On point clouds examples, SVR does not appear to suffer from these sliver-based issues.
Sadly, they arise with some frequency on PLC inputs. It remains open how to resolve this
issue.

3.4 Experiment inputs

For the runtime experiments on point-cloud, I used three classes of input. The first is the
set of points that define the Stanford Bunny. This is a set of 34890 points, sampled roughly
uniformly from a smooth surface; it is a standard example in computer graphics and in the
meshing community. Amenta, Attali, and Devillers [AAD07] recently showed that given
a uniform sample in three dimensions from a manifold in two dimension, the Delaunay
triangulation of this has linear size. Therefore, one should expect that SVR would have
only limited benefit over prior Delaunay refinement algorithms in this case.

The second example is a pathological case, described in Figure 2.3. I evenly sample
n/2 points on a vertical line, and n/2 points on a circle centered on the line, and place the
assemblage in a sufficiently large bounding box. This example was one of the driving ex-
amples for the development of SVR: any technique that starts by computing the Delaunay
triangulation of the input is doomed to build about n2/4 tetrahedra just on the initialization
step here, whereas SVR only takes space commensurate with the final size of the mesh,
which in experiments is 42n tetrahedra.

Finally, I use a regular k × k × k integer grid. The grid is trivial to mesh: its Delau-
nay triangulation has radius/edge ratio 1/

√
2, so we never insert Steiner points except in

the expanded bounding box. As we very recently proved [HMP07a], in the bounding box
outside a convex shape, the number of points inserted is linear in the number of points on
the surface of the shape, so there are k3 points in the cube and only Θ(k2) Steiner points
outside it. The goal of this example was to test the cache performance of the implementa-

42

tions.
In addition to the point-cloud inputs, I ran SVR on some examples of PLC inputs

donated by Shewchuk and by Phillips. Some of Shewchuk’s examples, and most examples
to be freely found online, include triangulated surfaces. These automatically are invalid
input for SVR, as they clearly have angles between segments much worse than 90◦, and
in fact worse than the 60◦ lower bound that might avoid infinite refinement; indeed, SVR
cannot mesh inputs consisting of triangulated surfaces. Most of Shewchuk’s examples
include angles between faces of slightly less than 90◦. Despite violating the theoretical
guarantees, these inputs can be meshed by SVR. Many of the examples include holes in
the input polygons that are not specified in the input. I added a hack that tries to detect the
holes, which successfully handles some but not all inputs; ideally, one would implement
a truly correct hole-detecting routine. The examples by Todd Phillips were engineered to
quite precisely match the requirements of SVR as published in the theoretical papers: each
facet is convex, has O(1) points on its surface, and has bounded aspect ratio. Segments
on the boundary of a facet are not encroached by other vertices of the facet, and all input
angles are non-acute.

3.5 Parameter settings

There are two main knobs to turn in SVR: the radius/edge quality bound ρ, and the warping
parameter k. The proofs show that SVR will have optimal runtime for any constant k < 1,
and kdρ >

√
2

d−1. However, the parameter k only affects the algorithm when there are
uninserted points. One trick we can employ is to use, internally, some ρ′ >

√
2

d−1
/kd,

to define what makes a skinny simplex. Once all uninserted points have been brought
into the mesh, we can then improve the mesh quality to the user-specified ρ by adding a
low-priority class of events: any simplex that has quality better than ρ′, but worse than
ρ, is added to the queue as a MODERATELYSKINNY with priority less than CROWDED.
Clearly, if no elements are crowded, every vertex is in the mesh. The SPLIT operation can
be left as-is, although the search for a point to warp to is wasted time since there is no
point anywhere that it could find.

In other words, the user may demand any quality ρ so long as it is strictly greater than
two in three dimensions, and any 0 < k < 1. Users will typically want a mesh with ρ as
small as possible. The proofs that require ρ > 2 are very likely loose on examples that
arise in practice, since we and others note that inputs can be meshed with rather smaller
values for ρ with little difficulty, so I set a default value of ρ = 2.

43

 0

 1

 2

 3

 4

 5

 6

 0.2 0.4 0.6 0.8 1

(a) Stanford Bunny: runtime

 0

 20

 40

 60

 80

 100

 0.2 0.4 0.6 0.8 1

(b) Stanford Bunny: size

 0

 1

 2

 3

 4

 5

 0.2 0.4 0.6 0.8 1

(c) Line & Circle: runtime

 0

 20

 40

 60

 80

 0.2 0.4 0.6 0.8 1

(d) Line & Circle: size

Figure 3.2: Left: Runtime in seconds, versus k. Right: Number of vertices that SVR
outputs in thousands, versus k. See the discussion in the main text.

The effect of the value of k is less well understood from the axioms. Intuitively, one
would expect that as k approaches unity, the number of Steiner points in the output should
decline, since SVR will more frequently be allowed to warp rather than inserting a Steiner
point. Conversely, as k shrinks to zero, it should insert increasingly many vertices. Thus,
if runtime is no object, one should set k to 1.0 (modulo possible numerical errors arising
from using inexact arithmetic to determine if a point is in the warp region, although these
should be easy to fix). On the other hand, runtime is the main reason to use SVR. Clearly,
as k gets very small, SVR will insert a huge number of Steiner points, and these insertions
will regulate the runtime. As k gets very close to 1, we should expect the quality of
the skinniest element seen during refinement to get worse. Since the quality bounds the
degree of mesh vertices, this means we lose the bounds on runtime. As a lower-order yet
still significant effect, increasing k increases the volume of the ball that must be searched,
which also increases runtime.

44

I ran an experiment to determine the optimal setting of k. I tested SVR with ρ = 2
and varying k from 0.20 to 0.99 in steps of 0.01 on two inputs: the Stanford bunny, and
the n = 10, 000 pathological example. Figure 3.2 summarizes the results. As expected,
in general output size increases as k is made smaller. Also, in general runtime increases
at very low values of k, because insertions predominate; and at very high values of k,
because of bad quality. It is not clear why the pathological line and circle example sees an
increase in mesh size with high values of k. Given the results on these two examples, and
giving greater credence to the non-pathological example as being indicative of standard
behaviour, we set the default k to 0.9 and use that in all further experiments.

3.6 Experimental results

Pictures of a set of PLC examples meshed by SVR appear in Figure 3.3. The 2cube2
and house2 examples are credited to Shewchuk; the four dumbbells example is from
Phillips; the nalco1a example is from Ollivier-Gooch; and vava is from Vavasis (the
latter two communicated to me by Shewchuk). These show that indeed, SVR is able to
mesh some PLCs, even when strictly speaking they violate the 90◦ requirement on angles
between faces (witness the base of house2 and the bottom-right of nalco1a; the base
of vava, not visible in the picture, also has an acute angle). The meshes generated grade
from small features to large, which is especially visible in nalco1a and in the cutaway
view of the four dumbbells. SVR meshes a volume; to generate these pictures, as a post-
processing pass I did a walk starting from the vertices of the bounding box, removing any
simplex that could be reached without crossing a triangle of a PLC facet. My code works
for convex faces; the test of whether a triangle belongs to a PLC facet is imperfect for
non-convex faces, which covers up a hole in house2.

To evaluate the runtime of SVR with respect to prior codes, I ran some experiments on
point-cloud inputs. I have not yet had the opportunity to spend significant effort on speed-
ing up the handling of PLCs, so I report no such numbers here. I compare to the codes
Pyramid [She98b] and TetGen [Si06]. The experiments were run on a desktop 3.2 GHz
Pentium D, with 2 GB of RAM running Linux 2.6. I used the gcc compiler, version 4.2.1,
and flags -DNDEBUG -m32 -O2 -g -fomit-frame-pointer -mtune=native.
Results under older versions of gcc, different compiler flags, and on different platforms,
are qualitatively similar. One file in TetGen cannot be optimized, for reasons that escape
me (it is Shewchuk’s numerical predicates library, which works perfectly well under opti-
mization in both SVR and Pyramid); that file is compiled with the -m32 -O0 flags. The
-m32 flag is required because all three codes currently only support 32-bit pointers on

45

(a) 2cube2 (b) house2

(c) Four dumbbells (d) Cutaway view

(e) nalco1a (f) vava

Figure 3.3: Pictures of the meshes SVR generates for a number of PLC inputs. Each
example was meshed using the default settings of k = 0.9 and ρ = 2.0. The entire vol-
ume was meshed; for display, I removed all simplices reachable from the exterior without
crossing a PLC facet.

46

Input SVR Pyramid TetGen SVR Pyramid TetGen
Stanford Bunny (n = 34890) 4.62 6.35 12.4 59702 59040 74269
Line & Circle (n = 2000) 0.80 4.79 6.5 12119 14003 14573
Line & Circle (n = 20000) 7.62 N/A N/A 120933 N/A N/A

503 Grid (n = 125000) 11.30 15.96 45.9 129839 129929 130140
1003 Grid (n = 106) 97.71 179.04 400.3 1016262 1017799 1018684

Figure 3.4: Comparison of the SVR, Pyramid, and TetGen codes on a few point-cloud
inputs. Both Pyramid and TetGen ran out of memory on the n = 20000 Line & Circle
example, and could not complete; otherwise, all examples fit in memory. Left: Execution
times (seconds of CPU plus system time) versus inputs. Average of 5 runs. Right: Output
size, in vertices. All three methods produce meshes of approximately the same size.

this combination of platforms and compilers. A priori there is no reason to believe that
the update to 64-bit machines would be at all difficult for any of the codes, and indeed
Pyramid is known to run in 64-bit mode on other combinations of platform and compiler.

The experiments use the default parameter settings of k = 0.9 for SVR, and ρ = 2.0
for all three codes. I measure time using the UNIX ‘time’ utility, summing the reported
user and system times, averaged over five runs. The examples are those described in Sec-
tion 3.4: the Stanford bunny; the pathological example, in two sizes; and the grid, in two
sizes. Figure 3.4 summarizes the result of the experiments. As expected, on the patho-
logical inputs, SVR is substantially faster. Indeed, even with a modest number of input
points — just 104 points on the line and 104 on the circle, both Pyramid and TetGen run
out of memory. Each simplex takes at least 8 words to describe (4 words for the vertices,
and 4 words for the neighbours), which is 32 bytes; the approximately 108 simplices in the
initial Delaunay that both Pyramid and TetGen try to compute therefore consume 3.2 GB,
which exceeds the limit of addressable memory for 32-bit user programs under Linux. In-
terestingly, SVR is also faster on non-pathological inputs, and scales better than Pyramid
or TetGen do as the input size grows. The output size of all three programs is similar,
which shows that SVR does not trade away good output size for its theoretical guarantees.

TetGen does not support directly generating a quality mesh from a point-cloud input;
instead, it requires first computing its Delaunay triangulation, then invoking TetGen a
second time to improve the quality. It is clear from discussions with Si that this is an
oversight; and, in particular, it is disastrous from a runtime standpoint for the pathological
examples. In deference to the fact that this is an easily fixed bug, I report the runtime
after subtracting the cost of outputting the intermediate mesh to file and re-reading it into
memory. This slightly reduces the precision of the runtime numbers for TetGen.

47

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200 250 300

Pyramid
SVR

(a) 27 Bunnies: runtime

 0

 100

 200

 300

 400

 500

 600

 700

 0 50 100 150 200 250 300

Pyramid
SVR

(b) 27 Bunnies: size

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 200 400 600 800 1000

Pyramid
SVR

(c) Grid: runtime

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000

Pyramid
SVR

(d) Grid: size

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60 70 80 90

Pyramid
SVR

(e) Line & Circle: runtime

 0

 100

 200

 300

 400

 500

 600

 0 10 20 30 40 50 60 70 80 90

Pyramid
SVR

(f) Line & Circle: size

Figure 3.5: Scaling examples comparing SVR and Pyramid. Left: Time on the y axis is
in seconds. Input size on the x axis is in thousands of points. Right: Number of points (in
thousands) in the output vs. number of points in the input (in thousands). Jobs were killed
upon allocating over 500 MB of memory.

48

I ran some experiment to see how well SVR scales to larger inputs. Two of the point-
cloud inputs (the grid and line and circle) were described in an obviously scalable manner.
For the Bunny, I made 27 copies of the bunny in a 3× 3× 3 grid, a total of 940518 points,
and randomly sampled from this set. These experiments were run using the same compiler
settings as before, but on a factory-standard MacBook Pro with a 2.16 GHz Intel Core 2
Duo processor and 1 GB of RAM. In order to be able to run a large number of examples
overnight without getting stuck on a thrashing job, I had the system automatically kill jobs
that allocated more than 500 MB as reported by ps. The results, in Figure 3.5, show that
SVR scales well with input size: at all sizes, it runs faster than Pyramid, and increasingly
so as the input size increases. However, SVR uses more memory, due to the caching of
circumcenters; the 500 MB cutoff affected SVR sooner than it affected Pyramid, except
on the pathological examples. The output size difference between Pyramid and SVR is
negligible: it is nigh-impossible to distinguish the two curves without a magnifying glass.
I also ran another experiment, not shown in the figure, with a 150 × 150 × 150 grid. SVR
on this input exceeded the bounds of physical memory by a factor of two. Despite this,
it was able to consume 4% of CPU, indicating good location of reference as would be
expected from this fundamentally parallel algorithm.

3.6.1 Cache performance and profiling

During the development of SVR, I made heavy use of the Valgrind toolchain to study the
cache performance and instruction profile of running code. The SVR code is an unstruc-
tured numerical program; therefore, systems folklore estimates we should expect to issue
about one instruction per clock cycle if we are CPU-bound, because of the heavy cost of
branching. This is approximately what we in fact do see, although somewhat unsurpris-
ingly the ratio appears to be falling as I reduce the number of computations needed to
compute the mesh.

A large fraction of runtime — approximately 20% on the Stanford bunny example —
is spent outputting the file to disk. One of the goals of SVR is to allow using the mesh
through the API, instead of needing to write it to disk and translate it to another in-memory
format, so I ignore this cost in the profiling discussion. Of the remaining time, more than
one third of the number of instructions issued and of the cache misses (and thus, one
assumes, over a third of the total runtime) are related to geometric computations. There
are principally three reasons for SVR to perform geometric calculations, each of them
taking an equal fraction of the runtime: (1) computing circumcenters, (2) computing the
insphere predicate when inserting a point, and (3) computing distances during point
location. To reduce the cost of computing circumcenters, I store the circumcenters I have

49

computed; it is unclear whether there is any more savings to be performed here. It should
be possible to use the stored information to help with insphere: in many cases, simply
checking the distance of the query point to the circumcenter of the simplex should give us
a sufficiently accurate answer, and only if not should we need to call the exact predicate.
The question of point location was the focus of Section 3.1; as mentioned there, it is
quite likely that further improvement could occur. Another third of the time is related to
topological changes in the simplicial complex. I expended a significant amount of effort
optimizing this code, and find it unlikely to be able to much improve its performance
without a substantially different data structure such as a compressed mesh à la Blandford
et al [BBCK05, Bla05].

Cache efficiency is good, though not stellar. The instruction cache essentially never
misses. However, on modestly-sized examples (such as the bunny), about 1.5% of data
reads missed in L1 and had to fetch from L2 cache. About one in five of those — 0.3%
overall — of data reads went to main memory. Keeping in mind that latency on a modern
machine is in the teens of cycles for a miss to L2 cache, and low hundreds for main mem-
ory, this suggests that the program is likely to be frequently spending time stalled waiting
for memory, but not predominantly so. This in turn implies that any further reduction in
CPU time will need to include reductions in the size of the working set.

I should note that SVR handles its own memory allocation. Using the system malloc
and free routines is disastrous both in terms of cache efficiency and in instruction count.
Furthermore, to be generic, malloc and free need to tag each allocated block with an
additional word of data to store the size of the allocated block. But the vast majority of
allocations that SVR performs are all of the same size: usually list nodes (two words) and
tetrahedra (19 words); furthermore, SVR knows the size of these allocations and dealloca-
tions at compile time. I therefore use freelists, one per size class, for memory allocation.
The system malloc is only invoked for items larger than 20 words, or, for small items,
one megabyte at a time. This substantially reduces the relative overhead for the size coun-
ters and eliminates the vast majority of calls of malloc and free. Allocating and freeing
usually takes only two memory accesses in this framework, and similarly little computa-
tion. Freelists have a tendency to cause items allocated close in time to be allocated close
in address space, although this specific benefit decreases over time as the freelist becomes
mixed.

A major cost of using C++ is that complicated memory allocation schemes are almost
impossible to explore. In particular, to avoid memory leaks, I must maintain reference
counts, which has a known negative cache-performance impact: dropping a pointer to the
head of a list of handles to simplices in a reference-counted environment means iterating
over the list and touching each simplex, while doing so in a garbage collected environment

50

costs zero time. Furthermore, a copying garbage collector is free to move simplices around
to create memory-space locality between topological neighbours — or even to compress
the mesh.

The most important remaining method to reduce the runtime is to reduce the number
of Steiner vertices in the output. This would reduce the memory footprint, reduce the
number of in-circle and circumcenter computations, and reduce the number of topological
changes. It is also desirable as a goal unto itself. One may hope that recent work by Üngör
on producing small meshes in two and three dimensions will help in this respect.

3.7 Extensions and future goals

Moderately small input angles seem to mostly work, usually. Given how often small angles
appear in inputs, this is an insufficient level of reliability. Cheng, Dey, Levine, and Ramos
have produced provable algorithms and a correct but relatively slow implementation for
small angles [CDR07, CDL07]. Their work also handles piecewise smooth complexes, the
obvious extension of PLCs to the curved surfaces common in CAD inputs. Their frame-
work does not immediately extend to SVR’s framework, but it is highly likely possible
to marry the two to get a mesher that is provably fast and always terminating with small
meshes on clean CAD input.

Slivers, as mentioned before, cause numerical robustness issues even while meshing,
especially on PLC inputs. The geometric primitives and predicates need to be analyzed
and fixed to handle slivers in order to obtain truly robust code.

We proved that the SVR algorithm can be made parallel [HMP07b]. The parallel
algorithms community seems to view mesh refinement as a good new toy problem for
their automatic and semi-automatic parallelization techniques [KCP06]. While it is largely
known how to parallelize traditional dense matrix problems, unstructured problems like
meshing are still open. SVR fits well in the category of what is starting to be known
as workset parallel programs: SVR maintains a work queue, many of whose items are
independent. I developed the current SVR code with an eye on its future parallelization,
and hope that it will not be overly onerous to extend it to the shared-memory parallel case.
In the near future, I believe that it is worth pursuing constant-factor improvements: it
seems likely that we can halve the runtime of the single-threaded SVR, whereas achieving
that level of improvement usually takes three or four processors in a parallel program.
A further benefit to waiting is that commodity machines are likely to by then have eight
cores, at which point parallelization will become more important.

51

52

Chapter 4

Dynamic Meshing for Point Clouds

Consider an input consisting of a list of points, denoted by their coordinates, lying in a
box of appropriate size (see Section 4.4). The goal is to provide a dynamic algorithm that
can handle adding or removing a point from the input. While meshing point clouds is far
simpler than handling the full generality of also conforming to PLC inputs, nevertheless,
several of the core concepts needed to analyze higher-dimensional inputs already arise.
Indeed, despite the apparent oversimplification, this is the longest chapter of the thesis.

In joint work with Acar [AH06], we conjectured that SVR was a dynamically stable
algorithm, based on some preliminary experimental results that indicated as much. I can
now prove that conjecture false, in the adversarial setting (it may still hold against a weak-
ened adversary). Consider the example in Figure 4.1. In SVR, a Steiner point may “warp”
to the input early on — indeed, for realistic parameter settings, it will always do so in the
very first iteration of the main loop. Every Steiner point inserted from then on depends,
if only in the low-order bits, on the coordinates of the first point that was chosen. By the
same token, while input points have fixed coordinates, their point location is through sim-
plices or vertices whose coordinates depend on the first insertion. Changing the first point
is therefore extremely expensive for dynamic stability. In an adversarial setting, unfortu-
nately, the adversary may place a point p in a position where, when the adversary toggles
whether or not p is part of the input, SVR is required to change its decision as to which
vertex it should insert first. This then can force SVR to change its point location structures
and to change the location of almost every Steiner point it inserts, which means the re-
sponse time can be no faster than linear in the size of the output. Randomization does not
help: it is easy to create examples with only one choice of legal warp move in SVR, but an
arbitrary number of uninserted points. The example shows that SVR is not dynamically
stable, and cannot be made dynamically stable without substantial modification.

53

v

p

Q

Figure 4.1: Even with randomization, the adversary can force SVR to make a deterministic
choice of warp location and thus change the position in the point location structures of an arbitrary
number of points.

This chapter presents a different meshing algorithm for point clouds that is both effi-
cient in the static case, and dynamically stable. The chapter is in three sections. I start by
building a quadtree that conforms to the local feature size. I show that a relatively naive
quadtree construction algorithm is dynamically stable. Next, I show how to produce a
good quality mesh using a very general technique. This second section does not concern
itself with runtime complexity at all; instead, it shows that with an appropriate choice of
Steiner points to add, we can arrive with a set of points whose Delaunay triangulation is
a quality mesh of the input point cloud. Finally, in a third section I show how to use the
quadtree to quickly implement the technique of the second section. In the end, then, we see
an algorithm that provably produces a mesh that respects the input, has good radius/edge
quality, is size-conforming, and in the face of a point being added or removed from the
input, responds inO(lg L/s) time, which is an optimal time bound. The first three sections
ignore any unusual effects near the boundary of the domain, where Voronoi cells become
unbounded. To close the chapter, I show that how to specify the input domain such that
no special handling is required for these boundary effects, which greatly simplifies both
proofs and implementations.

4.1 Building a quad-tree for point location

Borrowing definitions from Bern, Eppstein, and Gilbert [BEG94], a cell is an axis-aligned
hypercube of the specified dimension; I denote the length of a side of a cell c using |c|. A

54

Figure 4.2: Left: four crowded cells. The upper-left and lower-right cells each have a point,
so they crowd each other. In prior work, the lower-left and upper-right cells would not be said to
be crowded; this is a constant factor improvement that complicates the proofs, but one which an
implementation might find important in practice. Right: ill-graded cells. The shaded cells are four
times larger than one of their neighbours. Note that neighbourhood goes through corners.

quad-tree is a cell subdivided into smaller cells. Two cells in the quad-tree are neighbours
if they share a corner. During meshing, we track the location of points relative to the cells.
A cell c is said to be crowded if there are at least two input points that lie in the union of
c and of its neighbours — that is, either c contains two points, its neighbours contain two
points, or c and one of its neighbours each contain one point. A cell is ill-graded1 if it
has a neighbour c′ such that |c|/|c′| ≥ 4. We say that a quadtree is well-graded if every
unsplit cell is both well-graded and uncrowded. It is not hard to prove that a well-graded
quad-tree produces a size-conforming, good quality mesh once triangulated. Note that this
mesh does not respect the input; it merely conforms to its local feature size.

Figure 4.3 shows the algorithm for building a quad-tree. The algorithm starts with a
bounding box (square) of the the point set, with side length L. It maintains a work queue
Q of work items, i.e., pointers to cells that need to be split, and a mapping from each cell
to the set of input points that it contains. Q is partitioned into lg L/s buckets such that the
bucket Qi is a queue containing the cells of size exactly L/2i. The “top” of the queue has
the largest element. For dynamic stability, we will also require that each bucket maintain
FIFO order (it must be a queue); this is not necessary for static runtime. Cells may be
pushed repeatedly onto the queue to no ill effect. The algorithm iterates over the work
queue until it is empty. On each iteration, it finds a cell that has not yet been split, splits it,
reassigns points, and pushes new work onto the queue.

We now wish to establish three theoretical results: First, that the output quad-tree is,
as we claim, size-conforming. Second, that we can compute it in O(n lg L/s) time. Third,
that upon appropriate updates (namely, adding or a removing a point from the input), we
can respond to the change and simulate running from scratch in only O(lg L/s) time.

1The original term was “unbalanced.” Our experience in conference reviews shows that the “balance”
term is confusing: quite reasonably, many think it refers to the depth of the quad-tree. Grading is a term
commonly used in engineering for the very concept we wish to express.

55

BUILDQT(P: point set, L: real, d: int)
1: P : map from quad-tree cells to points of P
2: Q: a 2-bucketed priority queue of cells, keyed by size, largest first
3: Add the association [0, L]d → P to P
4: if [0, L]d is crowded (that is, |P| > 2) then
5: Q ← {[0, L]d}
6: end if
7: while |Q| > 0 do
8: c ← DELETEMIN(Q)
9: Split c into 2d smaller cells {ci}
10: for each point p ∈ P (c) do
11: Find the ci that contains p
12: Add p to P (ci)
13: end for
14: Delete the entry P (c)
15: for every neighbour c′ of c do
16: if c′ is ill-graded (|c′| = 2|c|) then
17: enqueue c′ onto Q
18: end if
19: end for
20: for every child ci of c do
21: for every neighbour c′i of ci do
22: if ci is crowded (that is, |P (ci) ∪ P (c′i)| ≥ 2) then
23: enqueue ci onto Q
24: skip to the next child
25: end if
26: end for
27: end for
28: end while

Figure 4.3: Static algorithm for building the point location quad-tree given a point-set
input. This algorithm runs in time O(n lg L/s). See also Figure 4.4 which contains the
changes that allow self-adjusting computation to achieve fast response time.

56

Intuitively, the mesh is size-conforming because it separates any two points by at least one
cell (and thus cells are not too large), but only splits further to achieve good grading (thus
cells are not too small). The main asymptotic cost for refinement is to relocate points in
Line 10; when a point is split, the size of the cell it occupies falls by half. This can only
happen O(lg L/s) times per point, which gives the runtime and response time bounds.

4.1.1 The quad-tree is size-conforming

Lemma 4.1.1 If a cell c is crowded, then its parent c+ was crowded.

Proof: The neighbours of c are also neighbours of c+, unless they are children of c+.
Points that crowd c therefore also crowd c+.

Lemma 4.1.2 (Crowded cells are small) During the algorithm, all unprocessed crowded
cells are of the size of the smallest cells in the mesh, or exactly twice that size.

Proof: Initially, this is trivially true (there is only one cell in the mesh). Later, consider
the cell c+ that was split to create a crowded cell c. According to Lemma 4.1.1, c+ was
itself crowded, and thus by induction was the smallest or nearly-smallest cell in the mesh.
Upon splitting c+, c+ is the largest bad cell in the mesh: there cannot be any larger crowded
cells, or the work queue would have returned them instead. Therefore, all crowded cells
are of size |c+| or |c+|/2. Having split c+, the new cells are half the size of c+. Cells
crowded by c were already crowded by c+, so only the new cells can be newly-crowded,
and the new cells are all the smallest cells in the mesh.

Lemma 4.1.3 (Cell size lower-bounded by lfs) When a cell c is created, for all points
x ∈ c it is the case that lfs(x) ≤ 4.5

√
d|c|.

Proof: When c is created, it is because the algorithm is splitting c+. There are two reasons
to split c+: for crowding or for grading. If for crowding, then c+ and a neighbour c′ contain
two inputs p and q in c+ ∪ c′. The two inputs are, at the farthest, on opposite corners of
c+ and c′: |pq| ≤

√
d(|c+| + |c′|). Because c′ is crowded, and because the queue orders

largest-first, |c′| ≤| c+|. This proves that there is a point y ∈ c+∪c′ where lfs(y) ≤
√

d|c+|.
The local feature size at x ∈ c is thus no larger than lfs(x) ≤ lfs(y) + ||xy|| ≤ 9

2

√
d|c|.

Alternately, if c+ was split for grading, there was a neighbour c′ that was much smaller:
|c′| = |c+|/4 = |c|/2. By induction (since c′ was created before c), we can assume
that lfs(y) ≤ 4.5

√
d|c′| for all points y ∈ c′. The Lipschitz condition lets us know that

57

lfs(x) ≤ lfs(y) + ||xy||. We can choose y to be the closest point in c′ to x, which may
be as far as the length of the diagonal of c+: ||xy|| ≤ 2

√
d|c|. Overall then, we get

lfs(x) ≤ (4.5
√

d/2 + 2
√

d)|c| = 17
8

√
d|c| < 4.5

√
d|c|.

Theorem 4.1.4 (Size-conforming) The mesh output by BUILDQT(P) is size-conforming:
for any point x ∈ [0, L]d, the cell cx that contains x satisfies

klow|cx| ≤ lfs(x) ≤ khi|cx|

For constants klow and khi depending only on dimension.

Proof: Lemma 4.1.3 shows the upper bound on lfs. The lower bound is as follows: If x is
on the medial axis of the point cloud, then there are at least two points p and q equidistant
to x, which define lfs(x). Only one of the two can be in cx and its neighbours or else cx

would be crowded; wlog. let q be outside the neighbourhood of cx. Then lfs(x) = |xq| ≥
|c′| ≥| cx|/2 (otherwise, c′ would cause bad grading with cx).

Otherwise, x is off the medial axis. Let y be the closest point on medial axis that
minimizes |xy| + lfs(y); this quantity is lfs(x). Both terms are positive, so we know that
lfs(x) is at least as large either of them in isolation. If cy is not a neighbour of cx, then
lfs(x) ≥ |xy| ≥| c′| ≥ |cx|/2. But if cy is in a neighbour of cx, then by the argument
above, lfs(x) ≥ lfs(y) ≥ |c′|/2 ≥ |cx|/4.

The constants are khi = 4.5 ×
√

d and klow = 1/4. Importantly, however, in cells that
contain input, lfs(x) ≥ |c|/2.

4.1.2 BUILDQT runs in O(n lg L/s) time

Lemma 4.1.5 (Always-quality) At any point during the run of the algorithm, if c and c′

are neighbours, then their sizes differ by a factor at most four.

Proof: Consider a cell c+ that is split, creating c, and consider a neighbour c′ of c. By
Lemma 4.1.2, if c+ is a crowded cell, then the mesh is well-graded and neighbours differ
in size by a factor at most 2: |c′| ≤ 2|c+|. On the other hand, if c+ is an ill-graded cell, then
by the queue order we can assume that |c′| must again be at most 2|c+| because otherwise
c′ would have been processed first. In either case, c is half the size of c+, so c and c′ differ
in size by at most a factor four.

Lemma 4.1.6 At every step of the algorithm, cells in the quad-tree haveO(1) neighbours.

58

Proof: Since the size between neighbours differs only by a factor of four, we can only
pack at most six neighbours per side of a cell (four along the side, plus one on each end),
for a total number of cells equal to 6d − 4d.

Lemma 4.1.7 (Splitting is fast) Except for relocating points, handling a work queue event
takes constant time.

Proof: In any reasonable representation, checking whether a cell has been split is trivial,
as is doing the structural modification to the quadtree. Relocating points we have explicitly
excluded from the accounting in this lemma. Iterating over children × neighbours is a
constant number of iterations since there are 2d children and O(1) neighbours. Checking
for grading is obviously constant time. The sets P (ci) and P (c′i) may be large, but when
checking whether their union contains more than one point we only need to count to two
and stop.

Lemma 4.1.8 Any given input point p is relocated at mostO(lg L/s) times over the course
of the algorithm. Each relocation costs O(1) time.

Proof: A point p initially lies in the root cell [0, L]d. Every time it is relocated, the size of
its new cell is exactly half the size of its old cell. Because the output is size-conforming,
the smallest cell is of size Ω(s), so p can only be relocated lg(Ld/Ω(s)) ∈ O(lg L/s)
times. Relocating only takes the time to find the new cell out of 2d new cells, and thus
takes O(1) time. More precisely, it takes d greater-than tests because we are using an
axes-aligned quadtree.

Theorem 4.1.9 The BUILDQT routine runs in time O(n lg L/s).

Proof: Points are relocated O(lg L/s) times each and there are n points. Furthermore,
every split costs O(1) additional time. There are O(m) splits because the output is size-
conforming, andm ∈ O(n lg L/s) because the input is a point cloud.

4.1.3 BUILDQT is O(lg L/s)-stable

To establish the runtime of our dynamic algorithm, we determine the stability of the out-
put relative to changes in the input. The arguments will be familiar to designers of par-
allel algorithms — indeed, we draw on packing arguments from prior parallel meshing
results [STÜ04, STÜ07, HMP07b]. Our runtime is regulated in large part by the data

59

dependence structure of our algorithm. We must show that dependence paths are at most
O(lg L/s) long. Unlike in parallel algorithms, we must also show that the dependences
cannot fan out: even constant fanout would give us a runtime of O(poly(L/s)), which is
completely unacceptable.

Formalizing the notion of stability, consider a run of our algorithm. It reads in the
points, performs some operations, reads and writes to memory, then returns an output. We
can define an execution trace in the following way: operations and memory locations are
nodes; there is an edge from a memory location a to an operation f if f reads a; and there
is an edge from operation f to memory location b if f writes b. If f reads a and writes
b, we say that b has a data dependency on a. The dynamic stability of one point p is the
symmetric difference between the sets of nodes in trace T1 where p is not present, and the
nodes in another trace T2 where p is present. Note that this is a symmetric difference, so
that the stability of adding and removing the same point are equal.

To abstract away from memory locations and return to the more comfortable world of
input points and quadtree cells, I say a cell c blames p if the operation that splits c is a trace
descendent of the memory location that stores p. Thus, a cell c blames a point p if p is one
of the (possibly many) points that crowds c. Inductively, c also blames p if c is made to
be ill-graded because a neighbouring cell c′ was created by a split, and c′ blames p. Note
that a cell may blame its splitting on many points; indeed, it will always blame at least two
points.

If we consider a given cell c and a point p that it blames, then the distance in inductive
hops from c to p is at most O(lg L/s): in every hop, we either directly blame p, or we
blame p through a neighbour of half the size. Thus the trace is a shallow graph; it remains
to be shown that the number of descendents of an input point (the number of cells that
blame it) is bounded.

Lemma 4.1.10 Assume p is blamed for the split of a cell c. Then ||pc|| ∈ O(|c|).

Proof: If c is being split for crowding, then p is either within c or is in a neighbour c′ of c,
and |c′| = |c|. Thus ||pc|| ≤ |c|. If instead c is being split for grading, then we can follow
the causal chain that leads to a cell c′ that was split for crowding by p. Label the chain ci

with c0 = c and ck = c′. Because of the grading condition, we know that |ci| = 2|ci+1|
and thus |c| = 2k|c′|. The distance we can travel along the chain is maximized if the
chain follows the diagonal of the cells, a total distance of (1 + 2k)

√
d|c′|. Finally, c′ either

contains p or neighbours an equal-sized cell that contains p. Thus the distance from p to c
is at most (2 + 2k)

√
d|c′| = (1 + 21−k)

√
d|c|, with k ≥ 1 and d ≥ 1.

Lemma 4.1.11 Any point p is blamed for at most O(lg L/s) splits.

60

Proof: Given a size class 2l, the prior lemma showed that any cell of size 2l that is blamed
on pmust have distance at mostO(2l). In dimension d, these cells have volume (2l)d each,
and must fit within a volume of O(2ld). Therefore, there can be only O(1) splits in size
class l that are blamed on p. Because the output is size-conforming (Theorem 4.1.4), there
are O(lg L/s) size classes.

At this point we have accounted for the stability of the mesh itself: only O(lg L/s)
will be created or destroyed upon a single-point insertion. In the scientific computing
application, this limits numerical error due to reinterpolation. However, to establish the
dynamic response time of the algorithm, we must also account for changes in structures
only used internally. The principal such structure is the point location structure — the
assignment of points to cells. To account for point location costs, we need to be a bit more
careful about blame. If a split relocates a point, there are two possibilities: the split is due
to crowding, or the split is due to grading. Lemma 4.1.2 implies that splits due to grading
only occur on cells with at most one point inside, so paying for the relocation is only a
constant extra cost. Splits due to crowding may be very costly, but the presence or absence
of a point p only changes the decision about whether to split a crowded cell c if p is exactly
the second point in the cell and its neighbours. This allows us to cut the causal chain and
only have a point q blame its relocation on p when p is exactly the second point in the cell.

Lemma 4.1.12 Only O(lg L/s) point location decisions blame any given input point p.

Proof: As seen in Lemma 4.1.8, every point is reassigned at mostO(lg L/s) times during
the algorithm. What is left is to see how many other points are reassigned because of the
presence of p that would not otherwise be reassigned (i.e., their containing cell was split
because p was present, but would not have been split were p absent).

There are two reasons a point can be reassigned: either it is in a crowded cell being
split, or it is in an ill-graded cell being split. A reassignment due to a crowded cell c can
only be affected if the point pwas either in the cell c or in a neighbour c′ of c. Furthermore,
we know that there was exactly one other point in c or c′ —otherwise the algorithm would
split regardless of the presence or absence of p. On the other hand, Lemma 4.1.2 implies
that any ill-graded cell c must be uncrowded — c therefore only has one point inside. In
other words, if a split reassigns any points, it reassigns exactly one point. The set of splits
is O(lg L/s)-stable, and thus so is the set of point reassignments.

Putting these observations together, we get the final result of this section:

Theorem 4.1.13 The BUILDQT algorithm is O(lg L/s)-stable under single point inser-
tions and deletions.

61

4.1.4 BUILDQT response time is O(lg L/s)

The stability bound just proved does not yet immediately translate into a dynamic algo-
rithm. However, it suggests that we can use self-adjusting computation (SAC) to auto-
matically dynamize BUILDQT. Under the SAC framework, an execution of BUILDQT is
seen as a set of operations, which I will define shortly. Acar [Aca05] proved that under
certain assumptions, SAC can respond to a change in time equal to the stability bound.
The assumptions are (1) the program is concise— no operation is done twice, and (2) the
program is monotone— in every trace that performs operations both a and b, their relative
order is the same: a occurs before b.

We can think of an operation as being a sequence of machine instructions, such that the
entire sequence can be run in constant time. Thus, BUILDQT line 8 (c ← DELETEMIN(Q))
is an operation because we use a 2-bucketed approximate priority queue, in which DELETE-
MIN is constant time. By contrast, relocating points in the loop starting line 10 is not an
operation, though each iteration of the loop is. For simplicity, I describe the body of the
main loop as a single operation, which implements the loop starting line 10 as a recursive
function call.

Lemma 4.1.14 BUILDQT is concise.

Proof: A crowded cell ci is only added to the priority queue once, by its parent (line 23).
It cannot also be added to the queue as an ill-graded cell, because until ci is processed, no
smaller cell can be processed. Similarly, an ill-graded cell c′ will also only be added once
(line 17: when it is added to the work queue, until c′ is processed, no other smaller cell is
processed. Therefore, each iteration of the main loop only occurs (at most) once per cell.
Finally, a point cannot be relocated from a cell c to a sub-cell ci of c more than once, since
c is only split once.

Monotonicity is harder to prove, at least in part because BUILDQT as presented is not
monotone. Consider two execution traces of BUILDQT, T− and T+, where the input for
the latter differs from the input from the former in that it has an additional point p. In T+,
a cell may be split because it contains p and another point; in T−, it may be that the cell
was split because it was ill-graded. To repair this, I change the algorithm in the following
two ways: (1) the set of neighbours that are checked in line 17 must be traversed in a
canonical order (for example, clockwise in two dimensions); (2) the queue will now store
not only the names of cells to be split, but also a “reason” to split it. The reason field is for
crowded cells (those enqueued in line 23) is the cell itself. When a cell c being split due to
crowding enqueues its neighbours in line 17, the reason field for those ill-graded cells is
set to c. Finally, when an ill-graded cell being split with reason c enqueues its neighbours,

62

the reason field for remains is c. More briefly, every cell enqueued directly or indirectly
by the split of a crowded cell has the same “reason” field. See Figure 4.4 for the modified,
monotone algorithm.

This modified algorithm, I claim, is monotone. To prove monotonicity, consider two
operations a and b such that there is an input that induces a trace where a occurs before b.
I say that the program is monotone with respect to a and b if in every trace where a and
b both appear, a occurs before b. I distinguish three classes of operations: splits due to
crowding (those enqueued in line 24); splits due to grading (those enqueued in line 18);
and point location operations (lines 12 and 13). The proof is in parts, showing that for
any a drawn from one class of operations and b drawn from another class, the program is
monotone relative to them.

Fact 4.1.15 BUILDQT-DYN is monotone relative to pairs of split operations that are both
due to crowding.

Proof: Crowded cells are enqueued immediately when they are created; therefore, they
are dequeued in order of size. This shows that if |c1| 1= |c2|, their relative order is de-
termined by their relative size. If instead |c1| = |c2|, then consider the crowded cells c+

1

and c+
2 that enqueued them. If c+

1 and c+
2 are the same cell c, then the fact that the algo-

rithm uses a canonical ordering for numbering children of a node means that c1 and c2

are enqueued in the same relative order in any trace where c is split for crowding. Each
bucket of the 2-bucketed priority queue maintains a deterministic ordering of its items in
each bucket (LIFO, for example). Therefore, the order in which c1 and c2 are dequeued is
uniquely determined by the order in which they are enqueued, which we argued was the
same for all traces.

If instead c+
1 and c+

2 are not the same cell, then the relative order of c1 and c2 on
the queue is determined by the relative order of c+

1 and c+
2 (again assuming deterministic

ordering of the queue). We can iterate this argument until the least common ancestor of
c1 and c2, which we just argued pushes its children on the queue in the same order in all
traces. Thus, two crowded cells are dequeued and split in the same relative order in any
trace in which they are both crowded.

As a proof aid for dealing with ill-graded cells, consider the full quadtree of infinite
depth (i.e. the object that results from the infinite process of splitting cells in breadth-first
order). Looking at a cell c, in this infinite quadtree, we can identify a unique set C ′ of
neighbouring cells of twice the size. This is the set of cells that, in the worst case, c could
enqueue due to grading when c is split. In turn, the cells in C ′ have neighbours of twice
the size. I define the shadow of a cell c as the transitive closure of this neighbourhood

63

BUILDQT-DYN(P: point set, L: real, d: int)
1: P : map from quad-tree cells to points of P
2: Q: a 2-bucketed priority queue of pairs of cells (c, r), keyed by |c|, largest first
3: Each bucket of Q must be deterministically ordered based on insertion order (LIFO,
for example)

4: add the association [0, L]d → P to P
5: if [0, L]d is crowded (that is, |P| > 2) then
6: Q ← {[0, L]d}
7: end if
8: while |Q| > 0 do
9: (c, r) ← DELETEMIN(Q)
10: split c into 2d smaller cells {ci} in a canonical order
11: for each point p ∈ P (c) do
12: find the ci that contains p
13: add p to P (ci) with a tag of r
14: end for
15: delete the entry P (c)
16: for every neighbour c′ of c in a canonical order do
17: if c′ is ill-graded (|c′| = 2|c|) then
18: enqueue (c′, r) onto Q
19: end if
20: end for
21: for i = 0 to 2d − 1 do
22: for every neighbour c′i of ci do
23: if ci is crowded (that is, |P (ci) ∪ P (c′i)| ≥ 2) then
24: enqueue (ci, ci) onto Q
25: skip to the next child
26: end if
27: end for
28: end for
29: end while

Figure 4.4: The algorithm of Figure 4.3, modified so that the program is monotone (Def-
inition 1.4.3). The modifications are: I clarify the order of each bucket of the priority
queue, I tag queue entries with a “reason” field r, and I tag point location entries with
the “reason” field. Under self-adjusting computation, this algorithm has response time
O(lg L/s) when adding or removing a point from P .

64

operation: intuitively, the shadow of c is the set of all the cells that c could ultimately cause
to be enqueued due to grading. Thanks to the order of the priority queues, after splitting c,
the entire shadow of c is split before any other cell c′ with |c′| ≤| c| will be processed: the
shadow of c consists only of cells larger than c. Effectively, BUILDQT-DYN is a recursive
function: after splitting a cell, we “clean” the effect of splitting it, removing any ill-graded
cells; the priority queue serves as the stack in the recursive calls. In particular this means
that after splitting a crowded cell c, but before splitting another crowded cell, every split
performed has c for its reason field; I call this the shadow property. We can now return
to proving the monotonicity lemmas.

Fact 4.1.16 BUILDQT-DYN is monotone relative to any pair of split operations whose
corresponding queue elements (c1, r1) and (c2, r2) have different reason fields r1 1= r2.

Proof: The shadow property implies that the relative order of c1 and c2 depends only on
the relative order of r1 and r2, which are both cells that were split due to crowding. We
already proved that BUILDQT-DYN is monotone with respect to such r1 and r2.

Fact 4.1.17 BUILDQT-DYN is monotone relative to any pair (c1, r) and (c2, r).

Proof: The algorithm requires imposing a canonical order on the neighbours of the cell
r (for example, in two dimensions, counterclockwise from the lower-left corner would be
a natural choice), and enqueueing the large neighbours in that order. This imposes a total
order in which the neighbours will be dequeued in any trace. Recursively, the shadow
property imposes a total order on all splits that could conceivably be done with reason r.

Fact 4.1.18 BUILDQT-DYN is monotone relative to any two point location operations, or
to any one point location operation and a split.

Proof: While splitting a cell c, until all points in c are relocated, no other splits occur;
thus the relative order of point relocations and splits is identical to the relative order of
the split of c and other splits. Within a cell c that was created upon splitting a cell c+, the
order of point locations is determined by the order of point locations when splitting c+.
Inductively this reduces to the order of point locations in the initial node [0, L]d, which is
input.

Lemma 4.1.19 (BUILDQT-DYN monotonicity) The dynamically-stable BUILDQT-DYN
algorithm, as described in Figure 4.4, is concise and monotone.

65

Adding a tag is a constant-time operation — just one or two new arguments to each
function, which the program reads but whose value it ignores. Specifying the order
of queues and lists will only cost time if the ordering is expensive to maintain. How-
ever, FIFO or LIFO orderings work and can be maintained in constant time. Thus, the
static runtime of the dynamically-stable BUILDQT-DYN is identical to that of the original
BUILDQT-DYN algorithm. The question that remains is whether the stability analysis still
holds in the face of distinguishing cells that in the prior analysis were seen to be identical.
Consider a cell c whose split operation is re-executed by the change propagation algorithm
when updating the trace for T1 to generate the trace for T2. The re-execution will occur
only if the reason field on the priority queue changes. The reason field r will only change
if r was not crowded in T1 but is crowded in T2, which implies that r contains or is a
neighbour of the new point p. Thus, c blames p and is indeed accounted for in the stability
analysis. Equally, this shows that a cell whose split is re-executed contains at most one
point in T1, and at most two in T2; therefore, the re-executed point location costs are only
constant per re-executed split. Together with the conciseness and monotonicity result, this
shows:

Theorem 4.1.20 When run under the self-adjusting computation framework, BUILDQT-
DYN can construct a graded quad-tree in O(n lg L/s) time over an input of n points with
the closest pair of points being at distance s from each other. Furthermore, when a point
is added to the input, BUILDQT-DYN can respond to the change in time O(lg L/s), where
s is the distance between the closest pair after adding the point. Similarly, BUILDQT-
DYN can respond to the removal of a point from the input in time O(lg L/s), where s is
the closest pair distance before removing the point. After responding to the change, the
quadtree is indistinguishable from a quadtree built from scratch over the new input.

4.2 Choosing Steiner points

The prior section showed how to produce statically, and update dynamically, a size-con-
forming quadtree. This is not yet a mesh: it does not conform to the points themselves,
only to the spacing function between points; it is also not triangular, which may be prob-
lematic for some users. Bern et al. described how to warp the points of the quadtree, and
triangulate the result. However, quadtrees have many more points than are necessary: con-
sider for instance that splitting a single cell may add as many as five points, as compared
to circumcenter refinement à la Ruppert. The current section shows a conceptual algo-
rithm, and proves it correct. In this section, I reach for the most general algorithm that
builds a quality, size-conforming mesh; the hope is that by proving correct a very wide

66

class of possible Steiner points, later authors (including myself) can generate an efficient
algorithm that outputs very few points in practice. The class of Steiner points I describe
encompasses both circumcenters (as per Ruppert’s algorithm [Rup95]) and off-centers (as
per Üngör [Üng04]), and many choices beyond those.

I start with some definitions. Recall that I will be producing a set of Steiner points
whose Delaunay triangulation is a quality mesh. It is therefore quite natural to develop a
fixation on d-dimensional spheres and the balls they enclose. Assume the existence of a
finite set of points P ⊂ Rd, and a bounded domain Ω ⊂ Rd. I denote a ball b with its
center at c and with radius r as B(c, r). Unless clearly stated otherwise, this is an open
ball. A point on the surface of b is not considered to be in the ball. I use two special types
of balls, as follow:

Definition 4.2.1 (Gap ball [Tal97]) A gap ball on a vertex v is any ball b = B(c, r) such
that (1) c is within the domain Ω, (2) v is on the surface of b, (3) there is no point in P that
lies in the open ball b.

Definition 4.2.2 (Circumball) Given a d-simplex s composed of d + 1 points in general
position, the circumball of s is the ball b = B(c, r) such that every vertex of s lies on
the surface of b (that is, b is the ball corresponding to the circumscribing sphere of s).
Given instead an i-simplex s, i < d, the circumball is the ball whose center is on the affine
plane of s and that has all i + 1 vertices on its surface. Equivalently, the circumball is the
smallest ball that circumscribes s.

Recall that Delaunay entitled his seminal paper Sur la sphère vide (On the empty
sphere): a d-simplex is Delaunay if, and only if, its circumball is empty of any points
in P . Clearly, the circumball of a Delaunay simplex is a gap ball on each vertex of the
simplex. An lower-dimensional simplex (a segment, or triangle in three dimensions, etc)
is said to be Delaunay if, there is at least one empty ball that circumscribes the simplex.
That empty ball is a gap ball on every vertex of the simplex. The circumball of a simplex
is a particular circumscribing ball; a lower-dimensional simplex may be Delaunay even if
its circumball is non-empty; however, if the circumball of a simplex is indeed empty, then
the simplex is Delaunay.

Consider now the Voronoi cell of a vertex v which has nearest neighbour u. By the
triangle inequality, it is clear that the circumball of the segment vu is empty. Indeed, this
circumball is the smallest-radius gap ball around v. More generally, the center of any gap
ball on v lies within the Voronoi cell of v. Therefore, a sufficient witness to the poor
quality of the Voronoi cell of v is a pair of gap balls: one describing the distance to the

67

vu
v

u

v1

v2

v3

Figure 4.5: Completing v. Left: The vertex v has a bad aspect ratio Voronoi cell, as evidenced
by the gap balls on v, which are much larger than the distance ||uv|| = NN(v). The Voronoi cell
could be arbitrarily larger than is shown. Right: After iteratively inserting v1 through v3 at the
centers of large gaps, no large gap remains, and the Voronoi cell of v is of good quality.

nearest neighbour, and one with radius r > ρNN(v) where ρ is the user-specified quality
threshold. That is, we need not compute the Voronoi cell.

This produces an obvious algorithm: starting with the initial point set, look at each
point in turn. If it has good quality, we can move on. If not, then there is at least one
offensively large gap ball. Add the center of that ball, and check again, until the vertex is
completely surrounded by points that hide any large gaps from it:

Definition 4.2.3 (Complete) A vertex v is said to be complete if it has no gap ball of
radius larger than ρNN(v).

The claim is that this procedure produces the quality mesh we would like to have.
Clearly, the mesh respects the input point set. Equally clearly, the mesh is of good quality,
except perhaps near the boundary of the mesh. For now, ignore the boundary effects; I
will show in Section 4.4 that we can set up the domain such that it is indeed safe to ignore
boundary effects. What is left is to show is that the mesh thusly created respects the local
feature size (which also shows that the procedure does, in fact, terminate).2

2It is more natural to write the lemma as NN(v) ∈ Ω(lfs(v)), because NN changes over time and is
controlled by the algorithm, whereas lfs is fixed by the input. However, writing it in the form lfs(v) ∈
O(NN(v)) is more convenient in the proofs.

68

Lemma 4.2.4 When the iterative routine chooses to insert an off-center v,

lfs(v) ∈ O(NN(v))

Proof: The point v is being inserted in order to complete a mesh vertex u, whose nearest
neighbour is u′. By definition, v is the center of an empty ball of radius at least ρNN(u), on
the surface of which lies u. This sets NN(v) ≥ ρNN(u). If both u and u′ are input points,
then lfs(u) = NN(u) ≤ NN(v)/ρ. By the Lipschitz condition, lfs(v) ≤ lfs(u)+||uv||, into
which we substitute the prior bounds to conclude lfs(v) ≤ NN(v)ρ+1

ρ . Thus, for c ≥ ρ+1
ρ

the statement holds.
Otherwise, let U be the newer of u and u′. By induction, we know that when U was

inserted, lfs(U) ≤ c NN(U), and that at the time, NN(U) ≤ ||uu′||. Again appealing
to the Lipschitz condition, lfs(v) ≤ lfs(U) + ||Uv||. The distance from U to v is at
most ||uv|| + ||uu′||, so again we can substitute to get (1+c

ρ + 1) NN(v). Thus, for c ≥
(1+c

ρ + 1) the statement holds. This evaluates to c ≥ ρ+1
ρ−1 . The two boxed constraints are

simultaneously satisfiable for any ρ > 1.

Theorem 4.2.5 (Completing is size-conforming) There exists a constant chi that depends
only on the dimension and on ρ such that after completing the mesh until no incomplete
vertex is left, for every point x in the Delaunay d-simplex τx that contains x,

lms(x) ≤ lfs(x) ≤ chi lms(x)

Proof:
All points of the input are in the output, so the lower bound is obvious. The up-

per bound is implied by Lemma 4.2.4. Given an arbitrary point x, consider its nearest
neighbour v, which is a vertex of the mesh (see Figure 4.6). In other words, x lies in
the Voronoi cell of v. When x is on the boundary of the Voronoi cell, it is equidistant
between v and a second point. Therefore, the smallest distance that x can have between
it and its second-nearest point is lms(x) ≥ NN(v)/2. By the Lipschitz condition, we
know that lfs(x) ≤ lfs(v) + ||xv||. Because the Voronoi cell of v is of good quality,
||xv|| ≤ ρNN(v) ≤ 2ρ lms(x). The first term is an inductive argument:

Let u be the nearest neighbour of v. If v was inserted after u, then by Lemma 4.2.4,
we know that lfs(v) ≤ c NN(v). On the other hand, if u was inserted after v, then we only
know that at the time u was inserted, lfs(u) ≤ c NN(u). But v was a neighbour of u at
that time, so lfs(u) ≤ c||uv|| = c NN(v). This allows us to use the Lipschitz condition to
compute the local feature size at v: lfs(v) ≤ lfs(u) + NN(v) ≤ (1 + c) NN(v).

69

u

r

v

x

R

Figure 4.6: Illustration of the proof of Theorem 4.2.5. The hollow point x is an arbitrary
point in space; it lies in the Voronoi cell of a mesh vertex v, whose nearest neighbour is u.
The cell of v has out-radius R and in-radius r.

Substituting back in to lfs(x) ≤ lfs(v) + ||xv|| we get that there exists a constant chi,
namely 2(1 + c + ρ), such that lfs(x) ≤ chi lms(x).

4.3 Efficient algorithm

Implementing the conceptual algorithm requires efficiently finding large empty gaps. The
key to efficiency will be to work in a bottom-up fashion: we complete vertices in (approxi-
mate) order of their distance to their nearest neighbour, shortest distance first. Lemma 4.3.1
shows that work only progresses: when a new vertex v is created while completing a ver-
tex u, NN(v) is substantially larger than NN(u). Thanks to this progress property, I can
prove that when the algorithm computes a gap ball, the gap ball only intersects a bounded
number of the cells of the quadtree constructed by BUILDQT. This shows that the postpro-
cess to turn a graded quadtree into a quality Delaunay mesh takes only linear time in the
size of the output. Philosophically, this makes sense: building the quadtree is analogous
to sorting, and this postprocess is simply a filter process over the sorted structure.

The main loop invariant this algorithm maintains is that every vertex with nearby near-
est neighbour is complete. The priority queue is ordered by the nearest neighbour, smallest
first. The following shows that work in one bucket only creates work in a strictly later
bucket. Therefore, once a bucket relating to length range [l, ρl) has been fully processed,
every vertex that has a nearest neighbour closer than ρl is complete.

70

CHOOSESTEINERS(P , QT, P , ρ, γ)
1: P: set of points in Rd

2: QT: graded quadtree on P , such as from BUILDQT
3: P : map storing the correspondence between quadtree cells and vertices
4: Q: work queue, bucketed with factor ρ
5: for each p ∈ P do
6: let c be the quadtree cell that contains p
7: add a COMPUTENN(p) event, with key |c|/2, to Q
8: end for
9: while Q not empty do
10: w ← pop(Q)
11: if w is a COMPUTENN event on v then
12: Compute the exact nearest neighbour u (Steiner or input) to v
13: if ||uv|| ≤ N̂N(v) then
14: add a COMPLETE(v) event, with key ||uv||, to Q
15: end if
16: else if w is a COMPLETE event on v then
17: while ∃ a gap ball b = B(x, r) with r ∈ (ρNN(v), γ NN(v)) do
18: Let cx be the cell that contains x
19: Add cx ↔ x to P
20: Add COMPLETE(x), with key ||xv||, to Q
21: end while
22: end if
23: end while

Figure 4.7: Static algorithm to compute Steiner points, given a graded quadtree. The
parameter ρ must be strictly greater than 1. The parameter γ affects runtime; it must be at
least as large as ρ.

71

Lemma 4.3.1 (Completing only leaves large incompletes) Consider an incomplete ver-
tex v with nearest neighbour u. While working to complete v, any new vertex v′ thus
created has a nearest neighbour (namely, v) at distance at least ||vv′|| ≥ ρ||uv||.

Proof: The vertex v′ is the center of a ball that has v on its surface, which proves that v
is the nearest neighbour to v′. The radius of that ball is, by construction, at least ρ||uv||.

Given the loop invariant, we can now prove that both primitive operations of the
CHOOSESTEINERS algorithm (namely, computing the nearest neighbour, and finding a
large gap ball) can be implemented in constant time. Computing the nearest neighbour for
a COMPUTENN event can be done using Dijkstra’s algorithm. Nodes of the search graph
are quadtree cells and mesh vertices, and the distance is the Euclidean distance from the
object to v; there is an edge in the search graph from a cell to its neighbours, and from a
cell to the mesh vertices it contains. This search is essentially a sweep, growing a circle
out of v, which stops upon reaching a mesh vertex. The runtime is thus regulated by the
number of quadtree cells the final query circle intersects. Computing a gap ball of radius
r ∈ (ρNN(v), γ NN(v)) during COMPLETE can be implemented using a similar set of
searches. In either case, the query comes down to being an empty circle with radius at
most O(NN(v)).

Lemma 4.3.2 In a partial mesh where all vertices with nearest neighbour close than l are
complete, for any point x ∈ Ω, if lfs(x) < l/2, then x lies in the Voronoi cell of a complete
vertex.

Proof: I start with a simple observation: at any point y ∈ Ω, there is at least one vertex
within distance lfs(y) of y (in fact, there are at least two); we can write this as NN(y) ≤
lfs(y). Let v be the vertex that has x in its Voronoi cell. The Lipschitz condition says that
lfs(v) ≤ lfs(x) + |xv|. But |xv| = NN(x) ≤ lfs(x), so we have lfs(v) ≤ 2 lfs(x) < l.
Finally, NN(v) ≤ lfs(v) < l. Therefore, v is complete.

Lemma 4.3.3 (Gap searches are fast) In a partial mesh where all Delaunay edges shorter
than l are complete, any gap ball on a vertex v with nearest neighbour NN(v) ∈ Θ(l), and
with radius r ∈ Θ(l), intersects at most O(1) quad-tree cells.

Proof: Consider the cell, cv, that contains v. By the size-conforming theorem (4.1.4), the
cell has size Θ(NN(v)) = Θ(l), as do its neighbours. A cell c takes up volume |c|d, so the
gap ball can only intersect a constant number of cells of size Θ(|cv|). In other words, if

72

the gap ball is to intersect a large number of cells, it must intersect some small cells. For
a contradiction, assume the gap ball does, indeed, intersect a small cell, of size less ε|cv|
for some ε to be described later. Let c− be one such cell, and let x be a point common to
c− and the gap ball. Walk along the ray from x to v, stopping upon crossing k cells (for
a particular constant k to be described), and letting the stopping point be called y. Then
there is an empty ball centered at y that intersects at least k + 1 cells.

The last cell visited in this walk must have size at most 2k|c−| since the quadtree was
well-graded. The local feature size at y is no greater than chi2k|c−|; that is, there is a
Delaunay edge in the input with length at most chi2k+1|c−|. Using ε = chi

clow
2k+1 ensures

that this length is strictly less than l, which means that the algorithm already completed
the edge. But then y must lie in a Voronoi cell of good aspect ratio, as proved above.
Therefore, the empty ball centered at y, which we previously proved intersected k + 1
cells, is contained in the union of circumballs of complete simplices. Completed simplices
are size-conforming (they will be in the output); and since quad-tree cells also are, the
empty ball centered at y can only be intersecting a constant number of quad-tree cells. Set
k to that constant. Then we have a contradiction, which leads us to the conclusion that all
cells that the gap ball on v with radius Θ(l) intersects only quadtree cells of size Θ(l), and
thus only intersects a constant number of them.

Finally, recall that in a quality radius/edge mesh, every vertex has bounded degree
[MTTW95]. This proves that the loop in a COMPLETE(v) event has a bounded number of
iterations. Therefore, every event is processed in constant time.

4.3.1 Delaunizing

The CHOOSESTEINERS algorithm computes a set of points and never explicitly computes
their Delaunay triangulation. However, a simplex constructed of complete vertices is never
destroyed. Therefore, we can simply note this and output the simplex immediately at that
time; every simplex of the output is reported since every simplex in the output is made
up of complete vertices. Alternatively, as proposed by Har-Peled and Üngör, we can run
a third pass that does explicitly compute the Delaunay: for each output vertex (Steiner or
input), compute its set of Delaunay balls. Since every vertex is complete, every search will
be a gap of radius r < ρNN(v), which is constant time. Since every vertex in the output
has bounded degree, it takes O(1) time per vertex, or O(m) ⊂ O(n lg L/s) total time.

73

4.3.2 Static runtime

Theorem 4.3.4 After running BUILDQT, CHOOSESTEINERS, and computing the Delau-
nay triangulation of the output points, we have constructed a mesh that respects the input,
has radius/edge quality no worse than ρ, and is size-conforming. Furthermore, running
these algorithms takes a total of O(n lg L/s) time.

Proof: The output points include the input points, so the mesh trivially respects the input.
Upon completing all the vertices, we have a quality mesh, modulo boundary concerns to
be addressed in Section 4.4. Lemma 4.2.5 shows that the output is also size-conforming.
Computing the quadtree is the bulk of the runtime, at O(n lg L/s) time. Computing the
Steiner points and the Delaunay triangulation takes only time linear in the output size,
which is O(n lg L/s) in the worst case, but much smaller in common cases.

4.3.3 Dynamic stability

To establish dynamic stability of CHOOSESTEINERS, I use the same argument as in the
section on BUILDQT: namely, when a Steiner point u is added to the mesh, it is added to
complete a vertex v. Naturally, u blames v. However, the coordinates of u also depend on
a few other vertices, in particular the nearest neighbour of v, and any other vertices on the
surface of the gap ball whose center defines u. Finally, while completing, the search will
iterate over O(1) quadtree cells, which may have changed due to changes in the input, so
we must blame those as well.

In the BUILDQT section, the argument was that every step of blame cut a characteristic
length in half, and thus if a quadtree cell blamed a point p, the cell had characteristic
approximately equal to the distance from p. The situation is slightly more complicated
now, because the vertices on the surface of the gap ball may have characteristic as large as
that of v. Indeed, we can construct an example (see Figure 4.8) where the characteristic
does not grow, and geometric information can leak arbitrarily far away. Spielman, Teng,
and Üngör show how to sidestep this issue by colouring the work queue in linear work and
constant parallel depth in their parallel algorithms [STÜ07, STÜ04] (they call it computing
a maximal independent set, but this is a misnomer as the sets are large, but not maximal).
The CHOOSESTEINERS algorithm modified to use colouring is in Figure 4.10.

Work in CHOOSESTEINERS is ordered according to a bucketed priority queue, with
bucketing factor ρ. Two vertices in the bucket [l, ρl) are independent if we are sure they
can be completed in parallel without the one affecting the other. This happens if the off-
centers of one are not contained within the gap balls of the other. Recall that the gap balls

74

a b c d

a′

b′
d′

Figure 4.8: An illustration of a long chain of dependency. The input is n (here, n = 4)
equally-spaced points on a line. The first vertex to be processed, a, adds an off-center a′

at distance 2ρ directly above itself. Its neighbour b, casting a similar gap ball, runs into a′

and thus creates a b′ somewhat off from the vertical. Vertex c casts a gap ball and finds
it to have small radius, and thus adds no off-center. The chain continues with d force to
add d′ slightly off from the vertical. Clearly, the dependency can propagate arbitrarily far.
However, it would be safe to add a′ and a hypothetical d′′ at distance 2ρ directly above d: a
and d are in a sense independent. Explicitly exploiting the independence allows breaking
artificially long chains of dependency.

a
b

c

Figure 4.9: The grid used to determine independence. Vertices that lie in a shaded square
cannot conflict with vertices lying in a separate shaded square. Only O(1) vertices lie in
any given square, so they can be processed serially. After cycling through all 3d ways
of regularly shading squares, every vertex has been assigned an order in which it will be
processed.

75

CHOOSESTEINERS(P , QT, P , ρ)
1: P: set of points in Rd

2: QT: graded quadtree on P , such as from BUILDQT
3: P : map storing the correspondence between quadtree cells and vertices
4: Q: work queue, bucketed with factor ρ
5: for each p ∈ P do
6: let c be the quadtree cell that contains p
7: add a COMPUTENN(p) event, with key |c|/2, to Q
8: end for
9: while Q not empty do
10: LetW be the set of smallest items on Q
11: if There are any COMPUTENN items inW then
12: for each COMPUTENN(v) item inW do
13: Compute the exact nearest neighbour u (Steiner or input) to v
14: add a COMPLETE(v) event, with key ||uv||, to Q
15: end for
16: loop again
17: end if
18: Let G be a grid on [0, L]d with grid elements of size 3γρ
19: for each COMPLETE(v) item inW do
20: Add a pointer to v from the grid element of G that contains v
21: end for
22: Use G to colourW using ∆ colours
23: for each colour i ∈ [1 . . .∆] do
24: for each element COMPLETE(v) ofW with colour i do
25: Complete v
26: end for
27: end for
28: end while

Figure 4.10: Dynamically-stable algorithm to compute Steiner points, given a graded
quadtree. Unlike in the static algorithm, we now need to carefully sequence the COM-
PLETE(v) events within a bucket in order to avoid long chains of dependency.

76

of a vertex v have radius at most γ NN(v) < γρl. Therefore, if u and v are at distance
3γρl, they must be independent. The task now is to colour the vertices; each colour is an
independent set.

To compute the colouring, make a grid with side length 3γρl. Note that this grid is
unrelated to the quadtree. A vertex v at a point 〈x1, . . . , xd〉 is assigned to the grid square
〈. . . , 4xi/(3γρl)5, . . .〉. It would be a bad idea to create the grid explicitly; instead, we can
use a hash table to store only the non-empty grid squares. If there are nl vertices in the
bucket, then this takes expected time O(nl).

Each grid square will have at most a constant k vertices within it (I prove this in
Lemma 4.3.5). In a given grid square, it may or may not be possible to process two vertices
in parallel; pessimistically, the colouring will use k colours in each grid square. Adjacent
grid squares may also have non-independent vertices, so if two grid squares are adjacent,
they must be coloured at different times. However, if we evenly sample every other (in
L∞ distance) square from the grid, all vertices in one sampled square s are independent of
all those in another sampled square s′: every point in s is at least 3γρl from every point in
s′ (see Figure 4.9). Colour the vertices in this sample, using up to k colours. Then shift
the sample by one square, and repeat. Each shift takes k colours; we only need 2d shifts to
ensure that every square has been sampled.

Lemma 4.3.5 Each grid element contains at most a constant number of vertices.

Proof: The volume of a grid element while processing a bucket of size [l, ρl) is (3γρl)d.
Every point being coloured has nearest neighbour NN(v) ≥ l and thus has an empty ball
around it of volume Vd(l/2)d, of which at least a 2−d fraction must lie within the grid
element. Thus, the constant is no more than (12γρ)dVd where Vd is the volume of the unit
sphere in dimension d. This proof is loose.

The ordering chosen by the colouring is congruent with an ordering of the work items
in a given bucket, and the prior proofs did not depend on the ordering within buckets, so
the algorithm remains correct. Colouring takes linear time: every vertex in the bucket
[l, ρl) is inspected once, and every non-empty square is inspected once. There are no
more non-empty squares than vertices. This means the static runtime is unmodified from
before: O(m) time to choose the Steiner points. What remains to be proved is the dynamic
stability bound. The blame argument can now be articulated fully:

Lemma 4.3.6 (Blame within rounds packs) Consider two Steiner points u and v created
while processing events with nearest neighbour in [l, ρl). If v blames u, then ||uv|| ∈ O(l).

77

Proof: If, at some point during the while loop, the gap balls of u intersect those of v,
then the claim is obvious since the gap balls have radius O(l). If not, then there is a path
v = v0, v1, . . . , vk = u of blame, whose gap balls intersect pair-wise. Any two adjacent
vertices vi and vi+1 are within O(l) of each other. By the construction of independent sets,
k is a constant. Therefore, the distance from v to u is at total of at most O(l).

Lemma 4.3.7 (Blame across rounds packs) If, while processing events with nearest neigh-
bour in [l, ρl), the algorithm creates a Steiner point v, and v blames a vertex u inserted
when processing smaller events, then ||uv|| ∈ O(l).

Proof: If v blames u directly, then u is on the gap ball that defines v. The distance from v
to u in this case is at most O(ρ2l). Otherwise, blame is via a chain v = v0, v1, . . . , vk = u.
Among a set of vi inserted while processing the same bucket [l′, ρl′), we just saw that the
distance is at most O(l′). We can therefore compress the chain to v = v′

0, v
′
1, . . . , v

′
k′ = u

where each vertex is in a different bucket. The distance from v′
i, processed in bucket

[l′, ρl′), to v′
i+1 processed in a smaller bucket is O(l′) ⊂ O(lρ−i). The total distance from

v to u, then, is the convergent sum
∑

i O(lρ−i) ⊂ O(l).

4.3.4 Main theorem

Theorem 4.3.8 (Dynamic Stability of CHOOSESTEINERS) Under single-point additions
and removals, the CHOOSESTEINERS algorithm, composed with the BUILDQT algorithm,
is O(lg L/s) dynamically stable. This leads to an algorithm that responds to changes in
the same time.

Proof: If a Steiner point v blames an input point p, then by Lemma 4.3.7, the distance
||vp|| ∈ Θ(NN(v)). Therefore, only O(1) Steiner points created in each bucket blame
p due to chains of off-centers. We already know from Theorem 4.1.11 that only O(1)
quadtree cells of any given size blame p; therefore, onlyO(1) Steiner points in each bucket
blame p due to changes in the quadtree. Given there areO(lg L/s) buckets, this bounds the
total number of Steiner points that blame p. Finally, each Steiner point has O(1) simplices
in the final Delaunay mesh since it is of good quality; onlyO(lg L/s) triangles will change.

Monotonicity is ensured by the standard arguments. The change propagation queue is
slightly more complicated. COMPUTENN events can be bucketed by ρ, and LIFO within a
bucket, to properly maintain the order of operations. The processing of COMPLETE events
is in two parts: the first must be bucketed by ρ and LIFO, to determine the colouring.
The second must additionally be bucketed by the colour. This still yields a constant-time
priority queue.

78

4.4 Bounding box to ignore boundary effects

With the provable algorithm in hand, I can now explain how to choose an appropriate
meshing domain for the input. The bounding shape I propose is a box, [0, L]d, with the
faces split into Nd−1

box grids; there are thus Nd
box − (Nbox − 2)d vertices defining the box.

The input will be restricted to lie in a concentric box with side length l. The values Nbox

and l are functions of each other, and of ρ and the dimension.
We mentioned above that a complete mesh was a quality mesh, up to boundary effects.

Miller, Pav, and Walkington [MPW02] proved that in a mesh with no encroached bound-
ary, the circumcenter of every simplex lay inside the domain. Under this condition, then,
any simplex with bad radius/edge ratio would have an associated gap ball of large radius;
conversely, if the mesh is complete but there is a bad radius/edge ratio simplex, it must
be that the domain boundary is encroached. Thus, it suffices to choose Nbox and l such
that at all points during the algorithm, no matter the order in which we choose to complete
vertices, the boundary remains unencroached. Clearly, l must be small enough that none
of the points in the input encroach the boundary. But this must also be true for the off-
centers of input vertices, and recursively for the off-centers of Steiner vertices. Generally,
increasing Nbox increases l.

Lemma 4.4.1 (We can ignore boundary effects) Given used-defined constants l, Nbox,
and ρ that satisfy l ≤ (1 − 2

√
d−1

Nbox−1(
√

2
ρ−1 + 1))L, no off-center generated while completing

the mesh encroaches upon the boundary box.

Proof: If a vertex v encroaches upon the boundary, it lies in the circumball of an i-simplex
τ , with i < d. That is, the distance from v to the boundary can be no greater than r(τ).
This simplex is composed from i + 1 points on a regular grid with spacing L/(Nbox − 1),
so r(τ) =

√
iL/(Nbox − 1). At most, i = d − 1, and r(τ) = L

√
d−1

Nbox−1 .
Assuming it is a Steiner vertex v0 that encroaches, then it was created as the off-

center of some v1. The nearest neighbour of v0 is, therefore, v1. Furthermore, NN(v0) ≥
ρNN(v1). In turn, v1 may be input or Steiner. Since our goal is to calculate how far
from the boundary the input must lie, in the worst case, v1 is a Steiner created recur-
sively by a vertex v2. This defines a chain v0, v1, . . . , v∞. For any vi in the chain,
we have NN(vi) ≥ ρNN(vi+1), which unrolls to NN(vi) ≤ ρ−i NN(v0). We also have
that ||vivi+1|| = NN(vi). The distance from vi to the boundary is thus at most ||viv0||
plus the distance from v0 to the boundary, which is at most r(τ). Calculating the sum to
v∞ shows that the input can only cause encroachment on the boundary if (L − l)/2 <∑∞

i=1 ρ
−i NN(v0) + r(τ). Finally, a proof by Shewchuk [She98b, Lemma 1] shows that

79

if v0 encroaches any simplex of the boundary, then there is a boundary vertex p such that
NN(v0) ≤ ||v0p|| ≤

√
2r(τ). Putting it all together, we see that it suffices to satisfy

L−l
2 ≥ (

√
2

ρ−1 + 1)r(τ), where r(τ) =
√

d−1L
Nbox−1 , to ensure that no input vertex or Steiner point

can ever encroach upon the boundary.
We are now free to optimize l and Nbox at will for any given ρ. One reasonable setting

has the length of a side in the bounding box be the same as l: that is, L/(Nbox−1) = l. For
ρ = 2, this means that Nbox = 7 satisfies the equations in two dimensions, and Nbox = 9
in three dimensions. The former yields a box with 24 points on it, while the latter has 386
points. This validates the assumption made much earlier in this chapter that we can ignore
boundary effects.

80

Chapter 5

Handling Input Segments

In the previous chapter, we saw how to maintain a mesh over a dynamically changing
point cloud. This is likely to be sufficient for e.g. astrophysics simulations, but many
applications will have additional features, such as an airfoil (in aeronautics), mountain
ranges (in meteorology), reactor walls (in nuclear engineering), faults (in geology), and so
on, which must appear in the output mesh. The current chapter shows how to extend the
point-cloud algorithm to the case where we have constraints that are linear segments.

The input description is as follows: all input lies in a box [(L − l)/2, (L + l)/2]d, plus
the corners of a grid as described in Section 4.4. Input points are given as an index and a
point. Input segments are given as a pair of point indices (not coordinates). For my proofs,
I require that the segments meet at non-acute angles (90◦ or more). Input segments must
not intersect, except for meeting at common endpoints; similarly, input segments must not
intersect input points that are not their endpoints. I do not require that segments form a
convex, manifold, or even a connected shape. Similarly, points may be isolated in space
and need not be the endpoint of a segment. The algorithm will add Steiner points that lie
either exactly on a segment, or in the ambient space. The containing dimension of a point
is 0 if it is an input point, 1 if it lies on a segment, or d if it lies in ambient space.

As before, the algorithm first produces a size-conforming quadtree, then chooses loca-
tions for Steiner points. The local feature size is now defined (following Ruppert) as the
distance between two features, points or segments, which are disjoint — that is, they do
not share an endpoint. In order to produce a mesh that respects the segments of the input,
I will ensure that the Delaunay triangulation of the Steiner points includes the segments
as a collection of Delaunay edges, possibly adding points on the segment as needed. On
point-cloud inputs, the Voronoi aspect ratio quality that we may demand is any ρ strictly
greater than one. When segments are involved, the best quality we can provably guarantee

81

is ρ > 2.
The updates I will allow are now of two types: the user can add or remove a new

segment; or the user can add or remove a point that is not the endpoint of any segment.
To remove a point that is an endpoint, the user must first remove every segment on the
point. As before, the user may not change L; also, the user may not move a point without
removing all its segments, removing the point, re-adding it in its new location, and re-
adding all the segments. Clearly, any segment being added must not cross another segment,
and any new segment must be at a non-acute angle with existing segments — otherwise,
the input would be illegal.

The dynamization argument will be almost verbatim from the prior section. Building
the quadtree is only slightly complicated by the presence of segments. Choosing Steiner
points is more strongly affected, but fundamentally the dynamization argument for point
clouds rested on the fact that a vertex v with nearest neighbour NN(v) only created new
Steiner points with nearest neighbour ρNN(v), and thus (combined with the colouring
argument), onlyO(1) Steiner points of any given size could be affected by an input point p.
I will show that in the presence of segments, a vertex v only creates new Steiner points with
nearest neighbour ρ

2 NN(v), with one exception where I need to argue with one additional
indirection: v creates a Steiner point that creates a Steiner point with a distant nearest
neighbour.

A critical difference is that a new segment may change the local feature size over a
large area. Certainly, no history-independent dynamic algorithm can update in time faster
than linear in the number of points, call it mf , that an optimal mesh puts onto the new
segment. No matter where the algorithm places its Steiner points, the adversary can place
a facet such that it does not pass through the current set of points and thereby require at
least mf work: dropping the history independence condition can only save us a factor of
two (we may be able to ignore deletions), which shows that no dynamic algorithm can
respond faster than in Ω(mf) time. I will show that the algorithm of this section updates
in O(mf lg L/s) time, a logarithmic factor off optimal.

As before, the overall algorithm follows the stencil:
REFINEPSLG(L, P: points in [0, L]d, S: segments, ρ: quality bound)
1: QT← BUILDQT(L,P ,S)
2: P ′ ← CHOOSESTEINERS(QT, ρ)
3: M ← TRIANGULATE(P ∪ P ′, T)

82

5.1 Building the quad-tree

Building the quadtree (see Figure 5.1) to be lfs1-conforming is very similar to building
an lfs0-conforming quadtree. I add one mapping, from quadtree cells to the segments that
cross that cell; and I generalize the definition of crowding. Recall that lfs1 is defined as
the smallest ball centered at a given point p that touches a pair of non-intersecting features
(segments or points); therefore, I split a cell if it intersects such a pair. Of course, as was
the case with points, this is insufficient if features happen to lie within ε of a boundary
between two cells. Thus I check that two neighbouring cells do not between them contain
two non-intersecting features.

5.1.1 Analysis

I now proceed to prove certain properties about the quadtree the algorithm constructs.
Namely: the quadtree is graded and size-conforming. Furthermore, each split takes con-
stant time except for relocating the features, and each feature is relocated a bounded num-
ber of times, which yields the desired runtime. Finally, any cell c being split is at distance
O(|c|) from any feature f it blames, which yields the dynamic stability bound. The proof
of size conformality is identical to that of Theorem 4.1.4. The runtime and dynamic sta-
bility bounds need the following proofs:

Lemma 5.1.1 (Constant-time splits) Barring Lines 12–17, each iteration of the “while”
loop in BUILDQT takes O(1) time.

Proof: Checking whether c is a leaf cell is a constant-time operation. There are O(1)
neighbours of the cell c being split in the while loop. Therefore, checking them for grading
is O(1) time. Similarly, there are a constant number of new children; creating them and
linking them in will take constant time. Finally, the doubly-nested “for” loop is over a
constant number of children, times a constant number of neighbours, and thus is a constant
number of iterations.

The sets P̂ and Ŝ may be larger than constant size. However, they are only used in a
single conditional; if they are large, then the value of the conditional is true and we can
short-cut execution. Conversely, if the conditional is false, the sets were small. This is
obvious in the test P̂ ≥ 2. To test whether all segments in Ŝ share an endpoint, we merely
keep track of the intersection of the sets of endpoints of Ŝ. As soon as that set is empty,
we can stop and answer the conditional affirmatively. Every vertex in the PLC has degree
at most 2d because segments must be at least orthogonal to each other, so we will find an

83

BUILDQT(L, P , S)
1: T ← [0, L]d

2: Qqt ← [0, L]d

3: initialize P to hold pointers from [0, L]d to every p ∈ P
4: initialize S to hold pointers from [0, L]d to every s ∈ S
5: while Qqt not empty do
6: c ← POP(Qqt)
7: if c is not a leaf cell, skip
8: for each neighbour c′ of c do
9: if |c′| = 2|c| then add c′ to Qqt
10: end for
11: Split c into 2d children
12: for each p ∈ P (c) do
13: Add p to the P entry of the unique child that contains p
14: end for
15: for each s ∈ S(c) do
16: Add s to the S entry of every child that intersects s
17: end for
18: for each child c− of c do
19: for each neighbour c′ of c− do
20: P̂ ← P (c−) ∪ P (c′)
21: Ŝ ← S(c−) ∪ S(c′)
22: if |P̂ | ≥ 2

or |P̂ | = 1 and it is not an endpoint of S
or not all segments in Ŝ share a common endpoint then

23: add both c− and c′ to Qqt
24: end if
25: end for
26: end for
27: end while

Figure 5.1: The algorithm to build a size-conforming quad-tree. The splitting rules are
expanded to split if two disjoint features lie in neighbouring cells (two points, a point and
a segment, or two segments).

84

empty set as soon as we see at most twice that many segments (twice, since cells c− and
c′ may both intersect any single segment). If P̂ contains exactly one element, intersect P̂
with the set of endpoints, again in constant time.

To make the analysis easier, I define a set of pseudo-vertices on each segment. If a
segment f intersects fewer than κ cells, where κ is any constant at least 2, the pseudo-
vertices are just the two endpoints and the edge is considered to be “short”. If f intersects
more cells, the edge is considered “long” and I split it: conceptually create a pseudo-
vertex at the midpoint, and split f into subsegments, f ′ and f ′′, at the midpoint of f . Both
subsegments will be barely short: after only a constant number of further splits that affect
f ′, f ′ will become long (and similarly f ′′). The set of midpoints forms a well-graded,
lfs-conforming mesh of the segment. Remember, however, that these are not real vertices:
I never construct them in the algorithm — only in the analysis.

Lemma 5.1.2 (Query structure update costs) Lines 12–17 run O(lg L/s) times per in-
put point, and O(lg L/s + mf) times for segment number i, where mf =

∫
f lfs−1(x)dx is

the number of points needed to size-resolve the segment f .

Proof: At any step in the algorithm, an input point p lies in exactly one cell, c. If c is later
split, p is relocated to c′, which takes O(1) geometric tests since c only has 2d children.
The size of c′ is exactly half that of c, so this can only occur logarithmically many times,
with the numerator being O(L) and the denominator, because the quadtree conforms to
local feature size, no smaller than Ω(s).

If a short segment f intersects only one cell, it behaves exactly as a point. Indeed, if
f intersects only κ or fewer cells, then all the cells that f intersects are within a factor
2κ in size of each other because the quadtree is graded. Therefore, we can meaningfully
identify with f a characteristic size: the size of the smallest cell it intersects. After splitting
κ cells that intersect f , the characteristic must have fallen by at least half. Any segment
that intersects κ cells in the final output is therefore only relocated O(lg L/s) times.

To account for long segments, note that any segment is short at the beginning of the
algorithm. Account for it as above until f intersects more than κ cells. In other words,
the initial location of f within the mesh costs O(lg L/s) relocations. Afterwards, notice
that the subsegment f ′ will be relocated O(1) times before being conceptually split again.
Every midpoint is associated with two subsegments, each of which is relocatedO(1) times,
so the number of relocations is O(lg L/s + mf) in total.

Note also the following: Uncrowded but ill-graded cells will have only zero or one
vertex inside, and zero to 2d segments inside — otherwise, they would be crowded.

85

Theorem 5.1.3 BUILDQT runs in time O(n lg L/s + m) to produce a size-conforming
graded quad-tree.

Proof: The quadtree conforms to the local feature size (Theorem 4.1.4), so the number of
splits is O(m). Each split takes O(1) time except for maintaining P and S (Lemma 5.1.1).
The maintenance cost is O(lg L/s + mf) for each segment or input point (with mf = 0
for points), which sums to O(n lg L/s +

∑
f mf) ⊆ O(n lg L/s + m).

Theorem 5.1.4 After adding or removing a feature from the input, BUILDQT can respond
in time O(mf lg L/s).

Proof: For a point feature, this was proved by Lemma 4.1.11. For a segment feature,
it is easy to see that Lemma 4.1.10 applies: any cell c being split due to f has ||cf || ∈
O(|c|), where the distance is defined according to the nearest approach between c and
f . Consider now the point x on f that is closest to c. That point is O(|c|) from one of
the pseudo-vertices (possibly much closer), because the local feature size at x is at most
lfs(c) + ||cx||, both terms of which are O(|c|). Therefore, cells that blame f for being
split pack around pseudo-vertices: each pseudo-vertex is blamed for O(1) cells of each
size, there are O(lg L/s) sizes of cells and O(mf) pseudo-vertices; a total, as claimed, of
O(mf lg L/s). Since every split is constant time (Lemma 5.1.1) except for point location
charges, this drives the response time.

Given that a cell that is split according one input but not the other must hold few
features, point location costs are O(mf + lg L/s) for f and at most O(lg L/s) for all
others, which is dominated by the worst-case cost of the splits.

As before, I appeal to the standard tricks of creating artificial dependencies to ensure
conciseness and monotonicity of all operations, and to implement the change propagation
priority queue in constant time per operation.

5.1.2 Practicalities

In the implementation of SVR, we found that the largest constant-factor costs of the
algorithm were the point and range queries — not surprisingly, since they cause the
O(n lg L/s) term of the total runtime analysis, whereas each point creation only affects
the O(m) term. Therefore, I wish to note some shortcuts to the BUILDQT implemen-
tation. Relocation of points is very cheap: d floating-point comparisons are all that is
required to determine which of the 2d sub-cells contains the cell. A point may lie ex-
actly on the boundary between two cells; we must take some care to make sure to use

86

greater-than or greater-or-equal tests consistently, so that cells are well-formed and non-
overlapping. Ensuring that only one cell contains any one point avoids requiring any code
to detect duplicates in P̂ : calling a cell crowded because a point is in both a cell and its
neighbour is an annoyingly common bug in simple quad-tree implementations. Relocation
of segments is slightly more expensive, but equally straightforward. To determine whether
all segments in Ŝ share an endpoint, we compute the intersection of all their endpoints,
short-cutting when the partial intersection set becomes empty. Duplicates are idempotent
in this process, which is helpful given that duplicates are unavoidable.

Empty cells need not be split for crowding. Indeed, in the original BEG algorithm,
the definition of crowding explicitly excludes empty cells. Not splitting empty cells for
crowding clearly does not affect the grading guarantee, and only helps to achieve size-
conformality with fewer cells. Therefore, if c− or c′ are empty, we can skip the body of
the doubly-nested for loop, saving both time and memory. Alternately, if the conditional
would return “true” for c− in isolation, we need not iterate over all neighbours of c− and
perform the test. We also need not add all neighbours of c− to the queues: the neighbour
c′ was already tested against c, unless it was empty (in which case it need not be split), or
unless it is itself also a child of c (in which case it will shortly be checked). Finally, if c
was crowded on its own (it contained two points, or two non-intersecting segments), then
clearly all its children c− are crowded: every child is a neighbour of every other child.

5.2 Choosing Steiner points with segments

Having built a size-conforming quadtree, we now proceed to create the Steiner points.
In the prior chapter, the only requirement was that we complete all vertices. Now we
have the significant new requirement to make sure that the Delaunay triangulation of the
Steiner points (plus the original input) respects the constraining segments. To ensure this,
the concept of completion will be expanded. Far from segments, Steiner points will be
chosen as before. Near a segment, however, Steiner points will be in a sense snapped to
the segment. Philosophically, this snapping dates to Chew [Che89] and Ruppert [Rup95]
in that it is based on gap balls. The particular mechanism I use here is novel: as was
the case with point clouds, the Delaunay balls that Chew and Ruppert use may be too
expensive to compute, so I blow up gap balls only up to a distance related to the quality
requirement ρ and the local feature size. This mechanism is the main new contribution of
the current chapter. The development of the algorithm is again first conceptual to prove
structural properties, and later made to be efficient.

87

v

x

kr

r > ρNN(v)u

(a) Consider a gap ball on v
of radius r ≥ ρNN(v). If the
smaller ball B(x, kr) is empty
of all segments, even including
ones non-disjoint from v, then it
is permissible to insert x.

v s

x

(b) Consider a gap ball on v
whose center lies on a segment
s on which v does not lie. Then
s is encroached, and it is permis-
sible to insert x.

v

s

x
xs

kr

r > ρNN(v)u

(c) Consider a gap ball on v of
radius r ≥ ρNN(v). If a point
xs on a segment s lies in the
smaller ball B(x, kr), it is per-
missible to add xs. Notably, s
need not be disjoint from v.

Figure 5.2: List of permissible insertions for completing a vertex v with nearest neigh-
bour u, in the possible presence of a constraining segment s. The COMPLETE algorithm
iteratively adds permissible points until there is no permissible insertion around v.

5.2.1 Conceptual algorithm

First, I update slightly the definition of the nearest neighbour of a vertex v: it is now the
nearest mesh vertex to v, or the distance to the nearest segment s that is disjoint from any
segment on which v lies: NN(v) is the diameter of the smallest gap ball at v that touches
a mesh vertex, or that touches a segment disjoint from any segment on which v lies (of
which there may zero, one, or several).

To complete a vertex, I suggest a list of permissible insertions (see Figure 5.2); each
one describes a situation that proves that the mesh does not satisfy our requirements of
quality and of respecting the input. Once there are no permissible insertions, the mesh is
complete. In the case of point clouds, there was only one permissible insertion: If v has a
gap ball with radius r > ρNN(v), then it is permissible to insert the center of this ball; this
corresponds to harboring a simplex of bad radius/edge quality. The presence of segments
complicates matters: we need to ensure we do not insert Steiner points overly near input
segments, which would violate the size-conformality condition. If v has a gap ball b =
B(x, r) with radius r > ρNN(v), and if there is a segment s that passes through the

88

smaller concentric ball B(x, r/2), it is permissible to insert any point xs ∈ s ∩ B(x, r/2).
If no segment passes through this shrunken ball, then x is permissible to insert. The factor
of one half is optimal, but not critical; any constant strictly less than one will work. To
establish that 1/2 is optimal, in the description and proofs I use k. This idea of shrinking
the gap ball by a factor k is from SVR, though there it appears in a slightly different
context.

To ensure that input segments appear in the Delaunay triangulation of the output, fol-
lowing Chew I require that the circumball of any subsegment be empty of points — that
it not be encroached. Given a segment s and a vertex v not on s, if v has a gap ball
b = B(x, r) whose center happens to lie on s, then v encroaches s. This is congruent
with Chew’s definition of encroachment: if there is an empty ball centered on s that has
a vertex v on its surface, then clearly some subsegment of s is encroached by v. Given
such a gap ball, it is permissible to insert the center x. This offers more choice of x than in
Chew’s algorithm (or than the equivalent operation in Ruppert’s, Shewchuk’s, and various
other such algorithms): in my formulation x need not be the midpoint of an encroached
subsegment.

5.2.2 A complete mesh with segments is size-conforming

Lemma 5.2.1 There is a set of constants ci with i ∈ {0, 1, d}, and c ≡ max ci, that depend
only on ρ, such that when COMPLETE(v) inserts a point x with containing dimension i,

lfs(x) ≤ ci NN(x)

Proof: Clearly, c0 = 1; it is only defined for ease of reference. The proof follows the set
of permissible moves closely, with a case for every move. Each case constrains the value
of some ci; after computing the constraints, I show they are satisfiable.

Almost every line is an inductive statement, with the induction being over the order
in which points are inserted. Consider a vertex v, and its current nearest neighbour u. If
v postdates u, then lfs(v) ≤ c NN(v). On the other hand, if u postdates v, then instead
lfs(v) ≤ lfs(u) + ||uv|| where ||uv|| = NN(v) by definition. When u was inserted, its
nearest neighbour was no further than v, so the induction yields that lfs(u) ≤ c||uv||. In
either case, lfs(v) ≤ (1 + c) NN(v) in the current mesh.

Case 5.2a: The Lipschitz condition tells us lfs(x) ≤ lfs(v) + ||vx||. The former term is,
inductively, lfs(v) ≤ (1 + c) NN(v). We know that NN(v) ≤ r/ρ; also, given

89

that the smaller ball is empty, r ≤ NN(x)/k. Thus, lfs(x) ≤ 1+c+ρ
kρ NN(x). We

deduce cd ≥ 1+c+ρ
kρ .

Case 5.2b: If v is of containing dimension 0 or 1, then v and s are from disjoint features
(because of the non-acute input assumption, a ball centered on s cannot intersect
a segment s′ that intersects s except at the common endpoint of s and s′) and
lfs(x) ≤ ||vx|| = NN(x). This constrains c1 ≥ 1 . Otherwise, v is a vertex of
containing dimension d. By the Lipschitz condition, lfs(x) ≤ lfs(v) + ||vx||. We
know inductively that lfs(v) ≤ (1+cd) NN(v). Clearly,NN(v) ≤ ||vx||, by which
we conclude lfs(x) ≤ (2 + cd) NN(x) and c1 ≥ 2 + cd .

Case 5.2c: IfNN(xs) is defined by a second segment, thenNN(xs) = lfs(xs) and c1 ≥ 1 .
Otherwise, induction and Lipschitz at x give, as in the proof of Case 5.2a, lfs(x) ≤
(1+c

ρ + 1)r. However, we are not inserting x but rather xs. The distance ||xxs|| is
at most kr. Also, since NN(xs) is defined by a vertex and the gap ball centered
at x is empty of points, the distance from xs to its nearest neighbour is at least
NN(xs) ≥ (1 − k)r. Plugging this in to lfs(xs) ≤ lfs(x) + ||xxs|| yields that
lfs(xs) ≤ (1+c

ρ + 1 + k)r ≤ (1+c
ρ + 1 + k) 1

1−k NN(xs). All in all, this constrains

c1 ≥ 1+c
(1−k)ρ + 1+k

1−k .

Case 5.2b shows that c1 > cd, and therefore c = c1. Substituting in, we therefore get
the pair of constraints c1 ≥ (2k+1)ρ+1

kρ−1 from Cases 5.2b and 5.2a, and c1 ≥ (1+k)ρ+1
(1−k)ρ−1 from

Case 5.2c, assuming both kρ > 1 and (1 − k)ρ > 1. This means that we can allow the
user to demand ρ > 2, independent of dimension, by setting k = 1/2. At this setting, we
can easily evaluate the constants: c0 = 1, c1 = 4ρ+2

ρ−2 , and cd = ρ+6
ρ−2 .

Lemma 5.2.2 Upon completing the mesh, it contains no overly large mesh elements: for
every mesh vertex v of containing dimension less than d, we have that NN(v) ≤ 2 lfs(v).

Proof: The vertex v lies on a feature f . The local feature size at v is defined by a ball that
touches, at a point y, a feature f ′ disjoint from f : lfs(v) ≡ ||vy||. Let u be the vertex on
f ′ closest to y. Clearly, the nearest mesh vertex to v is no farther than u: NN(v) ≤ ||uv||.
The ballB(y, ||uy||) is an empty ball — if v were within the ball, v would not be complete
according to Case 5.2b. Therefore, ||uy|| ≤ ||vy|| = lfs(v). This proves

NN(v) ≤ ||uv|| ≤ ||uy|| + ||yv|| ≤ lfs(v) + lfs(v)

90

x

y

u

k||uy||

f

lfs(x)

Figure 5.3: Illustration of the proof of Lemma 5.2.3.

Lemma 5.2.3 Upon completing the mesh, for every point x ∈ Ω, we have that

lms(x) ≤ 10 lfs(x)

Where lms(x) denotes the local mesh size (the local feature size induced by the vertices of
the mesh).

Proof: The local feature size at x is defined by a ball centered at x which on its surface
intersects a feature f at some point y (see Figure 5.3); lfs(x) = ||xy||. Take u to be the
nearest mesh vertex to y that lies on the feature f . If f is a point, then y = f = u.
More generally, f may be a segment. By the Lipschitz condition on lms, we know that
lms(x) ≤ lms(u) + ||ux||. Lemma 5.2.2 proved that lms(u) ≤ 2 lfs(u). We can apply
the Lipschitz condition, this time on lfs, to deduce lfs(u) ≤ lfs(x) + ||ux||. So we know
lms(x) ≤ 2 lfs(x) + 3||ux||. The distance from u to x is ||ux|| ≤ ||xy|| + ||yu|| =
lfs(x) + ||yu||. Because the mesh is complete, we know that the ball B(y, ||uy||) is empty
of points or features — otherwise, Case 5.2b would apply to either u or another vertex.
Thus, ||uy|| ≤ lfs(y). At the same time, lfs(y) ≤ lfs(x) + ||xy|| = 2 lfs(x). Therefore,
||ux|| ≤ 3 lfs(x). Plugging back in to the inequality before, we have lms(x) ≤ 10 lfs(x).

Theorem 5.2.4 A complete mesh is a size-conforming mesh, its Voronoi diagram has good
aspect ratio, and its Delaunay tessellation respects the input.

91

Proof: Lemmas 5.2.1 and 5.2.3 prove that the mesh is size-conforming: at any point in
the meshing domain, the spacing induced by the mesh vertices is within a constant factor
of the spacing induced by the segments and input points.

A vertex with a bad aspect ratio Voronoi cell would not be complete according to
one of Cases 5.2a or 5.2c. Lastly, if a vertex v were to lie within the diametral ball of a
subsegment of s, then v would not be complete according to Case 5.2b. This shows that
every segment s is composed of subsegments, each of which is individually Delaunay.

5.3 Efficient algorithm

I adapt the CHOOSESTEINERS algorithm from the previous chapter, but with the new
definition of completion. See Figure 5.6. The efficient implementation of completion
depends on using a bucketed priority queue, where each bucket containing vertices with
NN(v) ∈ [l, O(l)). The constant here will differ from the constant (ρ) in the prior chap-
ter. The proof that this is efficient depends on Lemma 4.3.3, which stated the algorithm
can quickly search for a gap while processing the smallest remaining bucket. Its proof
depended upon the claim that every new vertex v created by COMPLETE had its nearest
neighbour such that v would be processed in a later bucket, as proved for point clouds
in Lemma 4.3.1. This is clearly true for points created by Cases 5.2a, or 5.2c, as long
as we the bucketing constant is kρ (that is, ρ/2): each bucket contains vertices with
NN(v) ∈ [l, kρl). However, Case 5.2b violates this assumption. Indeed, consider two
edges passing near each other, as in Figure 5.4. There is a gap at a with center on cd
that inserts a vertex with nearest neighbour at distance ε! Fundamentally, the issue is that
completing vertices is insufficient to getting good runtime when the local feature size is
dictated by a pair of segments. For this reason, I define an operation DISENCROACH(c, s),
detailed in Figure 5.5. As the CHOOSESTEINERS algorithm progresses, DISENCROACH
inserts vertices on s so that points on s with small local feature size always have a nearby
complete vertex.

Lemma 5.3.1 When a vertex v is inserted as a result of DISENCROACH, lfs(v) ≤ c1 NN(v).

Proof: If the empty ball centered at v touched a disjoint segment, or touched a vertex that
is not an endpoint, then lfs(v) = NN(v). The remaining case in which v is indeed created
is that the empty ball touched a vertex u of containing dimension d. Then v is the center of
a gap ball on u that has its center on a segment; thus DISENCROACH emulates Case 5.2b
of COMPLETE, which was already analyzed.

92

a

bc

d

ε

Figure 5.4: The maximal gap at a along the input segment ab causes Case 5.2b of COMPLETE
to create a new vertex u on cd with NN(u) ≈ ||ab||/2, near where the two skew segments almost
meet. The new vertex u can in turn, by the same case, insert a new vertex v with NN(v) ≈ ε.

DISENCROACH(c, s)
1: for each x ∈ c ∩ s do
2: Grow a ball b = B(x, r) until it touches a disjoint segment or a mesh vertex v
3: If b touched a vertex v that lies on s, continue the loop.
4: Otherwise, add x
5: end for

Figure 5.5: A routine to avoid the problem described in Figure 5.4. Having computed the
quadtree, we already have a good estimate of the local feature size everywhere. Therefore, we can
add points on segments even before finding points to complete in the area.

93

Lemma 5.3.2 DISENCROACH inserts at most O(1) vertices in a quadtree cell c.

Proof: The segment s has length at most
√

d|c| through c. According to Lemma 5.3.1, any
vertex inserted by DISENCROACH has nearest neighbour no closer than lfs(v)/c1. Because
c contains one input segment, no neighbour does, which lower bounds lfs(x) ≥ |c|/2
everywhere in c. In other words, every vertex has NN(v) ≥ |c|/2c1. Only 2c1

√
d vertices

can be fit in this cell.

Lemma 5.3.3 During CHOOSESTEINERS, if all work with key l or less has been pro-
cessed, then for any point x on any segment s, with lfs(x) < (1 − k)ρl, there is a vertex v
such that ||xv|| ≤ lfs(x).

Proof: Let c be the cell in which x lies. DISENCROACH explicitly ensures that every
point x in c ∩ s has a vertex v on s within distance lfs(x). Since there is a feature in c, no
neighbour of c can contain a disjoint feature; therefore, lfs(y) ≥ |c|/2 for all y in c — in
particular, lfs(x) ≥ |c|/2. If lfs(x) < (1− k)ρl, this implies |c|/2 < (1− k)ρl. Given that

|c|
2(1−k)ρ is precisely the key associated with |c|, c has been processed, so DISENCROACH
has been called and x has a nearby vertex.

Lemma 5.3.4 During CHOOSESTEINERS, while processing the bucket [l, (1−k)ρl), when
a new vertex x is inserted, then either NN(x) ≥ (1− k)ρl, or every vertex y that x in turn
inserts has NN(y) ≥ (1 − k)ρl.

Proof: When Case 5.2a inserts x,NN(x) ≥ (1−k)ρNN(v) (since there may be a segment
within the gap ball, but none near the center); meanwhile, NN(v) ≥ l. The same holds for
Case 5.2c. For points created by DISENCROACH, NN(x) = lfs(x) ≥ |c|/2 ≥ l(1 − k)ρ.
The only truly interesting case is Case 5.2b.

Consider the point x on s that is being inserted due to encroachment. Its nearest neigh-
bour, and the point currently being completed, is v. If v is an input point or a containment
dimension 1 vertex, then x and v are on disjoint features; therefore, lfs(x) ≤ ||xv||. We
know lfs(x) ≥ (1 − k)ρl or else there would be a vertex within distance lfs(x) of x,
contradicting that B(x, ||vx||) is an empty ball. Therefore, ||vx|| ≥ (1 − k)ρl.

The only remaining case is Case 5.2b, where v is a containment dimension d vertex.
Given that x is a containment dimension 1 point, we saw earlier in this proof that any vertex
y that x will create will have NN(y) ≥ (1 − k)ρNN(x). We also know that lfs(x) ≥ (1 −
k)ρl because B(x, ||vx||) is empty of points; this further shows that the ball is also empty
of disjoint segments, leaving only v to be the nearest neighbour of x: NN(x) = ||vx||.

94

CHOOSESTEINERS(P , S, QT, P , S, ρ, γ, k)
1: P : map storing the correspondence between quadtree cells and vertices
2: S: map storing the correspondence between quadtree cells and segments
3: Q: work queue, bucketed with factor (1 − k)ρ
4: for each cell c in QT do
5: If c contains a point p, enqueue a COMPUTENN(p) event with priority klow|c|
6: Otherwise, if c contains a segment s, enqueue a DISENCROACH(s, c) event with

priority |c|
2(1−k)ρ .

7: end for
8: while Q not empty do
9: w ← POP(Q)
10: if w is a COMPUTENN(p) event then
11: Grow a ball b = B(p, r) until it touches a disjoint segment or mesh vertex
12: Add a COMPLETE(p) event with priority r
13: else if w is a DISENCROACH(s, c) event then
14: Disencroach s over c
15: For each new vertex v (if any), INSERT(v)
16: else if w is a COMPLETE(u) event then
17: Complete u
18: For each new vertex v (if any), INSERT(v)
19: end if
20: end while

INSERT(v)
21: Add a COMPLETE(v) event with priority NN(v)
22: for each v′ in the link of v do
23: Add a COMPLETE(v′) event with priority ||vv′||
24: end for

Figure 5.6: Algorithm to complete a mesh such that it is quality, size-conforming, and
respects input points and segments. The map S does not change during the algorithm,
since no new segments are added. The map P changes as new vertices are added. To
ensure short dependency paths, use gridding and colouring as mentioned in the previous
chapter. Parameter ρ must be strictly larger than 2; γ must be a constant larger than ρ; k
should be 1/2.

95

Finally, the distance from v to s is certainly no further than ||vx||, so the nearest neighbour
to v is ||vx|| ≥ NN(v). Stringing these together shows:

NN(y) ≥ (1 − k)ρNN(x) ≥ (1 − k)ρ||vx|| ≥ (1 − k)ρNN(v)

The flurry of proofs we just saw tells us the following: when CHOOSESTEINERS pro-
cesses an event from the work queue, it may add items to the current bucket, but never to
a smaller bucket. This is sufficient for the proof of Lemma 4.3.3. Therefore, I can claim
the runtime is fast:

Theorem 5.3.5 (Static Meshing with Segments is Fast) The CHOOSESTEINERS routine
described in Figure 5.6 runs in O(m) time. In conjunction with BUILDQT, this produces
a quality, size-conforming mesh that respects the input points and segments, in total time
O(n lg L/s + m).

Proof: A COMPUTENN event involves casting a single query of radius at most lfs(p) ≤
chi(1 − k)ρl around p to find its nearest neighbour, and thus takes O(1) time per input
vertex, a total of O(n) time. Every query to support a DISENCROACH event involves
casting a query of radius at most lfs(x) ≤ khi(1 − k)ρl around a point x ∈ c ∩ s. This
results in either inserting a new vertex, or finding an old vertex. After O(1) queries, the
event has been processed. This event occurs at most once per quadtree cell, so O(1) time
per cell, and there are O(m) cells. A COMPLETE event involves casting at most a constant
number of queries, each of radius at most γ NN(v) ∈ O(lfs(v)) around a mesh vertex v.
Thus each query takes O(1) time, and there are O(m) mesh vertices in the output.

Theorem 5.3.6 (Dynamic Meshing with Segments is Fast) The CHOOSESTEINERS rou-
tine is O(mf lg L/s)-stable to adding a feature f that has mf mesh vertices on it af-
ter adding it, or to removing a feature with mf mesh vertices before removing it, where
mf = 1 for input points. Combined with BUILDQT, this gives an O(mf lg L/s) response
time to dynamic changes.

Proof: The first order of business is to prove that we can colour the work queue appro-
priately. While processing bucket [l, (1 − k)ρl), two COMPLETE events at distance 2γρl
are independent. Similarly, two DISENCROACH events at distance 2khil are independent.
COMPUTENN events are all independent. Therefore, we can colour the work queue using
the technique of gridding space to achieve a constant number of colours. A bucket may
need to be processed twice: a vertex of containing dimension d may create a COMPLETE

96

event in the same bucket due to Case 5.2b. However, the new event will be for a vertex
of containing dimension 1, so this will not be repeated, as proved in Lemma 5.3.4. Thus,
after a constant number of iterations, the smallest event to be processed will have grown
by a factor (1 − k)ρ.
Stability: If a Steiner point v blames a feature f , then let x be the closest point on f to

v. That events grow after a constant number of rounds proves that ||vx|| ∈ O(NN(v)); the
proof is analogous to that given in Lemma 4.3.7. Consider the vertex u on f that is closest
to x. Because of the non-encroachment condition (Case 5.2b), ||ux|| ≤ ||vx||. Therefore,
Steiner points that blame f pack around the vertices that lie on f , which proves that at
most O(mf lg L/s) vertices blame f .
Response time: Finally, after the standard arguments for conciseness, monotonicity,

and change propagation priority queue; and after composing BUILDQT and CHOOSES-
TEINERS, it becomes clear that the response time to adding (or removing) an input point
is O(lg L/s), while the response time to adding (or removing) an input segment which,
when present, hasmf points on it is O(mf lg L/s).

5.4 Remarks
The idea of ensuring that input segments appear in the Delaunay triangulation by ensur-
ing that each of their subsegments has an empty diametral ball is due to Chew [Che89],
and was widely adopted [Rup95, She97b, She98b, LT01, MPW02, for example]. Lee and
Lin [LL85] define the “generalized Delaunay triangulation,” thanks to Chew [Che87] now
known by the name of Constrained Delaunay Triangulation (CDT), which explicitly en-
sures that the subsegments appear even if their diametral balls are non-empty, which has
been used with great success in two dimensions. It seems likely that the set of permissible
insertions could be adapted to conform to the philosophy of CDT-based meshing. How-
ever, my focus is on higher-dimensional meshing, and extending the CDT even to three
dimensions is non-trivial: the CDT of an input does not always exist, even when it does
it may be NP-hard to compute it, and even when it is provably non-hard to compute it,
implementing the algorithms remains non-easy [She98a].

Cases 5.2c and 5.2a cause my algorithm to only be able to produce meshes with
Voronoi aspect ratio 2.0 in two dimensions. Traditionally, algorithms are able to pro-
duce meshes with radius/edge ratio

√
2. It is not yet clear to me whether the difference

is a proof theoretic one, or an algorithmic one. If it is algorithmic, I suspect that less
aggressive yielding would be the solution. Another idea is to use diametral lenses rather
than diametral balls, which is used especially in two dimensions to improve the quality
bound.

97

98

Chapter 6

Dynamic Meshing for PLC Input

Having shown how to produce a quality mesh over point cloud input and maintain it
through dynamic updates; then how to additionally handle input segments, I can finally
discuss the final details for handling full-dimensional features. Only two changes are re-
quired: one, to define the input; the other, to redefine the details of inserting a new mesh
vertex. At the close of this chapter, we have the main result of this thesis.

The input I desire to handle is a Piecewise Linear Complex (PLC), see Section 1.2.
Intuitively, a PLC is what one would draw in a CAD program: a set of piecewise linear
objects — features: vertices (dimension 0), segments (dimension 1), polygons (2), and so
on. Features must intersect in a well-behaved manner: If two features f and f ′ intersect,
the intersection is required to itself be a feature f ′′. Geometrically, each feature must be a
closed manifold. If a feature is not closed, it is ill-defined to produce a mesh of the feature.
If a feature is non-manifold, it is trivial to subdivide it into a set of manifold features.

In terms of a programmatic description, the simplest is to list a set of input points, each
one a pair of a unique index and a point p ∈ Rd. Then, list a set of segments, each one
an index for the segment, and two indices of input points. Then, a set of polygons as an
index for the polygon, followed by indices for the segments and points that the polygon
intersects (including its boundary). For a PLC in dimension greater than three, the format
is generalized in the obvious manner.

I assume the existence of a black box query for deciding whether a hypercube in Rd

intersects a feature; this query should take constant time. I further assume the existence
of a query that returns, given an arbitrary point x ∈ Rd, and a feature f , the closest point
y ∈ f , again in constant time. Both are easily implementable for convex features with
boundaries of constant size (independent of the description length — even if there are

99

many internal features, only the size of the boundary matters). The question of imple-
menting these queries for a non-convex feature, or in constant time for a feature with more
than a constant-bounded number of vertices on their boundary, is left for the reader.

The goal will be to output a set of points whose Delaunay triangulation respects the
PLC. A feature in dimension i is respected if it is tiled by a set of i-simplices, each of
which is Delaunay according to the output point set. As is historically common, I ensure
a stronger condition: each of the i-simplices has a ball centered on the simplex that goes
through all of its i + 1 points, termed the diametral ball. That ball will be empty of any
points.

In order for the algorithm to provably terminate, any two features must intersect at
orthogonal or obtuse angles. This is so that two equal-dimensional features that intersect
in a common lower-dimensional feature do not encroach each other (i.e. they do not insert
points into each others’ diametral balls), which could cause an infinite loop. Defining
the local feature size at any point x, denoted lfs(x), as the radius of the smallest ball that
intersects two features f and f ′ that are mutually disjoint, I will prove that in the output,
every mesh vertex v has a neighbour not much farther than local feature size, but also not
much closer. That is, the output is size-conforming.

It is interesting to note that another definition of local feature size, used in surface re-
construction, is that the local feature size of a point x on a manifold surface is the distance
from x to the medial axis of the surface. The medial axis of a piecewise linear surface
touches the surface precisely when the surface has an angle of 90◦ or less. The mesh my
algorithm outputs is size-conforming, so if the local feature size is zero, then the number
of vertices required would be infinite.

Dynamic updates that take place must leave an input that matches all the requirements
above. In particular, in order to remove e.g. a segment from the input, all polygons that
name that segment must first be removed. Otherwise, those polygons would now be ill-
formed, in that they would not be closed manifolds. Similarly, when adding a new feature
f , it must not intersect another feature except in a lower-dimension subfeature of f , and
even then, intersections must be at non-acute angles.

The exposition here is much abbreviated from prior chapters, because so much is in
common with the prior claims, algorithms, and proofs. I highlight only the differences,
except that I provide full algorithm descriptions for completeness and to help in an eventual
implementation.

100

BUILDQT(L, P , X)
1: T ← [0, L]d

2: Qqt ← [0, L]d

3: initialize F to hold pointers from [0, L]d to every f ∈ X
4: while Qqt not empty do
5: c ← POP(Qqt)
6: if c is not a leaf cell, skip
7: for each neighbour c′ of c do
8: if |c′| = 2|c| then add c′ to Qqt
9: end for
10: Split c into 2d children
11: for each f ∈ F (c) do
12: Add f to the F entry of every child that intersects f
13: end for
14: for each child c− of c do
15: for each neighbour c′ of c− do
16: F̂ ← F (c−) ∪ F (c′)
17: if not all features in F̂ share a common input point then
18: add both c− and c′ to Qqt
19: end if
20: end for
21: end for
22: end while

Figure 6.1: The algorithm to build a size-conforming quad-tree for PLC input.

6.1 Building the quad-tree

Building the quadtree (see Figure 6.1) to be lfs-conforming to the PLC input is almost
identical to doing so for segments. Since a feature may now be a point, a segment, or a
higher-dimensional object, I simplify the exposition to speak only of “features” rather than
specifying what kind.

Checking whether f intersects a cell in Line 12 invokes the black-box constant-time
query to see whether f intersects a cell c′; this is where this query is used.

If two features are non-disjoint, then in particular, they must share an input point. This
means that to see whether a cell contains two disjoint features, it is sufficient to test if
all the features share a common point. Testing for a common point can be an expensive

101

operation if the description of a feature is allowed to grow large; but the test must operate
in constant time. For this reason (and in order to implement the black box from above
in constant time), I require the description of a feature to name only a constant-bounded
number of input points. Violating this, and having a feature with ∆ points on it, adds a
factor O(∆) to the runtimes I prove.

The proofs of the prior chapter all apply, modulo replacing the word “segment” with
the word “feature.” Therefore, I claim the following theorem holds:

Theorem 6.1.1 BUILDQT produces a size-conforming quadtree over a PLC input X , in
time O(n lg L/s + m). To the addition or removal of a feature f which, when present,
intersects mf quadtree cells, BUILDQT responds in O(mf lg L/s) time.

6.2 Choosing Steiner points with features

In the case of choosing Steiner points for segments, there were three rules. The first
eliminated large gaps far from any segments, which is the sole operation needed when
operating on point cloud inputs — this is the rule that ensures the output will have good
quality. The second eliminated encroachments near segments so that they would appear
in the output mesh. The third handled the case of a large gap whose center would be near
a segment, yielding to the segment if needed. The most obvious generalization of these
rules to three dimensions requires seven cases: (1) a large gap with no nearby features.
(2) A large gap with a nearby segment. (3) A large gap with a nearby face but no nearby
segment. (4) A large gap with a nearby face and an almost nearby segment but not nearby
enough that rule 2 applies. (5) An encroached segment. (6) An encroached facet with no
nearby segment. (7) An encroached facet with a nearby segment that is not encroached.
Clearly, to produce an arbitrary-dimensional algorithm, I need a more tractable way to
generalize.

Fundamentally, we only need two rules, which I describe in Figure 6.2. The first rule
handles large gaps. The second rule handles encroachments. We always insert a point in
a large gap, or in an encroachment gap. However, instead of inserting the center of the
gap, it might be better to yield to insert a point on a lower-dimensional feature. Let k be
a constant less than 1. Consider a ball B(x, r) with a center x that we are considering for
insertion, where x has containing dimension i. If the gap ball contains a lower-dimensional
input feature within distance kr, then I propose to yield to that feature and insert the closest
point y on that feature (or, indeed, any point within distance kr of x). Recursively, y may
need yield again. For ease of notation in the proofs below, define the complement of k as

102

k̄ ≡ (1 − k).

6.2.1 A complete mesh is a good mesh

If we repeatedly call COMPLETE, described in Figure 6.2 on every vertex until no new
vertices are added, the resulting mesh is size conforming. To do so, I need to first know
the effect of yielding:

Lemma 6.2.1 (Yielding effects) Let v be a vertex with a gapB(x, r), which subsequently
yields to insert a vertex y. Let x have containing dimension a. Then ||xy|| ≤ (1 − k̄d−1)r
if a = d (that is, if x is being inserted to ensure quality), and ||xy|| ≤ (1− k̄d−2)r if a < d
(that is, x is being inserted for encroachment). If the nearest neighbour of y is a disjoint
feature, then NN(y) = lfs(y). Otherwise, NN(y) ≥ k̄d−1 if a = d, and NN(y) ≥ k̄d−2 if
a < d.

Proof: Let x = y0, y1, . . . yi = y be the sequence of yields that led from x to y. Clearly,
the more yields are performed, the farther y is from x, and the closer to the edge of the gap
ball y is. Therefore, we can assume that in the worst case, y = 1.

Let a be the containing dimension of x. At most a−1 yields can have been performed,
since segments do not yield. Let rj be the radius of the ball during the jth yield; r0 = r.
Clearly, rj = k̄jr. Also, when yi yields to yi+1, we know that ||yiyi+1|| ≤ krj . Thus, the
total distance from x to y is at most

∑a−2
j=0 ||yjyj+1|| ≤ kr

∑a−2
j=0 k̄j ≤ (1 − k̄a−1)r.

If the nearest neighbour of y is a disjoint feature, then NN(y) = lfs(y). Otherwise,
the nearest neighbour of y is a vertex. We know there are no vertices within the ball
b = B(x, r), and on every yield, the remaining ball is nested within b. Therefore, the
nearest neighbour of y is at distance NN(y) ≥ r − ||xy|| ≥ k̄a−1r.

The two rules will iteratively insert points, possibly yielding at every step. Assume
the existence of two constants, ci and cd. I claim that when a vertex is inserted that had
containing dimension d, it has lfs(v) ≤ cd NN(v). If it has containing dimension i < d,
then lfs(v) ≤ ci NN(v). Let c = max(ci, cd). By the inductive argument we have seen
twice before, if these two claims hold, then at any time during the algorithm after v was
inserted, it is the case that lfs(v) ≤ (1 + c) NN(v). I now proceed to prove the claims.
As before, each case of the proof constrains the constants; if the constraints can all be
simultaneously satisfied, then the proof holds.

Lemma 6.2.2 Assume the COMPLETE algorithm is processing a gap ball B(x, r) on a
vertex v, with r > ρNN(v) — that is, assume it is inserting a point due to bad quality in

103

v
x

r > ρNN(v)

(a) For quality: consider insert-
ing the center of any gap ball on
v of radius r ≥ ρNN(v).

v
x

f
any r

(b) For encroachment: consider
inserting the center of a gap ball
on v, if x ∈ f and f is disjoint
from any feature on which v lies.

x

f

y

krr

(1 − k)r

(c) Yielding: If we are considering inserting x,
of containing dimension i, check whether there
is a feature f of containing dimension j < i
within kr of x. If so, recursively consider y on
f , with a ball of radius (1− k)r. If not, insert x.

Figure 6.2: The rules for handling PLC features. The COMPLETE algorithm consists
of checking if either of the first two cases apply. If so, it chooses a permissible gap ball
B(x, r) and recursively checks whether x should yield according to the third rule.

104

the mesh. If it succeeds in inserting x, then lfs(x) ≤ cd NN(x). If it instead yields and
inserts a vertex y of containing dimension i < d, then lfs(y) ≤ ci NN(y).

Proof: If x is inserted, then lfs(x) ≤ lfs(v) + r. Inductively, lfs(v) ≤ (1 + c) NN(v). We
know that NN(v) ≤ r/ρ. Finally, since we did not yield, r ≤ NN(x)/k. This sums to
lfs(x) ≤ (1+c

ρ + 1) NN(x)/k, which satisfies the Lemma assuming cd ≥ 1+c+ρ
kρ .

In the other case, y was inserted as the result of (possibly recursive) yielding. If
the nearest neighbour of y is a disjoint feature, lfs(y) = NN(y) which limits ci ≥ 1 .
Otherwise, I proceed using the Lipschitz condition as usual: lfs(y) ≤ lfs(v) + ||vy||.
Lemma 6.2.1 bounds ||vy|| ≤ (2 − k̄d−1)r < 2r and r ≤ NN(y)/k̄d−1. The argument
above shows that lfs(v) ≤ 1+c

ρ r. Thus,

lfs(y) ≤ (
1 + c

ρ
+ 2)r ≤ 1 + c + 2ρ

k̄d−1ρ
NN(y)

This requires that ci ≥ 1+c+2ρ
ρk̄d−1 .

Lemma 6.2.3 Assume the COMPLETE algorithm is processing a gap ball B(x, r) on a
vertex v, with x centered on a feature f . If x is inserted, let y = x. Otherwise, x yields to
a point y. In either case, lfs(y) ≤ ci NN(y).

Proof: If NN(y) = lfs(y) then we are done.

Otherwise, Lemma 6.2.1 proves that NN(y)
k̄d−2 ≥ r. If v has containing dimension less

than d, then v and x lie on different features: lfs(y) ≤ ||vy|| ≤ (2 − k̄d−2)r < 2r. Thus
lfs(y) ≤ 2

k̄d−2 NN(y). This constrains ci ≥ 2
k̄d−2 , which is overshadowed by the next

paragraph.
If instead v has containing dimension exactly d, then we can inductively assume that

lfs(v) ≤ (1 + cd) NN(v). When v was inserted, v did not yield to the feature on which
x lies, so k NN(v) ≤ ||vx|| = r. The Lipschitz condition and Lemma 6.2.1 give us
lfs(y) ≤ lfs(v) + ||vy|| ≤ (1+cd

k + 2)r. Given r ≤ NN(y)
k̄d−2 , we can conclude lfs(y) ≤

(1+cd

kk̄d−2 + 2
k̄d−2) NN(y). This constrains ci ≥ 1+cd+2k

kk̄d−2 . Notice also that this shows that
ci > cd.

Lemma 6.2.4 (Spacing is not too small) There exist constants c, ci, and cd such that when
COMPLETE adds a vertex v, lfs(v) ≤ c NN(v).

105

Proof: From the boxes in the two prior proofs, we know that

c ≥ ci ≥
1 + c + 2ρ

k̄d−1ρ

In other words, c ≥ 2ρ+1
k̄d−1ρ−1

, so long as k̄d−1ρ > 1. Simultaneously,

c ≥ ci ≥
1 + cd + 2k

kk̄d−2

where cd ≥ 1+c+ρ
kρ . Thus, c ≥ kρ+1+ρ+2k2ρ

k̄d−2k2ρ−1
, so long as the denominator is strictly posi-

tive. We conclude from this exercise that with k and ρ set such that both k̄d−1ρ > 1 and
k2k̄d−2ρ > 1, COMPLETE outputs a mesh with spacing no smaller than local feature size.

We can optimize k accordingly. Clearly, we may as well have kk̄d−2 = k̄d−1; other-
wise, one constraint or the other is harder to satisfy. This argues for setting k = (1 − k),
namely k = 1/2. Then, to ensure that k̄d−1ρ > 1, we need that ρ ≥ 2d−1. Note that
the d term there is an upper bound: if our input is in ambient dimension d but only has
features of dimension at most i, we can allow ρ > 2i−1. In other words, for point clouds
in arbitrary dimension, ρ > 1 as we saw two chapters ago; for segments, ρ > 2 as we saw
in the previous chapter. For PLC inputs in dimension 3, ρ > 4.

Theorem 6.2.5 A mesh over a domain Ω with a constraining PLC that is complete is
size-conforming, quality, and respects the PLC, as long as ρ > d.

Proof: Lemma 6.2.4 shows that when a vertex is added, its nearest neighbour is not
much closer than local feature size allows. The standard inductive argument shows that
this remains the case at the end of the algorithm. The arguments of Lemma 5.2.2 and
Lemma 5.2.3 are agnostic of the types of features, so they apply for PLC inputs as well as
for just features. Together, this implies that the mesh is size-conforming.

The lack of any gap of radius ρNN(v) around any vertex implies that there is no
Delaunay simplex in the output that has bad quality. The lack of any gap that denotes
the encroachment of a boundary implies that each feature appears as a union of Delaunay
facets, and thus the mesh respects the input.

6.3 Efficient algorithm

The key to efficient operation is the trick, again, of bucketing a series of COMPLETE and
DISENCROACH tasks, along with COMPUTENN for input vertices whose nearest neigh-

106

bour we do not exactly know. Work with key in [l, βl) is processed essentially in parallel.
It is critical that a vertex only spawn work in a later bucket, or at least that it only spawn
a constant amount of work in the current or prior bucket. The bucketing constant β is
determined by the proofs to ensure that this “growth” property holds. See Figure 6.3.

The same example we saw in the chapter on meshing with segments requires me again
to define a DISENCROACH operation for efficient operation. The goal is to make sure that
encroachment of one input feature on another does not spawn vertices with smaller nearest
neighbour than the current bucket. The disencroachment procedure ensures this by making
sure that areas with small lfs are not encroached by other features. If an area with large lfs
is encroached, then the new vertex has a large nearest neighbour, so there is no problem.
See Figure 6.4.

The DISENCROACH operation is size-conforming: if the ball b touches a vertex u that
does not lie on f , then inserting x corresponds to an “encroach” completion on u, which
we have already analyzed. Otherwise, the ball has radius lfs(x), so after yielding, the new
vertex hasNN(y) ≥ k̄d−2 lfs(x). By Lipschitz, lfs(y) ≤ lfs(x)+ ||xy|| ≤ (2− k̄d−2) lfs(x).
Therefore, lfs(y) ≤ 2−k̄d−2

k̄d−2 NN(y).

Lemma 6.3.1 (DISENCROACH disencroaches.) Set the priority for theDISENCROACH(c)
operation to |c|

2η for a given constant η. While processing a bucket [l, βl), for any x that lies
on a feature f and lfs(x) < ηl, then x has a vertex u on f such that ||ux|| < lfs(x) where
the inequality is strict.

Proof: The claim is that if lfs(x) < ηl, then c was disencroached; contrapositively, if c
has not yet been disencroached, then lfs(x) ≥ ηl. We are processing a bucket [l, βl), so
for c to be unprocessed, |c| ≥ l

key . Given that c contains input, lfs(x) ≥ |c|/2 ≥ l
2key . We

want to ensure that lfs(x) ≥ ηl. Then it suffices to set the key such that l
2key > ηl.

6.3.1 Dependency paths are short

Lemma 6.3.2 (Quality insertions grow) If v has a gap ball B(x, r) with radius r >
ρNN(v), then after yielding to y, NN(y) ≥ β NN(v).

Proof: Lemma 6.2.1 shows thatNN(y) ≥ k̄d−1r ≥ k̄d−1ρNN(v). So long as β ≤ k̄d−1ρ ,
the lemma is proved.

Lemma 6.3.3 (Encroachment from features) Let v be a vertex with containing dimen-
sion less than d. Assume v has a gap ball B(x, r) with x on a feature disjoint from the

107

CHOOSESTEINERS(P , X , QT, X , ρ)
1: P : map storing the correspondence between quadtree cells and vertices
2: S: map storing the correspondence between quadtree cells and segments
3: Q: work queue, bucketed with factor β
4: for each cell c in QT do
5: If c contains a point p, enqueue a COMPUTENN(p) event with priority |c|/2
6: If c contains a feature f , enqueue a DISENCROACH(c) event with priority |c|

2η
7: end for
8: while Q not empty do
9: w ← POP(Q)
10: if w is a COMPUTENN(p) event then
11: Grow a ball b = B(p, r) until it touches a disjoint segment or mesh vertex
12: Add a COMPLETE(p) event with priority r
13: else if w is a DISENCROACH(s, c) event then
14: Disencroach s over c
15: For each new vertex v (if any), INSERT(v)
16: else if w is a COMPLETE(u) event then
17: Complete u
18: For each new vertex v (if any), INSERT(v)
19: end if
20: end while

INSERT(v)
21: Add a COMPLETE(v) event with priority NN(v)
22: for each v′ in the link of v do
23: Add a COMPLETE(v′) event with priority ||vv′||
24: end for

Figure 6.3: Algorithm to complete a mesh such that it is quality, size-conforming, and
respects input points and segments. The map X does not change during the algorithm,
since no new features are added. The map P changes as new vertices are added. To ensure
short dependency paths, use gridding and colouring as described in Chapter 4. Set the
constants β = ρ/2d−1 and η > ρ2/2d as described in the text. The parameter ρ must be
strictly larger than 2d−1.

108

DISENCROACH(c, f)
1: for each x ∈ c ∩ f do
2: Grow a ball b = B(x, r) until either r = lfs(x), or b touches a vertex
3: If b touches a vertex u, and u lies on f , go on.
4: Otherwise, insert x, possibly yielding to y.
5: end for

Figure 6.4: The disencroach operation, taking into account PLC features. The chief
difference from the eponymous operation on segments is the need to possibly yield instead
of inserting x.

feature on which v lies. Let y be the vertex that is inserted after yielding from x. Then

NN(y) ≥ β NN(v)

Proof: On the one hand, we are processing v, so NN(v) < βl. On the other, the distance
from v to x establishes local feature size at x: ||vx|| ≥ lfs(x). The ball B(x, ||vx||) is
empty, so x must be in a cell not yet disencroached: lfs(x) ≥ ηl. Finally, NN(y) ≥
k̄d−2||vx|| ≥ k̄d−2ηl. Setting η such that η > β2

k̄d−2 provides the bound. Given the free
variable, β is not constrained by this case.

Lemma 6.3.4 (Encroachment from space) Let v be a vertex with containing dimension
d, and v was inserted by a vertex u. Assume v has a gap ball B(x, r) with x on a feature.
Let y be the vertex that is inserted after yielding from x. Then

NN(y) ≥ β NN(u)

Proof: When u inserted v, it was because of a gap of radius rv ≥ ρNN(u), since only
quality can cause the creation of vertices in space. Given that v did not yield, NN(v) ≥
krv. Later, when v tried to insert x, it was the center of a gap of radius rx ≥ NN(v). If x
yielded to y, then NN(y) ≥ k̄d−2rx. Thus, NN(y) ≥ k̄d−2kρNN(u).

Assuming β ≤ k̄d−2kρ the lemma is proved.

The proofs show that with β = min(k̄d−1ρ, k̄d−2kρ) and η > β2

k̄d−2 , work only grows.
At k = 1/2, β = ρ/2d−1 and η > ρ2/2d. This constrains ρ > 2d−1 as was already required
for the algorithm to terminate.

109

6.4 The main result of the thesis

Theorem 6.4.1 Given a PLC input X in fixed dimension d, with all input angles non-
acute, and a user-desired Voronoi quality bound ρ > 2d−1, the algorithms BUILDQT and
CHOOSESTEINERS run in O(n lg L/s + m) time to produce a quality, size-conforming
(and hence optimal-size) mesh whose Delaunay respects X .

Furthermore, upon adding or removing one of the PLC features f ∈ X , which when
present has mf vertices on it, the algorithms respond in time O(mf lg L/s).

Proof: Every event on the work queue can be processed in constant time: they all involve
a series of O(1) range queries, where each range query has radius Θ(lfs(v)) for COM-
PUTENN or COMPLETE events, or Θ(|c|) for DISENCROACH events. Lemma 4.3.3 shows
that each query can therefore be completed in constant time. This bounds the total runtime.

Dynamic stability can be established by colouring the jobs on the work queue. After
colouring jobs of size [l, βl) at most a constant number of times, we are assured that no
more will be created. Any vertex v is blamed for at most O(1) vertices inserted in the
same bucket as the bucket in which v was processed, or in any single later bucket. There
are O(lg L/s) buckets, which proves the stability bound.

110

Chapter 7

Closing Remarks

In this thesis, I implemented code for one meshing algorithm, and developed a new mesh-
ing algorithm. Future work includes implementing code for the new meshing algorithm,
and developing new new meshing algorithms.

I see as the principal theoretical advance of this thesis the techniques for analyzing
dependencies in a broad class of meshing algorithms. Beyond the dynamic algorithm I
proposed, this almost immediately yields a parallel algorithm with logarithmic depth. The
bounding box argument of Section 4.4 can be used to prove independence of a simplex
from any activity in the mesh at some practical constant distance away, which will surely
be useful in out-of-core and distributed meshing. Solving the kinetic problem also involves
dependency tracking, of a sort closely related to those in the dynamic problem.

I have already discussed future goals of the present implementation of SVR. Summa-
rizing, they are to make the implementation more robust in the face of slivers and illegal
input, and to speed up the program by reducing the work it performs and by parallelizing
it. The new dynamically-stable algorithm should also find its way onto a processor, since
it should allow substantial speedup. In terms of remaining theoretical advances, none of
the algorithms I mention properly handle input angles less than orthogonal. This is the
most important problem blocking wider adoption of provable refinement algorithms at the
moment: the algorithms are only proven to work over too small a class of inputs. Natively
meshing curved surfaces is another important needed advance, though less critically so
than small angles.

On a smaller scale of improvement, and nearer-term, it is extremely likely that the siz-
ing arguments developed to prove that bounding boxes are not very expensive [HMP07a]
can be adapted to reduce the multiplicative logarithmic factor in the response time from

111

O(k lg L/s) to an additive O(k + lg L/s). This is a purely theoretical question: no matter
the true answer, the algorithm will run at the same speed. More importantly, currently
the dynamic mesher uses O(n lg L/s + m) space to track dependencies for change prop-
agation. It seems likely that this could be reduced to O(m): On point-cloud input, the
dynamic BUILDQT can reduce the size usage by storing only a count in each crowded
cell of the number of points in the cell. When a new point is added to the cell, it does
not affect whether it will be split, which means that we need not know the old points’
coordinates. When an old point is removed, we can update the count. Anywhere that the
count goes to one, the remaining point can be found by looking down one level in the
quadtree. Performing similar optimizations should be still possible in the face of features
and, hopefully, during CHOOSESTEINERS. Another near-term theoretical advance would
be to reduce the requirement on the user-requestable quality bound from 2d−1 to

√
2

d−1.
It is not entirely clear if this is purely a proof-theoretic problem, or one requiring some
updates to the algorithm.

It is my hope that the new meshing algorithm will prove to allow better point location
strategies than standard circumcenter refinement. Historically, each Steiner point was con-
sidered independent of any future points to be added. In the framework of my algorithms,
we surround a vertex with new Steiner points, which suggests using some technique to
optimize the placement of all the points at once. Particularly I hope that this can be used
to eliminate slivers more effectively than in a one-at-a-time framework, since on choos-
ing the points to insert, we can easily ensure that they do not form slivers among each
other. Another use of the freedom my algorithm allows in point placement is, as Üngör
and his students have been doing, to find positions for points that in practice allow the user
to request much better radius/edge ratio than can be proved. It may even be possible to
prove some results on these lines. Finally, in the dynamic algorithm, dependencies can a
priori cross the Voronoi cell of the vertex being completed. It is likely that in practice, it
should be possible to independently choose Steiner points on opposite sides of the vertex
and thereby reduce the propagation during dynamic changes (albeit not provably).

New capabilities in meshing will open up new capabilities in scientific computing. Par-
allel, out of core, and distributed meshing will let engineers generate unstructured meshes
even on supercomputers, temporarily slaking their thirst for additional cycles. More im-
portantly, I believe that asymptotically faster generation of unstructured meshes should
allow commodity hardware to solve substantially harder problems than has been possi-
ble in the past. Meshing is a major cost in many problems of interest to the commu-
nity. Dynamically-stable meshing is of clear applicability to problems where the domain
changes essentially discontinuously; here, I have shown how to remesh in logarithmic
rather than merely near-linear time. Graphics and scientific computing are both highly

112

interested in solving fluid-structure interaction problems, which are most naturally ap-
proached in a Lagrangian framework. Provable techniques based on the work here should
enable kinetic meshing to avoid the problems of tangling and mesh quality loss that are
currently the bane of moving mesh approaches.

113

114

Bibliography

[AAD07] Nina Amenta, Dominique Attali, and Olivier Devillers. Complexity of De-
launay triangulation for points on lower-dimensional polyhedra. In SODA,
2007.

[ABBT06] Umut A. Acar, Guy E. Blelloch, Matthias Blume, and Kanat Tangwongsan.
An experimental analysis of self-adjusting computation. In ACM-SIGPLAN
Conference on Programming Language Design and Implementation, 2006.

[ABT06] Umut A. Acar, Guy E. Blelloch, and Kanat Tangwongsan. Kinetic algo-
rithms via self-adjusting computation. In European Symposium on Algo-
rithms, 2006. See also CMUComputer Science Department Technical Report
CMU-CS-06-115.

[Aca05] Umut A. Acar. Self-Adjusting Computation. PhD thesis, Department of Com-
puter Science, Carnegie Mellon University, May 2005.

[AH06] Umut A. Acar and Benoı̂t Hudson. Optimal-time dynamic mesh refine-
ment: preliminary results. In Fall Workshop on Computational Geometry,
Northampton, Mass., 2006.

[AHMP07] Umut A. Acar, Benoı̂t Hudson, Gary L. Miller, and Todd Phillips. SVR: Prac-
tical engineering of a fast 3D meshing algorithm. In International Meshing
Roundtable, pages 45–62, 2007.

[BA76] Ivo Babuška and A. K. Aziz. On the Angle Condition in the Finite Element
Method. SIAM Journal on Numerical Analysis, 13(2):214–226, April 1976.

[BBCK05] Daniel K. Blandford, Guy E. Blelloch, David E. Cardoze, and Clemens
Kadow. Compact Representations of Simplicial Meshes in Two and Three
Dimensions. International Journal of Computational Geometry and Appli-
cations, 15(1):3–24, February 2005.

115

[BEG94] Marshall Bern, David Eppstein, and John R. Gilbert. Provably Good Mesh
Generation. Journal of Computer and System Sciences, 48(3):384–409, June
1994.

[BET99] Marshall W. Bern, David Eppstein, and Shang-Hua Teng. Parallel construc-
tion of quadtrees and quality triangulations. International Journal of Com-
putational Geometry and Applications, 9(6):517–532, 1999.

[Bla05] Daniel K. Blandford. Compact Data Structures with Fast Queries. PhD the-
sis, Computer Science Department, Carnegie Mellon University, Pittsburgh,
Pennsylvania, October 2005. CMU CS Tech Report CMU-CS-05-196.

[BOG02] Charles Boivin and Carl F. Ollivier-Gooch. Guaranteed-quality triangular
mesh generation for domains with curved boundaries. International Journal
for Numerical Methods in Engineering, 55 (10):1185–1213, 2002.

[Bri93] E. Brisson. Representing geometric structures in d dimensions: Topology
and order. Discrete and Computational Geometry, 9:387–426, 1993.

[BWHT07] AdamW. Bargteil, Chris Wojtan, Jessica K. Hodgins, and Greg Turk. A finite
element method for animating large viscoplastic flow. ACM Trans. Graph.,
26(3), 2007.

[CCM+04] David Cardoze, Alexandre Cunha, Gary L. Miller, Todd Phillips, and Noel
Walkington. A bezier-based approach to unstructured moving meshes. In
Symposium on Computational Geometry, pages 71–80, 2004.

[CDE+00] Siu-Wing Cheng, Tamal Krishna Dey, Herbert Edelsbrunner, Michael A.
Facello, and Shang-Hua Teng. Sliver Exudation. Journal of the ACM,
47(5):883–904, September 2000.

[CDL07] Siu-Wing Cheng, Tamal K. Dey, and Joshua A. Levine. A practical Delaunay
meshing algorithm for a large class of domains. In International Meshing
Roundtable, pages 477–494, 2007.

[CDR07] Siu-Wing Cheng, Tamal K. Dey, and Edgar A. Ramos. Delaunay refinement
for piecewise smooth complexes. In SODA ’07: Proceedings of the eigh-
teenth annual ACM-SIAM symposium on Discrete algorithms, pages 1096–
1105, Philadelphia, PA, USA, 2007. Society for Industrial and Applied Math-
ematics.

116

[CGS06] Narcis Coll, Marité Guerrieri, and J. Antoni Sellarès. Mesh modification un-
der local domain changes. In 15th International Meshing Roundtable, pages
39–56, 2006.

[Che87] L. Paul Chew. Constrained Delauany triangulation. In in Proc. ACM Sympo-
sium on Comp. Geometry, pages 213–222, 1987.

[Che89] L. Paul Chew. Guaranteed-quality triangular meshes. Technical Report TR-
89-983, Department of Computer Science, Cornell University, 1989.

[Che97] L. Paul Chew. Guaranteed-Quality Delaunay Meshing in 3D. In Proceed-
ings of the Thirteenth Annual Symposium on Computational Geometry, pages
391–393, Nice, France, June 1997. Association for Computing Machinery.

[Del34] Boris Nikolaevich Delaunay. Sur la Sphère Vide. Izvestia Akademia Nauk
SSSR, VII Seria, Otdelenie Matematicheskii i Estestvennyka Nauk, 7:793–
800, 1934.

[EGS05] David Eppstein, Michael T. Goodrich, and Jonathan Zheng Sun. The skip
quadtree: a simple dynamic data structure for multidimensional data. In 21st
Symposium on Computational Geometry, pages 296–305, 2005.

[ELM+00] Herbert Edelsbrunner, Xiang-Yang Li, Gary L. Miller, Andreas Stathopou-
los, Dafna Talmor, Shang-Hua Teng, Alper Üngör, and Noel Walkington.
Smoothing and cleaning up slivers. In STOC, pages 273–277, Portland, Ore-
gon, 2000.

[Gui98] Leonidas J. Guibas. Kinetic Data Structures—A State of the Art Report. In
Proceedings of the Third Workshop on Algorithmic Foundations of Robotics,
pages 191–209, Houston, Texas, 1998.

[HMP06] Benoı̂t Hudson, Gary L. Miller, and Todd Phillips. Sparse Voronoi Refine-
ment. In Proceedings of the 15th International Meshing Roundtable, pages
339–356, Birmingham, Alabama, 2006. Also available as Carnegie Mellon
University Tech. Report CMU-CS-06-132.

[HMP07a] Benoı̂t Hudson, Gary L. Miller, and Todd Phillips. Bounding the cost of
bounding boxes in mesh generation. In submission, 2007.

[HMP07b] Benoı̂t Hudson, Gary L. Miller, and Todd Phillips. Sparse Parallel Delau-
nay Refinement. In 19th ACM Symposium on Parallelism in Algorithms and
Architectures, 2007.

117

[HPÜ05] Sariel Har-Peled and Alper Üngör. A time-optimal Delaunay refinement al-
gorithm in two dimensions. In 21st Symposium on Computational Geometry,
pages 228–236, 2005.

[KCP06] Milind Kulkarni, L. Paul Chew, and Keshav Pingali. Using transactions in de-
launay mesh generation. In Workshop on Transactional Memory Workloads,
2006.

[KFCO06] Bryan M. Klingner, Bryan E. Feldman, Nuttapong Chentanez, and James F.
O’Brien. Fluid animation with dynamic meshes. In Proceedings of ACM
SIGGRAPH 2006, August 2006.

[Kir83] David G. Kirkpatrick. Optimal search in planar subdivisions. SIAM J. Com-
put., 12(1):28–35, 1983.

[Lab06] François Labelle. Sliver Removal by Lattice Refinement. In Proceedings of
the Twenty-Second Annual Symposium on Computational Geometry. Associ-
ation for Computing Machinery, June 2006.

[Li03] Xiang-Yang Li. Generating well-shaped d-dimensional Delaunay meshes.
Theor. Comput. Sci., 296(1):145–165, 2003.

[LL85] D. T. Lee and A. K. Lin. Generalized Delaunay triangulation for planar
graphs. Discrete and Computational Geometry, 1985.

[LS07] François Labelle and Jonathan Richard Shewchuk. Isosurface stuffing: Fast
tetrahedral meshes with good dihedral angles. In ACM Transactions on
Graphics, 2007.

[LT01] Xiang-Yang Li and Shang-Hua Teng. Generating well-shaped Delaunay
meshes in 3D. In Proceedings of the twelfth annual ACM-SIAM symposium
on Discrete algorithms, pages 28–37. ACM Press, 2001.

[LTU99a] Xiang-Yang Li, Shang-Hua Teng, and Alper Üngör. Biting: Advancing front
meets sphere packing. International Journal of Numerical Methods in Engi-
neering, 1999.

[LTU99b] Xiang-Yang Li, Shang-Hua Teng, and Alper Üngör. Simultaneous refine-
ment and coarsening for adaptive meshing. Engineering with Computers,
15(3):280–291, September 1999.

118

[MBF04] Neil Molino, Zhaosheng Bao, and Ron Fedkiw. A virtual node algorithm for
changing mesh topology during simulation. In SIGGRAPH, 2004.

[McM70] Peter McMullen. The maximum numbers of faces of a convex polytope.
Mathematika, 17:179–184, 1970.

[Mic97] Daniele Micciancio. Oblivious data structures: applications to cryptography.
In Proceedings of the 29th Annual ACM Symposium on Theory of Computing,
pages 456–464, 1997.

[Mil04] Gary L. Miller. A time-efficient Delaunay refinement algorithm. In Fifteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 400–409, New
Orleans, 2004.

[MPW02] Gary L. Miller, Steven E. Pav, and Noel J. Walkington. Fully Incremental
3D Delaunay Refinement Mesh Generation. In Eleventh International Mesh-
ing Roundtable, pages 75–86, Ithaca, New York, September 2002. Sandia
National Laboratories.

[MTT+96] Gary L. Miller, Dafna Talmor, Shang-Hua Teng, Noel Walkington, and Han
Wang. Control Volume Meshes Using Sphere Packing: Generation, Refine-
ment and Coarsening. In Fifth International Meshing Roundtable, pages 47–
61, Pittsburgh, Pennsylvania, October 1996.

[MTT99] Gary L. Miller, Dafna Talmor, and Shang-Hua Teng. Optimal coarsening of
unstructured meshes. Journal of Algorithms, 31(1):29–65, Apr 1999.

[MTTW95] Gary L. Miller, Dafna Talmor, Shang-Hua Teng, and Noel Walkington. A
Delaunay based numerical method for three dimensions: generation, formu-
lation, and partition. In Proceedings of the 27th Annual ACM Symposium on
Theory of Computing, pages 683–692, Las Vegas, May 1995. ACM.

[MV00] Scott A. Mitchell and Stephen A. Vavasis. Quality mesh generation in higher
dimensions. SIAM J. Comput., 29(4):1334–1370 (electronic), 2000.

[NBH01] Aleksandar Nanevski, Guy E. Blelloch, and Robert Harper. Automatic Gen-
eration of Staged Geometric Predicates. In International Conference on
Functional Programming, pages 217–228, Florence, Italy, September 2001.

[NvdS04] Han-Wen Nienhuys and A. Frank van der Stappen. A Delaunay approach to
interactive cutting in triangulated surfaces. In Fifth International Workshop
on Algorithmic Foundations of Robotics, 2004.

119

[Rup95] Jim Ruppert. A Delaunay refinement algorithm for quality 2-dimensional
mesh generation. J. Algorithms, 18(3):548–585, 1995. Fourth Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA) (Austin, TX, 1993).

[She96] Jonathan Richard Shewchuk. Triangle: Engineering a 2D Quality Mesh Gen-
erator and Delaunay Triangulator. In Ming C. Lin and Dinesh Manocha,
editors, Applied Computational Geometry: Towards Geometric Engineer-
ing, volume 1148 of Lecture Notes in Computer Science, pages 203–222.
Springer-Verlag, Berlin, May 1996. From the First ACM Workshop on Ap-
plied Computational Geometry.

[She97a] Jonathan Richard Shewchuk. Adaptive Precision Floating-Point Arithmetic
and Fast Robust Geometric Predicates. Discrete & Computational Geometry,
18(3):305–363, October 1997.

[She97b] Jonathan Richard Shewchuk. Delaunay Refinement Mesh Generation. PhD
thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh,
Pennsylvania, May 1997. Available as Technical Report CMU-CS-97-137.

[She98a] Jonathan Richard Shewchuk. A Condition Guaranteeing the Existence of
Higher-Dimensional Constrained Delaunay Triangulations. In Proceedings
of the Fourteenth Annual Symposium on Computational Geometry, pages 76–
85, Minneapolis, Minnesota, June 1998. Association for Computing Machin-
ery.

[She98b] Jonathan Richard Shewchuk. Tetrahedral Mesh Generation by Delaunay Re-
finement. In Proceedings of the Fourteenth Annual Symposium on Computa-
tional Geometry, pages 86–95, Minneapolis, Minnesota, June 1998. Associ-
ation for Computing Machinery.

[She99] Jonathan Richard Shewchuk. Lecture notes on geometric robustness, 1999.

[She02] Jonathan Richard Shewchuk. What Is a Good Linear Element? Interpola-
tion, Conditioning, and Quality Measures. In Eleventh International Mesh-
ing Roundtable, pages 115–126, Ithaca, New York, September 2002. Sandia
National Laboratories.

[Si06] Hang Si. On refinement of constrained Delaunay tetrahedralizations. In Pro-
ceedings of the 15th International Meshing Roundtable, 2006.

[STÜ04] Daniel Spielman, Shang-Hua Teng, and Alper Üngör. Parallel Delaunay re-
finement with off-centers. In EUROPAR, 2004.

120

[STÜ07] Daniel Spielman, Shang-Hua Teng, and Alper Üngör. Parallel Delaunay re-
finement: Algorithms and analyses. IJCGA, 17:1–30, 2007.

[Tal97] Dafna Talmor. Well-Spaced Points for Numerical Methods. PhD thesis,
Carnegie Mellon University, Pittsburgh, August 1997. CMU CS Tech Re-
port CMU-CS-97-164.

[Üng04] Alper Üngör. Off-centers: A new type of Steiner point for computing size-
optimal quality-guaranteed Delaunay triangulations. In LATIN, pages 152–
161, 2004.

121

