Sparse Parallel Delaunay Mesh Refinement -

Benoit Hudson Gary L. Miller Todd Phillips
Computer Science Department
Carnegie Mellon University
{bhudson,glmiller,tp517}@cs.cmu.edu

ABSTRACT minimize the time and space to represent these functiorstit
same quality of interpolation error.

More formally, the meshing problem takes as input a domain
containing a collection of features and returns a triartguieof the
domain. The features are points, edges, and, in higher diomes)
polygonal faces; this is termed a Piecewise Linear Com#éx [
There are four fundamental properties we would like of thalme
ing algorithm. One, the mesh showdnform to the input: all the
vertices, edges, and faces should appear as a union of c&spli
in the mesh. Two, all the tetrahedra should hgeed quality.
Three, the number of tetrahedra should not be much more than i
an optimal triangulation that is conforming and good qyaldur

The authors recently introduced the technique of sparsé mees
finement to produce the first near-optimal sequential timente

of O(nlg L/s+m) for inputs in any fixed dimension with piecewise-
linear constraining (PLC) features. This paper extendsviioak to
the parallel case, refining the same inputs in t@{&(L/s) g m)

on an EREW PRAM while maintaining the work bound; in prac-
tice, this means we expect linear speedup for any practicaber

of processors. This is faster than the best previously knuavallel
Delaunay mesh refinement algorithms in two dimensions. thes
first technique with work bounds equal to the sequential .case
glr?yhlfirnglgzrzzlci)& r|7t1 ;:‘h;ffilrr]sgrﬁg]\;w% Eféqﬁgﬂg m&:g; algorithm outputs a mesh thats&ze-competitivewith an optimal

the algorithm’s implementation is straightforward enotigt it is mesh. Lastly_, the algorithm should berk efficient ar_ld fast.)
likely to be extremely fast in practice. The meshing problem as we have stated was first posed in 2D

by Bern, Eppstein, and Gilbert [3] who proposed a quadtrge-al
rithm. Ruppert [29] gave a@®(?) time, size-competitive algorithm

Categories and Subject Descriptors: F.2.2 [Analysis of Algo- for the meshing problem using Delaunay refinement. Mitcied
rithms and Problem Complexity]: Nonnumerical Algrithmsdan \syasis [26] extended the quadtree algorithm to 3D and prtvat
Problems the Bern, Eppstein, and Gilbert algorithm was in fact alsesi

competitive. All of the above work required that there be mak
angles formed between an two input features. The traditiasia
Keywords: Shared-Memory Parallelism, Mesh Generation, Com- SUmption, which we too require, is that all input angles afeast
putational Geometry 90. _ Handllr_lg smaller input angles_ls an area of open research in
3D; in two dimensions, some techniques are known [23].
Most applications require meshes where all simplicesngliss,
1. INTRODUCTION tetrahedra, ...) hawgood aspect ratio the volume ratio of the cir-

The meshing problem is very old, going at least back to th@95 ~ cumscribing sphere to the largest inscribed sphere is ndatge.
— the early days of the finite element method [34]. The goal is Delaunay refinement algorithms more naturally produce ke

General Terms: Algorithms, Theory

to partition the input domain up into simple pieces. Thesepts of good radius-edge ratio: the ratio of the circumcribindiua to

pieces are then used to embed functions over the domain such a the length of the shortest edge is not too large. In two diroess

temperature or velocity. By requiring that the mesh resébz thesg criteria are equivalent, but in 3D and higher, theerocase

tures, we can allow the embedded function to be discontiaou ©Of slivers arises.

these features, thus giving better interpolation for theesaumber We can now state oumain results: We introduce a new parallel

of pieces. By using good shaped pieces we ensure intemolati algorithm for refining a mesh in any fixed dimension. For a Hroa

error guarantees. Finally, by minimizing the number of pewe class of inputs, it is asymptotically work optimal, and treailel
depth is within a logarithmic factor of optimal. The algbrit out-

*This work was supported in part by the National Science Fatiod under puts a mesh with at most a constant factor more vertices than a

grants ACI 0086093, CCR-0085982 and CCR-0122581. optimal good aspect ratio mesh.

Our parallel algorithm extends our prior sequential algoni

Sparse Voronoi Refinement (SVR]15]. The SVR algorithm has

Permission to make digital or hard copies of all or part o twork for OUtpUt'SenSit,ive rur)tim@(nlg(L/5)+m), with C,O”Sta“ts deP‘?”ding
personal or classroom use is granted without fee providatidbpies are only on the dimension and a prescribed radius-edge quaityd.

not made or distributed for profit or commercial advantage that copies HerelL is the size of the domain being meshed aiglthe smallest
bear this notice and the full citation on the first page. Toyooiherwise, to input feature. Thus, for most meshing inputs in practicel(id-
republish, to post on servers or to redistribute to listguiies prior specific ing integer coordinates) this matches the optimal time Hooih

permission and/or a fee.
SPAA'07 June 9-11, 2007, San Diego, California, USA. 6(nign + m). . . .
Copyright 2007 ACM 978-1-59593-667-7/07/0006 ...$5.00. The SVR sequential algorithm at a very high level alternbtes

tween two types of moves: “break” and “clean”. In the seqiaent

design, only one break move happens during a break phasie, whi
during a clean phase only one clean move may happen at a time.

The first problem this paper addresses is to show that mamk bre
and clean moves can be performed simultaneously, remokiag t
control dependency. The beauty of Sparse Voronoi Refineiment
that this is true and fairly easily shown. This is due to thet fhat
we maintain a good radius-edge mesh throughout the life @f th
algorithm. Note that quadtree based algorithms have bee-pa
lelized in a similar fashion [4].

The second issue is dealing with input features and showing

that this part of the code can also be parallelized. This pfrt
the analysis is the main contribution. SVR in parallel gates

a mesh of each feature. These parallel meshing procedusgs in
act by reporting balls: spheres that contain and protechreés
ements. Lower-dimensional meshes report to higher-dimaerabk
meshes about balls that must be protected. Converselyharhig
dimensional mesh will report to a lower-dimensional meshialls
into which they would like to add a point. The higher-dimemsil
mesh may stall while the lower-dimensional mesher refirsanésh.
To ensure sficient amount of parallelism we show that the mesh
will only stall a constant amount of time before it can pratee
and that a sficient amount of work can be done in parallel in any
round.

Itis interesting to point out that study into paralleliziS¥YR has
led to a more close analysis of the sequential algorithm,imgak
simpler by removing unnecessary dependencies. The stublpss
dependencies will enable improvements beyond paraltaizave
discuss several avenues for extension in the Conclusion.

2. RELATED WORK

Finding parallel unstructured meshing algorithms has tseee-
search topic since the early 1990’s [30] and is still an intgoar
research topic today [8]. The work generally falls into ofiévm
types, strong theoretical results for point sets, or ereged so-
lutions to handle general input without good guaranteesthén
realm of parallel algorithms that handle only point setsstuxt-
tree methods parallelized fairly easily for point inputt bigher-
dimensional features have provelffidiult to handle &iciently [33].
Spielmanet al. present [32], arD(Ilg m) parallel time bound with
O(mlg m) work is shown for simple implementations of Delaunay
Refinement on point sets in parallel.

A variety of parallel algorithms have been engineeered tallea
input feature constraints, but with few or no theoreticaiguntees
on output size [9, 11, 28, 27, 5, 18]. The current best thexalet
results for parallel meshing with features in 3D is the altgon of
Spielmaret al.[31]. They present a parallel 3D meshing algorithm
that handles input segments @(Ilg?(L/s) polylog(n)) time, but
their algorithm is not work gicient.

3. SEQUENTIAL SPARSE REFINEMENT

We will first give an abstract overview of the sequential S\gba
rithm. SVR maintains a mesh for every input feature (Seer€igu
1). The features can be partially ordered by containmeatdiyig
an obvious notion of aubfeature We say thaf is a subfeature of
F’ if F is of lower dimension thaf’ andF is spatially contained

N y

=2 DI A
@ P NVANN = @ﬁ

P NAN =
-1 Jf XH;
d=0 ° [] . T

Figure 1. SVR works with a mesh of each feature at each dimension.
We have the 3D volume mesh, a 2D mesh for each constraint surface, a
1D mesh for each of the edges of those surfaces, and zero-dimensional
meshes for the corners. The meshes are naturally nested by contain-
ment of features. All the meshes are geometrically embedded together
in E3, but their connectivity does not necessarily coincide midstream, so
SVR uses careful communication between meshes.

maintains the geometric correspondance between meshéeof d
ent dimension: a Delaunay simplex in a higher-dimensioreghm
has a pointer to every intersecting Delaunay simplex in aiyot-
dent lower-dimensional mesh. For simplicity in this worle will
consider any two simplices to be intersecting if their comtey
circumspheres intersect. In general, the geometric quoretance
can be maintain more or less accurately, depending on ingriem
tation concerns.

SVR also maintains one mesh for the entire mesh domain; we
refer to this highest-dimensional mesh as Erenesh. At the end,
the algorithm returns the fin&-mesh as its output.

3.1 |Initializing SVR

The first phase of the algorithm is to create coarse featushese
from the input. We set up a constant size mesh for each of ha in
features and initialize the needed data structures.

The input features could be of many possible types. In 2D, fea
tures are only either vertices or edges. In either casee thesof
constant size. When working in 3D, the 2D input features ¢ el
of unbounded size; consider the case of conforming to inplytp
gons with an unbounded number of sides. Clearly, furthemtiom
cations can arise in higher dimension. Since a basic uradtisig
of the algorithm can be achieved in the case of features ofdeal
size, we will restrict our input to such features. We first matore
explicit the input.

Let 7 be the input PLC to be meshed with ambient dimension
D. We will assume thaf~ contains its own “bounding box”.

The goal to to mesh the interior of this bounding box. In a more
complicated version of the algorithm, we would introduceitod-
ing boxes for each feature and later remove these lowerrdiioeal

in F’. For instance, a boundary segment may be a subfeature ofhounding boxes from the mesh. To simplify this discussioswil

an input surface constraint. Superfeature may be definedhsgm
rically.

Midstream, the partition implied by a mesh does not necigsar
coincide with all the meshes of its subfeatures, and so taighm

assume that the input features do not need bounding boxes. Th
is, for each polytopd= in 7 of dimensiond we assume thaf

has bounded size, is convex, and has a Delaunay trianguiaiib
good radius-edge in itd-dimensional space..

Parallel

—

e

.) =5\
Blocking T
/’f b—o—o L
°
o

Figure 2. We show that lower-dimensional work only blocks spatially lo-
cal work in the higher-dimensional meshes, so that any geometric areas
of the mesh can work in parallel (circled areas). This ability to fully exploit
spatial parallelism even in the presence of features is a key component
of Parallel SVR.

We start by constructing the Delaunay triangulatignof each
polytopeP. Each triangulatior’s will be maintained as a mesh in
it own right. We letd denote the dimension of this polytope.

More formally, ad-simplex s is the convex closure of a set of
d + 1 afine independent points in a space of dimendlbnThe
d+1 points are theerticesof s. Thecircumball of sis the smallest
radius operD-ball containing the vertices @fon its boundary. The
circumcenter andcircumradius of s are the center and radius of
its circumball. Each circumball will be reported to all sueature
meshes that intersect the simplex.

We say a balB is nearly empty if 1) the interior is empty of
points, or 2) there are no points on the boundarBaind at most
one in the interior. We assume for simplicity that initiafii the
circumballs are nearly empty. This condition will be mainéal
throughout the algorithm.

We maintain the following information with each simplexn
each meslp:

e Alist of all uninserted points that are containedsin

e Alist of all simplices from all subfeature meshes whose cir-
cumball intersects the circumball ef

e A list of all simplices from all superfeature meshes whose
circumball intersects the circumball ef

Throughout the algorithm we will maintain the set of meshes
(one for each feature), partially ordered by containmene Will
enforce that every circumball will be nearly empty with respto
all higher-dimensional vertices. Central to the runtimehef algo-
rithm will be the invariant that every mesh is of bounded wadi
edge, although the intermediate bound will be worse tharén t
final output.

3.2 SVR Work Set

Once we have finished this initialization, SVR progresseseiy
fining these coarse feature meshes until all the featuresaapp

the D-mesh and the final shape-quality bounds have been achieved.
Suppose we are given a radius-edge baumal be satisfied by the
final output. The algorithm maintains a work set of Delaurniay-s
plices to be destroyed by refinement. Each task is taggedawith
type, the dimension, a handle into the appropriate meshaayed
ometric point we wish to insert. There are three types:

cLEAN tasks represent poorly shaped Delaunay simplices that must
be remedied by refinement.

ENCROACHED tasks represent ball®¢spheres) that contain and pro-
tect lower-dimensional Delaunay simplices whose destrmdias
been ordered by some higher-dimensional entity desirifigee
ment in the region.

Finally, unresoLvep tasks are balls corresponding to the incongru-
ences between lower-dimensional meshes andtheesh. These
must be made to appear in tbhemesh by some refinement.

The work set is ordered withLean tasks first, in increasing order
of dimension; them~croacuep tasks in increasing dimension; then
the unresoLvep tasks. The intuition for the ordering is as follows:
cleaning first ensures that all the meshes maintdiicgently good
quality for basic operations to remain worffieient. Encroachment
then enforces that low-dimensional Voronoi cells keep @amkdo
not remain oversize, ensuring that spatial locality is tmae in all
dimensions. Then as a default we work toward conformityhso t
all the input features eventually appear in the final outpesim

For further details on this sequential algorithm, see [IHje
goal of the rest of this paper is to expose as much parallelisim
possible in the work set.

4. ALGORITHM

To parallelize the sequential algorithm, we first discussrgt generic
algorithmic framework for processing a work set with cornitig
tasks. This generic version quite independent of the mggriob-
lem at hand; the algorithm is somewhat standard. Then, biegjn
in we will show how to instantiate the unspecified parts of #ia
gorithm for our geometric computation.

The analysis of our algorithm will be under a PRAM model: we
have as many processors as we can use, all of them have uniform
cost to access a shared memory pool, and there is a global cloc
Most operations can be done with each memory cell being sedes
exclusively by one processor per clock tick (the EREW madel)
Some require a CRCW model, where all processors can concur-
rently access memory. A standard result is that any reat®nab
shared-memory machine withhprocessors can simulate a PRAM
with at mostO(lg p) overhead.

4.1 Generic algorithm

As input to the function, we assume we are given aSsef tasks

to process. We will also assume the existence of four oraates
one black-box function. Three of the oracles tell us abotgeh
different graphs over the tasks on the work set. The black bos take
a task, processes it, and returns a set of additional task®ro

on. Finally, the fourth oracle updates the work set givenststeof
tasks we processed. An instantiation of the algorithm igpkiran
implementation of the oracles and of the processing step.

The three graphs-oracles are:

e Brocks: A directed edgea — b means untila occurs,b
cannot proceed.

Process Work Ser(S: a work set) SeLit((T, reasomn)
1: return if Sis empty 1. If T has been removedgturn
2: S’ « 0 {set of tasks to defer} 2: Let B = B(c(T), kr(T)).
3: G « ConrLicts(S) 3: ComputesS the set of neighbouring simplices that intersBct
{Defer Tasks Blocked by Lower-Dimensional Work} 4: for V T’ € S{in series}do
. for each taskv € BLocks(S) in paralleldo 5. for ¥V pe T {inparallel} do
6:
7
8
9

4
5: remove Bocks(w) fromC if p € kr(T), choosep
6: add B.ocks(w)to S’ end for
7: end for . end for
{Process all the Unblocked Tasks} . if no pwas chosen, lep = ¢(T).
8: Colour the conflict grapks usingk € O(A) colours. 10: for ¥ T’ € S {in series}do
9: Let G; be the set of tasks of colour 11: for VY € T’ {in parallel} do
10: P « 0 {the set of processed tasks} 12: if p encroache¥, and eithem is a Steiner point, op is
11: for i = 1tokdo the second point to encroach upérthen
12: for each taskv € G; in paralleldo 13: ENQEUEUE((Y, ENCROACHED))
13: if we Gthen 14: end if
14: remove Mor(w) from G 15: end for
15: addwto P 16: end for
16: processw similarly as the sequential algorithm 17: if noY was enqueuethen
17: end if 18: Insert(p, T)
18: end for 19: else
19: end for 20: ENQUEUE({T,REASON))

{New Work Set is the Deferred Tasks and the New Tasks} 21: end if

20: return S’ U NewWork (P
®) Figure 4. Processing a task. We first see if there is a lower-dimensional

Figure 3. The generic algorithm. Given a work set, we compute the vertex to insert. If not, we try to insert the circumcenter. Even then,
conflict graph, defering blocked tasks until the next round. Then we we check whether we must yield to lower-dimensional facets that we
colour the graph, which gives us a safe ordering for the tasks. Finally, encroach. If we do yield, we try this task again by re-enqueueing it for
we iterate over each colour and perform the work. tasks that have been next round. If not, we insert the point we chose.

made moot by a task in a prior iteration of the loop are simply ignored.

4.2 Processing

Each task in the work set is a pair consisting of a simfl@nd the
reason, defined below, that this task is on the work set. Toga®
a task, we use a variant of thers call described in the sequential
algorithm to find a pointp to insert, and to check for encroach-
ment on lower-dimensional features (see Figure 4). If tiere
encroachment, we inseptusing a variant ofNserr (see Figure 5).

e ConrLicT: An edge & b) means thad andb cannot be pro-
cessed simultaneously, though they can be processed in ei-
ther order.

e Moor: A directed edgea — b means that ifs occurs,b will
be moot. Unless the reverse edge exists, it is legal to parfor
b thena. However, it is not legal to performthenb.

The Brocks graph must be acyclic. Theddr graph need not be Insert has three phases: the first updates the mesh, the second
—infact, itis common to have two tasks make each other moet. W ypdates the mapping to lower-dimensional cells, the thidates
assume that lbr is a (directed) subgraph ofoSrLict: if a moots the mapping to higher-dimensional cells. We will show thw t
b, thena andb cannot both be processed simultaneously. Finally, mesh is sparse; implying that the first and third phases arstaot
the graphs must all b&-sparse; having bounded degree O(1). time and can therefore be done sequentially. The secondephas

Since we have not yet defined the oracles, we cannot bound thei however, could cost as much @gn), so we must parallelize that
cost. However, we can discuss the overhead of parallel psoug phase. Thankfully, we can do it in the obvious trivial fashitak-

« ComputingG is linear work and constant depth. This follows "9 O(1) depth and linear work on a CRCW.

directly from Gonruicts and B.ocks being sparse graphs. .
e Colouring the graph i9(Ig|S|) parallel depth andD(|S|) 4.3 POPUIatmg the work set

work. One could also trade depth and work using an al- Gijven a cellT in some meshM that corresponds to a featuFe
gorithm of Goldberg, Plotkin, and Shannon [13], and get e can determine whether that cell and feature define a tasig u
O(lg |SI) depth forO(|S| lg” |S[) work. the rules that follow. After processing, then, we can exanavery

e The main loop sees each task at most once, @g&kwork cell created bynserr and see if it matches any or several of the
per task looking upvto see whether it has become moot, and rules. The necessary sequencing of rules is written at tHeoén
if not, doesO(1) more work removing fron® the tasks that this section.

w makes moot. The remaining time is simply to iterate over
the colours: Rute 1 (skinwy). If Ry(T)/ru(T) > p then we add the task

One iteration of RocessWork Set is called aound Every round, (T, SKINNY).

every task on the work set is either processed, mooted, okédb
Blocked tasks will reappear next round unless they were ethot
alongside new tasks generated by the processed tasks.

What we've just shown is that the depth of each round is es- RuLe3 (encroacument). During a TryInsert in @ mesh M in
sentiallyO(lg |S|) per round, due to the colouring, and the optimal dimension d, if the query point q is a Steiner point (it has-con
O(|S|) work. It remains to discover the number of rounds. tainment dimension d), and is inside the circumball of a lewe

Rute 2 (crowpep). If T contains at least one uninserted point
p, then we add the tagk’, cRowbpEeD).

Insert(p, T) With each simplex, we associatepeotected zonavith respect

1: Compute Delaunay cavi§ of pin M(T), starting aff to a given feature mesh; describing the area where a poingbei

2: Create a new vertexfor p inserted could possibly modify the local geometry /andopology.

3: Compute the new st aroundv If two tasks being performed in parallel concurrently botbdify

4 Reloca,te points and protective balls: the same simplex, this might require some special handlihgs,

5: for VT’ € C {in series}do we will put a conrLict edge between any two such tasks. More

6: for VY e T {in parallel} do formally:

7 for ¥ T” € S {in series}do

8: if B(Y) intersectsT”, assignY to T” Dermvrion 4.2. Given a simplex T, thprotected zone of T is

9 end for the union of all circumballs who intersect T’s circumball.
10: end for
11: end for Clearly, then, adding a new vertexinto the mesh only féects
12: for ¥ T* that contain members & do the cellV(v) if uis inside the protected zone wf Furthermore, it
13: replaceC by {S,v} is important to note that the conflicts we want to maintair nait
14: end for change during the processing of a round: any conflict noteptes
15: for Y T” € S {in series}do before any colour has been processed will never become aatonfl
16: checkRules 1,2, 4 The protected zone was defined in an continuous way; butétsg e
17: end for to choose a discrete set of open balls that cover the prateotee:

namely, the union of the Delaunay balls around the vertex:
Figure 5. Performing the insertion of a point p. We compute the change y: Y

to the current mesh M(T), notify higher-dimensional meshes about the Fact 4.3. With each Voronoi node p of a celh\v), associate
change, then reassign lower-dimensional uninserted points and protec- " !

tive balls. Loops over the cavity and star can be in series, as can loops the ball H(p, |Vp|).' Th? intersection of the protected zone of v with
over higher-dimensional meshes: these sets have bounded cardinality. the mesh domain M is equal to the union of all those balls.
Loops over the lower-dimensional features must be in parallel.
Finally, we define the conflict graph. We put an edge between
two tasksa andb if their respective protective zones intersect, and

dimensional simplex T, then we add the téBkencroacHep). Sim- ais on a subfeature or the same featurb.as
ilarly, if g has containment dimensiori & d, but a vertex of the _ _
mesh M already encroaches upon T, we add the t&lNCROACHED). Lemma 4.4. The conflict graph is of bounded degree.

Proor. Observe that this graph is just the square of the intersec-
tion graph of all the circumballs, thus it ices to prove that the
intersection graph of the circumballs is of bounded degfées is
precisely true for a radius-edge quality Delaunay triaagoh [24,

Rute 4 (WEAK ENcrRoAcHMENT). Assume T holds two partially 16] The protected zone of a_vertgis p_rec_isely the union of the cir-
resolved lower-dimensional circumball€ End T”. If T’ and T cumballs of all Delaunay simplices incident wn Therefore, any

intersect each other, then we add two tasi T’, WEAK-ENCROACH) work item only encroaches on a constant number of cells in any
and, symmetricallyF, T", WEAK-ENCROACH). mesh. A conflict edge goes between two tasks that both ertroac

upon the same cell. Clearly, there can only be a constant euafib
such edges. [

DeriniTion 4.1. A simplex T (and its associated circumball) is
said to bepartially resolved if at least two of its vertices appear in
the D-mesh.

The weak-encroachment move is not in the original sequentia
code; however, we will see that it is required for achieving full
parallelism allowed by the problem. This was first noted bieBp
man, Teng, and Ungor [31].

We check the clean, break, and weak-encroachment rules on
all cells created duringskerr. Encroachment is checked during

The results in this section showed that (a) the conflict galph
lows parallel processing of tasks with minimal changesaadard
codes; (b) the conflict graph is cheap to compute; (c) the iconfl
graph matches the requirements of the generic algorithm.

TRYINSERT. .

Each of the first few rules are very cheap to check: the clean 4.5 BIOCkIng graph
move is a few arithmetic operations. The break move requioes In the previously-published sequential code, the algoritiery rigidly
ing, in the the parallel redistribution step o&krt, whether the cell ordered the moves on its work set. Any task anywhere in spase w
has any uninserted points inside. The weak-encroachmierst ne+ blocked by any lower-dimensional clean task anywhere itepa
quires checking any feature being redistributed for wheitheas Any break task was blocked by any clean task anywhere, in any
become partially resolved. Because of quality guarantadgize dimension.
a-Lemma (Lemmas 5.1 and 5.3), there are ofifl) partially- We can achieve rather more parallelism by loosening thekbloc
resolved features in any cell, so we can check all pairs irsteom ing graph. We will generalize the proofs of the sequentidis@and
time. show that we can achieve the same algorithmic propertidstinet

following blocking graph:

4.4 Conflict graph o Abreak or weak encroachment move is blocked by any clean

The goal of the conflict graph is to ensure that two tasks cqnde move with which it has a conflict edge.

cessed simultaneously without special processing. Hezeshow * Any move is blocked by a lower-dimensional yield move
how in a sparse mesh we can define a sparse conflict graph, which with which it has a conflict edge.

then allows us to stage insertions into the mesh in paraitiloart Since this blocking graph is a subset of the conflict grapls it
much modification to standard sequential codes for incréafign clear that it takes onlp(1) time to check any node for any blocks
updating a mesh. it may have.

4.6 Mooting graph

We put a mooting edge fromto any other mové if a andb are
working on the same feature, and the pairinserts is inside the
ball of the Voronoi node ob. The intuition is that the move
identified a Voronoi node it wanted to eliminate for some osas
The Voronoi node has now been eliminated, this moot.

We also put a mooting edge from a tasko a break mové
if the point inserted bya will change the cell ob. The intuition
is that a break move indicates that a cell is too large; wekbrea
whittle it down slowly to the local feature size. As long asm&n
point modifies the cell, we have whittled at it and need to khtc
any further whittling is in order.

5. RUNTIME ANALYSIS

In this section, we present the runtime analysis of Par&\éR.
First, we will state some useful structural lemmas from #guen-
tial algorithm analysis [15].

We can sketch the proof as follows: The algorithm quickly gk
progress. Any task stays on the work set for adit) rounds, even
if blocked by clean moves or lower-dimensional work. Ongs ith
established, we need only show that every task enters thesebr
within O(lg L/s) rounds.

First we show that withirD(lg L/s) rounds, the mesh conforms
to the input features. This proof will rely on packing resuitom
the sequential algorithm that bound the spatial propagationesh
tasks, thus removing the possibility of long chains of disry.
One the algorithm has conformed to the feature size, it @yains
to improve the quality of the mesh before outputting.

As the algorithm draws toward completion, we show that only
O(lg L/s) more rounds of cleaning are necessary. As in the sec-
ond part, this will be due to a bound on the spatial propagatio
cleaning moves, again eliminating the possibility of lomgios of
discovery.

5.1 Structural Lemmas

We use a few key facts repeatedly through our proofs. The first
is that every mesh always has good quality, even at intemtedi
stages of the algorithm.

Lemma 5.1 ([16, Tueorem 8.5]). At all times during the algo-
rithm, every mesh has quality € O(p).

The most important corollary of this, that we use repeatedly
throughout the runtime proofs is the following: becauséefqual-
ity guarantees, we cannot pack more than a constant numier-of
tices around a point before the feature size of the meshdégdao
fall.

Lemma 5.2 (RckinG LEmMA: [16, Lemma 6.7]). Given a point
p in a mesh M, the algorithm can only fi{Q more points around
p until cfsy. (p) € o(cfsu(p))-

Finally, except at initialization, there is a corresporziein the
size between all sub-meshes: essentially, if the algorfibrforms
any actions in a lower-dimensional mesh, it is because tleshm
locally has about the same scale as the top-dimensional. mesh

Lemma 5.3 (@-LeEmma: [16, Lemma 7.5]). Suppose p is consid-
ered for insertion into a mesh M. At that time, we know that

Cfsu, () < a cfsu(p)

5.2 Fast progress

Recall that a task is always either processed, mooted, ckéidb
every round. We want to make sure that a task is not blocked for
too long — in fact, we will require that it be blocked on®(1)
rounds.

Lemma 5.4. If two taskss a and b conflict, then the Voronoi cells
that define the protected zones of each hgee ¢ O(r(b)).

Proor. If the two tasks are of the same dimension, then by the
quality condition they have the same size. Otherwise, weirtan
stead invoke the-lemma for the same result.[]

Lemma 5.5. Given atask a, blocked by tasks in a lower-dimensional
mesh F, at most Q) insertions can be performed in F before a is
no longer blocked by F.

Proor. By the a-lemma, we know that all tasks iR that are
blockinga have about the same geometric siza.aBy the Packing
Lemma, then, we can only inse®(1) points intoF such that the
tasks that insert them will block [

Tueorem 5.6. A task on the work set blockqQ rounds before
it is either processed or mooted.

Proor. Any moveb that blocksa has about the same size as
a, and the two moves must be geometrically near each other. By
induction on the type and dimension lof we can assume that
is processed withit©(1) rounds. Therefore, if we are to bloek
for many rounds, we neddto name a successbt. However, we
cannot do this more thaB(1) times by the Packing Lemma: if we
tried, that would violate the condition thit has the same size and
is neara. The induction bottoms out at clean moves in dimension 1
and tops out at break moves in dimens@pso for constanb, the
longest chain of blocks i©(1). If bis mooted, that only speeds up
the time at which it is removed from the work sef]

5.3 The mesh conforms irO(IgL/s)

In this section we show that the mesh will conform to the irgomt

ing within O(Ig L/s) rounds. The general idea is that every round,
everywhere that the mesh is too large for the local featue sie
will insert a point nearby. The packing proof guarantees #fa
ter insertingO(1) points near an input point or protective ball, the
mesh size locally has shrunk in scale by half. Given thatniti
scale isO(L) and the final scale i&(s), we can only perform this
halving at mosO(Ig L/s) times in the finest part of the mesh.

Lemma 5.7. If a point p does not appear in the D-mesh M, then
within O(1) rounds some point g will appear in the new D-mesh
M’, such thatpq| < cfsy(p) and NNy (q) € Q(cfsu(p)).

Proor. If pis not in the mesh, then there is a break move asso-
ciated withp on the work queue. From Theorem 5.6, we know that
the break move will either occur or be removed from the quaue i
O(1) rounds. If it occurs, theq is the point inserted by the break
move. If it does not occur, then sorgavas inserted that modified
the cell that containg, obviating the break move.[]

Lemma 5.8. If a lower-dimensional cell \-(v) does not con-
form to the local feature size — that is, it hag-(Vv) € w(Ifsv), then
within O(1) rounds some point g will appear in the new D-mesh
M’, such thatvq| < cfsy(v), and NNy (q) € Q(cfsy (V).

Proor. If the cell is resolved (it and its neighbours M~ all
appear in theD-mesh), then if it does not conform to Ifs, it must
weakly encroach on another feature. This will trigger theakve
encroachment rule, and a point will be inserted nearby sdbn.
instead the cell is not resolved, then it or one of its neiginsan
M~ will trigger one of the two break rules, and a point will be
inserted nearby soon.[]

Tueorem 5.9. After Q(Ig L/s) rounds, theParaLLELREFINE algo-
rithm has produced a mesh of qualjty € O(p) that conforms to
local feature size.

Proor. By the Packing Lemma, aft€(1) applications of either
Lemma 5.7 or Lemma 5.8, everywhere the mesh size was larger
than Ifs, the mesh size will fall by half. There aB¢lg L/s) length
scales. [

5.4 The meshis cleaned i®(IgL/s)

The Theorem of the previous section showed that we achieved a
conformal mesh of some constant quality. What's left is towsh
that the cleanup work afterwards takes only ano@igg L/ s) rounds,

at which point we will have produced the quality the user dske
for. This result rests on two facts: first, that clean moves ar
ways geometrically larger (in a sense) than the move thattede

the skinny cell being cleaned. Second, that if we split adigdi to a
clean move, the split move is not much smaller than the clearem
Given that clean moves only spawn geometrically larger mose
clean move can only hav@(lg L/s) generations of descendents.

Lemma 5.10 (Gean moves Grow). Consider a mesh vertex v
whose cell W (v) is skinny, and whose nearest neighbour u was
inserted into a prior version Mof the mesh. The outradius of v is
larger than the radius of the task w that inserted wi(® > Zr(w).

Proor. We know thatRy(v) > pru(v) sinceVy(v) is skinny.
Furthermorery (V) = [uM/2. Clearly,vis a neighbour ofi, sojuv >
NN (v). The taskw that insertedi was considering inserting some
point p. It may have warped ta, up to a distance of (% €)r(w).
ThusNNw (U) > er(w). O

Lemma 5.11. Consider anencroacuep task b. The task was
spawned by some higher-dimensional task a. T 24-2/2r(a).

This is a standard result which comes directly out of the spac
ing proof of SVR [16, proof of Lemma 7.4]. Thus, so long as
pe > 29-32 g clean movea will only spawn moves — “children” of
a — of size larger than the predecessomofWhat is left to show
is that all the descendents afare larger than the children. This
is, in fact, false in general: until the mesh is conformatesido
shrink. However, we know from Theorem 5.9 that we need only
wait O(lg L/s) rounds before reaching strong conformality. After-
wards, a yield move will never itself yield to another featuit will
only spawn clean moves, which we know grow.

Tueorem 5.12. Given a strongly conformal mesh of quality
the ParaLLELREFINE algorithm takes @g L/s) rounds before reach-

ing quality p.

5.5 Overall Analysis

Tueorem 5.13. Given as input a Piecewise Linear Complex, a
parameter ke (0,1), and a radiugedge qualitypo such that both
ko > 29-3/2 and (1 - K)p > 2932, then theParaLLELREFINE algo-
rithm produces a Strongly Conforming output mesh of size ttm wi
every simplex having radifesige at leasp, in O(Ig(L/s)lg(m))
parallel depth and work @hlg L/s+ m).

Proor. Theorem 5.9 shows that afte(lg L/s) rounds, the mesh
is strongly conforming. Theorem 5.12 shows that at mostherot
O(lg L/s) rounds later, the mesh is both strongly conforming and
has good radiysdge quality. According to the analysis in Sec-
tion 4.1, each round tak&(lg |S|) time, whergS]| is the size of the
workset in that round. A constant fraction of tasks end upiitiisg
a point into the input, so we can bound the sum of%jlbver time
by O(m). This establishes the parallel depth bound.

The work bound follows directly from the analysis of the &tat
algorithm, and from the worksgciency of the parallelization. (]

6. PARALLEL SLIVER REMOVAL

So far, we have shown how to produce a good radius-edge Delau-
nay mesh. In 3D or higher dimension, bounded radius-edgbeses
are unsuitable for many applications due to the presenskvefs—
tetrahedra with good radius-edge ratio but poor aspect. ratiere
have been several papers written on sliver-free meshinglivar
exudation, i.e. modifying a mesh to remove slivers [7, 12, 20

In this section, we overview how to parallelize the slivémiha-
tion algorithm of Li and Teng [21, 22] as an easy extensionasf P
allel SVR. As input, their algorithm takes a strongly-camfing,
bounded radius-edge mesh such as the one outputrayiRLRe-
FINE, and parameters b, p, ando-. Iteratively, they remove a sliver
T by inserting a poinp into the circumball ofT. Instead of using
the circumcenter of, however, they define picking regionnear
c(T) — a ball B(c(T),dr(T)). Li and Teng, following Chew [10],
made the following powerful observation:

Tueorem 6.1 ([21, THeoreMm 4.6]). For appropriates, b, p, and
o, a constant fraction of points in(8(T),dr(T)) induce only new
slivers of size at least (F).

Thus, by randomly selecting points from the picking regiatilu
we find such a safe point, we can ensure that destroying sirey
generates geometrically larger slivers, guaranteeinf ssvimina-
tion.

The specific changes needed to makeaPreLReFiNe produce a
good aspect ratio mesh are the following. First, we mustgéaime
procedure for choosing a Steiner point as described hexmn8e
we add a new kind of task:

Rute 5 (suiver). If p(T) < p buto(T) > o, or, in D > 3, if any
subfacet of T satisfies those conditions, then add T to thk seir
with reasonsLIver.

Sliver elimination is only guaranteed to terminate if ldgahe
mesh has good radius-edge radio. Therefaregr tasks are blocked
by skinny tasks.

The run time follows by methods analogous to Lemma 5.10.
Thus we still get at mogD(Ig L/s) rounds. Hence, we can remove
slivers in only a constant increase in work and time over @est-
erating a bounded radius-edge mesh.

7. CONCLUSIONS

A standard assumption is that the spréadof the input is polyno-
mial in the input size. Indeed, on integer-valued input, gsheead

is at mostO(n*9). Under the polynomial spread assumption, the
bounds we have proven are that our algorithm achieves the opt
mal work bound ofO(nlgn + m), and is only a logarithmic fac-
tor O(Ig m) off-optimal in depth (the lower bound is from sorting).
Theoretically, we could achiev@(lg(n) Ig*(m)) time but at the cost

of aO(lg” m) factor in work.

In more practical terms, we predict near-linear speedup @as w

add processors for as many processors as we know how to build.

Furthermore, the data structures and analysis technigaex ab-
vious interest in analyzing several related problems: isteibuted-
memory case [8], out-of-core and streaming computatioh Hi
dynamic mesh refinement [1].

Several authors have experimented with shared-memorijiglara
Delaunay mesh refinement. A common technique is thatptif
misticparallelization, wherepLir operations are performed specu-
latively, and backed out if a conflict is noticed [2, 19]. Asen by
Kulkarni et al., “optimistic parallelization is useful only if the risk
of rollbacks is small.” In Ruppert’s algorithm, the confligtaph
may have high degree (up to linear), and the risk of rollbanky
accordingly be large. Antonopoul@s al. note that in their code,
they see a rollback rate of only about 6-10%; but they implame
an algorithm that produces a near-uniform mesh. Kulkatral.
do not report rates, but seem highly troubled by the numbeslbf
backs they see in their experiments. We suggest that owsespar-
allel Delaunay algorithm, given that it has a small conflicmh,
is likely to have a tiny rollback rate even in 3D. Furthermgugor
solutions need to produce a Delaunay triangulation in arpogss-
ing phase, likely by using a separate parallel triangulpgprOur
preprocessing is far simpler, reducing software develoyprtime
and probably also overall runtime.

References

[1] U. A. Acar and B. Hudson. Optimal-time dynamic mesh re-
finement: preliminary results. IAroc. 16th Fall Workshop on
Computational Geometr006.

C. D. Antonopoulos, X. Ding, A. Chernikov, F. Blagojeyic
D. S. Nikolopoulos, and N. Chrisochoides. Multigrain paral
lel delaunay mesh generation: challenges and opportsnitie
for multithreaded architectures. I€S '05: Proceedings of
the 19th annual international conference on Supercomputin
pages 367-376, New York, NY, USA, 2005. ACM Press.

M. Bern, D. Eppstein, and J. R. Gilbert. Provably Good
Mesh Generationlournal of Computer and System Sciences
48(3):384-409, June 1994.

M. W. Bern, D. Eppstein, and S.-H. Teng. Parallel con-
struction of quadtrees and quality triangulatiomsterna-
tional Journal of Computational Geometry and Applications
9(6):517-532, 1999.

D. K. Blandford, G. E. Blelloch, and C. Kadow. Engineegin
a compact parallel delaunay algorithm in 3d.Rroceedings
of the ACM Symposium on Computational Geome2006.
To Appear.

G. E. Blelloch, J. C. Hardwick, G. L. Miller, and D. Talmor
Design and Implementation of a Practical Parallel Delaunay
Algorithm. Algorithmica 24(3-4):243-269, Aug. 1999.

S.-W. Cheng, T. K. Dey, H. Edelsbrunner, M. A. Facellodan
S.-H. Teng. Sliver Exudatiodournal of the ACM47(5):883—
904, Sept. 2000.

[8] A. Chernikov and N. Chrisochoides. Generalized delguna
mesh refinement: From scalar to parallel. I8th Interna-
tional Meshing Roundtablepages 563-580, Birmingham,
AL, Sept 2006.

L. Chew, N. Paul, and F. Sukup. Parallel constraineduteds
meshing, 1997.

L. P. Chew. Guaranteed-Quality Delaunay Meshing in BD.

(2]

(3]

[4]

(5]

[6]

[7]

9]

[10]

Proceedings of the Thirteenth Annual Symposium on Compu-

tational Geometrypages 391-393, Nice, France, June 1997.
Association for Computing Machinery.

[11] N. Chrisochoides and D. Nave. Simultaneous mesh genera
tion and partitioning for delaunay meshes, 1999.

[12] H. Edelsbrunner, X.-Y. Li, G. L. Miller, A. Stathopou-
los, D. Talmor, S.-H. Teng, A. Ungér, and N. Walkington.
Smoothing and cleaning up slivers. Rroceedings of the
32th Annual ACM Symposium on Theory of Compuiiiages
273-277, Portland, Oregon, 2000.

[13] A. Goldberg, S. Plotkin, and G. Shannon. Parallel sytnyre
breaking in sparse graphs. Broc. 19th ACM Symposium on
Theory of Computingpages 315-324, 1987.

[14] S. Har-Peled and A. Ungor. A Time-Optimal Delaunay Re-

finement Algorithm in Two Dimensions. IBymposium on

Computational Geometyp005.

B. Hudson, G. Miller, and T. Phillips. Sparse Voronoi-Re

finement. InProceedings of the 15th International Meshing

Roundtable pages 339-356, Birmingham, Alabama, 2006.

Long version available as Carnegie Mellon University Tech-

nical Report CMU-CS-06-132.

B. Hudson, G. Miller, and T. Phillips. Sparse VoronoifiRe-

ment. Technical Report CMU-CS-06-132, School of Com-

puter Science, Carnegie Mellon University, PittsburgmriPe

sylvania, June 2006.

M. Isenburg, Y. Liu, J. R. Shewchuk, and J. Snoeyinke &tn-

ing computation of Delaunay triangulationACM Trans.

Graph, 25(3):1049-1056, 2006.

C. Kadow.Parallel Delaunay Refinement Mesh Generation

PhD thesis, Carnegie Mellon University, Pittsburgh, April

2004.

[19] M. Kulkarni, L. P. Chew, and K. Pingali. Using transaxts

in delaunay mesh generation. Workshop on Transactional

Memory Workloads2006.

F. Labelle. Sliver Removal by Lattice Refinement. Rro-

ceedings of the Twenty-Second Annual Symposium on Com-

putational GeometryAssociation for Computing Machinery,

June 2006.

X.-Y. Li. Generating well-shaped-dimensional Delaunay

meshesTheor. Comput. Sgi296(1):145-165, 2003.

[22] X.-Y. Li and S.-H. Teng. Generating well-shaped Delayin

meshed in 3D. IrfProceedings of the twelfth annual ACM-

SIAM symposium on Discrete algorithnpages 28-37. ACM

Press, 2001.

G. L. Miller, S. E. Pav, and N. J. Walkington. When and why

ruppert’s algorithm works. IRroceedings, 12th International

Meshing Roundtablgages 91-102. Sandia National Labora-

tories, September 14-17 2003.

G. L. Miller, D. Talmor, S.-H. Teng, and N. Walkington.

A Delaunay based numerical method for three dimensions:

generation, formulation, and partition. Rroceedings of the

27th Annual ACM Symposium on Theory of Compuiiages

683-692, Las Vegas, May 1995. ACM.

G. L. Miller, D. Talmor, S.-H. Teng, and N. Walkington.

On the radius—edge condition in the control volume method.

SIAM J. Numer. Anal36(6):1690-1708, 1999.

[26] S. Mitchell and S. Vavasis. Quality mesh generationhiree
dimensions. InProc. 8th ACM Symp. Comp. Gegrpages
212-221, 1992.

[27] D. Nave and N. Chrisochoides. Boundary refinement in de-
launay mesh generation using arbitrarily ordered vertesrin
tion. INnCCCG pages 282-285, 2005.

[28] D. Nave, N. Chrisochoides, and L. P. Chew. Guaranteed-
quality parallel delaunay refinement for restricted potjriaé
domains. INSoCG’02 2002.

[15]

[16]

[17]

(18]

[20]

[21]

(23]

[24]

[25]

[29] J. Ruppert. A Delaunay refinement algorithm for quafity
dimensional mesh generatioh.Algorithms 18(3):548-585,
1995. Fourth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA) (Austin, TX, 1993).

[30] M. Shephard, J. E. Flaherty, H. L. de Cougny, C. Ozturan,
C. L. Bottasso, and M. Beall. Parallel automated adaptige pr
cedures for unstructured meshes. Technical report, RB5.19
URL: httpy/www.scorec.rpi.ediREPORT$1995-11.pdf.

[31] D. Spielman, S.-H. Teng, and A. Ungér. Parallel De-
launay refinement: Algorithms and analyses.Rroceed-
ings, 11th International Meshing Roundtaplpages 205—
218. Sandia National Laboratories, September 15-18 2002.
httpy//www.arxiv.orgabgcs.CG0207063.

[32] D. A. Spielman, S.-H. Teng, and A. Ungor. Time complex-
ity of practical parallel steiner point insertion algorith. In
SPAA '04: Proceedings of the sixteenth annual ACM sympo-
sium on Parallelism in algorithms and architecturgzages
267-268, New York, NY, USA, 2004. ACM Press.

[33] T. Tu, D. O’Hallaron, and O. Ghattas. Scalable paradiel
tree meshing for terascale applications AGMIEEE Super
Computing Conferen¢&eattle, WA, 2005.

[34] M. J. Turner, R. W. Clough, H. C. Martin, and L. P. Topp.
Stiffness and deflection analysis of complex structudes.
Aeronaut. Scj.23:805-824, 1956.

