
Sparse Parallel Delaunay Mesh Refinement ∗

Benoît Hudson Gary L. Miller Todd Phillips
Computer Science Department

Carnegie Mellon University
{bhudson,glmiller,tp517}@cs.cmu.edu

ABSTRACT
The authors recently introduced the technique of sparse mesh re-
finement to produce the first near-optimal sequential time bounds
of O(n lg L/s+m) for inputs in any fixed dimension with piecewise-
linear constraining (PLC) features. This paper extends that work to
the parallel case, refining the same inputs in timeO(lg(L/s) lg m)
on an EREW PRAM while maintaining the work bound; in prac-
tice, this means we expect linear speedup for any practical number
of processors. This is faster than the best previously knownparallel
Delaunay mesh refinement algorithms in two dimensions. It isthe
first technique with work bounds equal to the sequential case. In
higher dimension, it is the first provably fast parallel technique for
any kind of quality mesh refinement with PLC inputs. Furthermore,
the algorithm’s implementation is straightforward enoughthat it is
likely to be extremely fast in practice.

Categories and Subject Descriptors: F.2.2 [Analysis of Algo-
rithms and Problem Complexity]: Nonnumerical Algrithms and
Problems

General Terms: Algorithms, Theory

Keywords: Shared-Memory Parallelism, Mesh Generation, Com-
putational Geometry

1. INTRODUCTION
The meshing problem is very old, going at least back to the 1950’s
– the early days of the finite element method [34]. The goal is
to partition the input domain up into simple pieces. These simple
pieces are then used to embed functions over the domain such as
temperature or velocity. By requiring that the mesh resolvefea-
tures, we can allow the embedded function to be discontinuous at
these features, thus giving better interpolation for the same number
of pieces. By using good shaped pieces we ensure interpolation
error guarantees. Finally, by minimizing the number of pieces we

∗This work was supported in part by the National Science Foundation under
grants ACI 0086093, CCR-0085982 and CCR-0122581.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’07,June 9–11, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-667-7/07/0006 ...$5.00.

minimize the time and space to represent these functions with the
same quality of interpolation error.

More formally, the meshing problem takes as input a domain
containing a collection of features and returns a triangulation of the
domain. The features are points, edges, and, in higher dimensions,
polygonal faces; this is termed a Piecewise Linear Complex [25].
There are four fundamental properties we would like of the mesh-
ing algorithm. One, the mesh shouldconform to the input: all the
vertices, edges, and faces should appear as a union of simplices
in the mesh. Two, all the tetrahedra should havegood quality.
Three, the number of tetrahedra should not be much more than in
an optimal triangulation that is conforming and good quality: our
algorithm outputs a mesh that issize-competitivewith an optimal
mesh. Lastly, the algorithm should bework efficient and fast.

The meshing problem as we have stated was first posed in 2D
by Bern, Eppstein, and Gilbert [3] who proposed a quadtree algo-
rithm. Ruppert [29] gave anO(n2) time, size-competitive algorithm
for the meshing problem using Delaunay refinement. Mitchelland
Vavasis [26] extended the quadtree algorithm to 3D and proved that
the Bern, Eppstein, and Gilbert algorithm was in fact also size-
competitive. All of the above work required that there be no small
angles formed between an two input features. The traditional as-
sumption, which we too require, is that all input angles are at least
90◦. Handling smaller input angles is an area of open research in
3D; in two dimensions, some techniques are known [23].

Most applications require meshes where all simplices (triangles,
tetrahedra, . . .) havegood aspect ratio: the volume ratio of the cir-
cumscribing sphere to the largest inscribed sphere is not too large.
Delaunay refinement algorithms more naturally produce simplices
of good radius-edge ratio: the ratio of the circumcribing radius to
the length of the shortest edge is not too large. In two dimensions,
these criteria are equivalent, but in 3D and higher, the corner case
of slivers arises.

We can now state ourmain results: We introduce a new parallel
algorithm for refining a mesh in any fixed dimension. For a broad
class of inputs, it is asymptotically work optimal, and the parallel
depth is within a logarithmic factor of optimal. The algorithm out-
puts a mesh with at most a constant factor more vertices than an
optimal good aspect ratio mesh.

Our parallel algorithm extends our prior sequential algorithm
Sparse Voronoi Refinement (SVR)[15]. The SVR algorithm has
output-sensitive runtimeO(n lg(L/s)+m), with constants depending
only on the dimension and a prescribed radius-edge quality bound.
HereL is the size of the domain being meshed ands is the smallest
input feature. Thus, for most meshing inputs in practice (includ-
ing integer coordinates) this matches the optimal time bound of
Θ(n lg n+m).

The SVR sequential algorithm at a very high level alternatesbe-

tween two types of moves: “break” and “clean”. In the sequential
design, only one break move happens during a break phase, while
during a clean phase only one clean move may happen at a time.
The first problem this paper addresses is to show that many break
and clean moves can be performed simultaneously, removing this
control dependency. The beauty of Sparse Voronoi Refinementis
that this is true and fairly easily shown. This is due to the fact that
we maintain a good radius-edge mesh throughout the life of the
algorithm. Note that quadtree based algorithms have been paral-
lelized in a similar fashion [4].

The second issue is dealing with input features and showing
that this part of the code can also be parallelized. This partof
the analysis is the main contribution. SVR in parallel generates
a mesh of each feature. These parallel meshing procedures inter-
act by reporting balls: spheres that contain and protect mesh el-
ements. Lower-dimensional meshes report to higher-dimensional
meshes about balls that must be protected. Conversely, a higher-
dimensional mesh will report to a lower-dimensional mesh the balls
into which they would like to add a point. The higher-dimensional
mesh may stall while the lower-dimensional mesher refines its mesh.
To ensure sufficient amount of parallelism we show that the mesh
will only stall a constant amount of time before it can proceed,
and that a sufficient amount of work can be done in parallel in any
round.

It is interesting to point out that study into parallelizingSVR has
led to a more close analysis of the sequential algorithm, making it
simpler by removing unnecessary dependencies. The study ofthese
dependencies will enable improvements beyond parallelization; we
discuss several avenues for extension in the Conclusion.

2. RELATED WORK
Finding parallel unstructured meshing algorithms has beena re-
search topic since the early 1990’s [30] and is still an important
research topic today [8]. The work generally falls into one of two
types, strong theoretical results for point sets, or engineered so-
lutions to handle general input without good guarantees. Inthe
realm of parallel algorithms that handle only point sets, most oct-
tree methods parallelized fairly easily for point input, but higher-
dimensional features have proven difficult to handle efficiently [33].
Spielmanet al. present [32], anO(lg m) parallel time bound with
O(mlg m) work is shown for simple implementations of Delaunay
Refinement on point sets in parallel.

A variety of parallel algorithms have been engineeered to handle
input feature constraints, but with few or no theoretical guarantees
on output size [9, 11, 28, 27, 5, 18]. The current best theoretical
results for parallel meshing with features in 3D is the algorithm of
Spielmanet al.[31]. They present a parallel 3D meshing algorithm
that handles input segments inO(lg2(L/s) polylog(n)) time, but
their algorithm is not work efficient.

3. SEQUENTIAL SPARSE REFINEMENT
We will first give an abstract overview of the sequential SVR algo-
rithm. SVR maintains a mesh for every input feature (See Figure
1). The features can be partially ordered by containment, yielding
an obvious notion of asubfeature. We say thatF is a subfeature of
F′ if F is of lower dimension thanF′ andF is spatially contained
in F′. For instance, a boundary segment may be a subfeature of
an input surface constraint. Superfeature may be defined symmet-
rically.

Midstream, the partition implied by a mesh does not necessarily
coincide with all the meshes of its subfeatures, and so the algorithm

d = 0

d = 1

d = 2

d = 3

Figure 1. SVR works with a mesh of each feature at each dimension.
We have the 3D volume mesh, a 2D mesh for each constraint surface, a
1D mesh for each of the edges of those surfaces, and zero-dimensional
meshes for the corners. The meshes are naturally nested by contain-
ment of features. All the meshes are geometrically embedded together
in E3, but their connectivity does not necessarily coincide midstream, so
SVR uses careful communication between meshes.

maintains the geometric correspondance between meshes of differ-
ent dimension: a Delaunay simplex in a higher-dimensional mesh
has a pointer to every intersecting Delaunay simplex in any coinci-
dent lower-dimensional mesh. For simplicity in this work, we will
consider any two simplices to be intersecting if their containing
circumspheres intersect. In general, the geometric correspondance
can be maintain more or less accurately, depending on implemen-
tation concerns.

SVR also maintains one mesh for the entire mesh domain; we
refer to this highest-dimensional mesh as theD-mesh. At the end,
the algorithm returns the finalD-mesh as its output.

3.1 Initializing SVR
The first phase of the algorithm is to create coarse feature meshes
from the input. We set up a constant size mesh for each of the input
features and initialize the needed data structures.

The input features could be of many possible types. In 2D, fea-
tures are only either vertices or edges. In either case, these are of
constant size. When working in 3D, the 2D input features could be
of unbounded size; consider the case of conforming to input poly-
gons with an unbounded number of sides. Clearly, further compli-
cations can arise in higher dimension. Since a basic understanding
of the algorithm can be achieved in the case of features of bounded
size, we will restrict our input to such features. We first make more
explicit the input.

Let T be the input PLC to be meshed with ambient dimension
D. We will assume thatT contains its own “bounding box”.

The goal to to mesh the interior of this bounding box. In a more
complicated version of the algorithm, we would introduce bound-
ing boxes for each feature and later remove these lower-dimensional
bounding boxes from the mesh. To simplify this discussion, we will
assume that the input features do not need bounding boxes. That
is, for each polytopeF in T of dimensiond we assume thatF
has bounded size, is convex, and has a Delaunay triangulation with
good radius-edge in itsd-dimensional space..

Parallel

Blocking

Figure 2. We show that lower-dimensional work only blocks spatially lo-
cal work in the higher-dimensional meshes, so that any geometric areas
of the mesh can work in parallel (circled areas). This ability to fully exploit
spatial parallelism even in the presence of features is a key component
of Parallel SVR.

We start by constructing the Delaunay triangulationTP of each
polytopeP. Each triangulationTP will be maintained as a mesh in
it own right. We letd denote the dimension of this polytope.

More formally, ad-simplex s is the convex closure of a set of
d + 1 affine independent points in a space of dimensionD. The
d+1 points are theverticesof s. Thecircumball of s is the smallest
radius openD-ball containing the vertices ofson its boundary. The
circumcenter andcircumradius of s are the center and radius of
its circumball. Each circumball will be reported to all superfeature
meshes that intersect the simplex.

We say a ballB is nearly empty if 1) the interior is empty of
points, or 2) there are no points on the boundary ofB and at most
one in the interior. We assume for simplicity that initiallyall the
circumballs are nearly empty. This condition will be maintained
throughout the algorithm.

We maintain the following information with each simplexs in
each meshTP:

• A list of all uninserted points that are contained ins.

• A list of all simplices from all subfeature meshes whose cir-
cumball intersects the circumball ofs.

• A list of all simplices from all superfeature meshes whose
circumball intersects the circumball ofs.

Throughout the algorithm we will maintain the set of meshes
(one for each feature), partially ordered by containment. We will
enforce that every circumball will be nearly empty with respect to
all higher-dimensional vertices. Central to the runtime ofthe algo-
rithm will be the invariant that every mesh is of bounded radius-
edge, although the intermediate bound will be worse than in the
final output.

3.2 SVR Work Set
Once we have finished this initialization, SVR progresses byre-
fining these coarse feature meshes until all the features appear in
theD-mesh and the final shape-quality bounds have been achieved.
Suppose we are given a radius-edge boundρ to be satisfied by the
final output. The algorithm maintains a work set of Delaunay sim-
plices to be destroyed by refinement. Each task is tagged witha
type, the dimension, a handle into the appropriate mesh, anda ge-
ometric point we wish to insert. There are three types:
 tasks represent poorly shaped Delaunay simplices that must
be remedied by refinement.
 tasks represent balls (D-spheres) that contain and pro-
tect lower-dimensional Delaunay simplices whose destruction has
been ordered by some higher-dimensional entity desiring refine-
ment in the region.
Finally,  tasks are balls corresponding to the incongru-
ences between lower-dimensional meshes and theD-mesh. These
must be made to appear in theD-mesh by some refinement.

The work set is ordered with tasks first, in increasing order
of dimension; then tasks in increasing dimension; then
the tasks. The intuition for the ordering is as follows:
cleaning first ensures that all the meshes maintain sufficiently good
quality for basic operations to remain work efficient. Encroachment
then enforces that low-dimensional Voronoi cells keep paceand do
not remain oversize, ensuring that spatial locality is the same in all
dimensions. Then as a default we work toward conformity, so that
all the input features eventually appear in the final output mesh.

For further details on this sequential algorithm, see [15].The
goal of the rest of this paper is to expose as much parallelismas is
possible in the work set.

4. ALGORITHM
To parallelize the sequential algorithm, we first discuss a very generic
algorithmic framework for processing a work set with conflicting
tasks. This generic version quite independent of the meshing prob-
lem at hand; the algorithm is somewhat standard. Then, beginning
in we will show how to instantiate the unspecified parts of that al-
gorithm for our geometric computation.

The analysis of our algorithm will be under a PRAM model: we
have as many processors as we can use, all of them have uniform
cost to access a shared memory pool, and there is a global clock.
Most operations can be done with each memory cell being accessed
exclusively by one processor per clock tick (the EREW model).
Some require a CRCW model, where all processors can concur-
rently access memory. A standard result is that any reasonable
shared-memory machine withp processors can simulate a PRAM
with at mostO(lg p) overhead.

4.1 Generic algorithm
As input to the function, we assume we are given a setS of tasks
to process. We will also assume the existence of four oracles, and
one black-box function. Three of the oracles tell us about three
different graphs over the tasks on the work set. The black box takes
a task, processes it, and returns a set of additional tasks towork
on. Finally, the fourth oracle updates the work set given theset of
tasks we processed. An instantiation of the algorithm is simply an
implementation of the oracles and of the processing step.

The three graphs-oracles are:

• B: A directed edgea 7→ b means untila occurs,b
cannot proceed.

PW S(S: a work set)
1: return if S is empty
2: S′ ← ∅ {set of tasks to defer}
3: G← C(S)

{Defer Tasks Blocked by Lower-Dimensional Work}
4: for each taskw ∈ B(S) in paralleldo
5: remove B(w) from C
6: add B(w) to S′

7: end for
{Process all the Unblocked Tasks}

8: Colour the conflict graphG usingk ∈ O(∆) colours.
9: Let Gi be the set of tasks of colouri.

10: P← ∅ {the set of processed tasks}
11: for i = 1 tok do
12: for each taskw ∈ Gi in paralleldo
13: if w ∈ G then
14: remove M(w) from G
15: addw to P
16: processw similarly as the sequential algorithm
17: end if
18: end for
19: end for

{New Work Set is the Deferred Tasks and the New Tasks}
20: return S′ ∪NW(P)

Figure 3. The generic algorithm. Given a work set, we compute the
conflict graph, defering blocked tasks until the next round. Then we
colour the graph, which gives us a safe ordering for the tasks. Finally,
we iterate over each colour and perform the work. tasks that have been
made moot by a task in a prior iteration of the loop are simply ignored.

• C: An edge (a,b) means thata andb cannot be pro-
cessed simultaneously, though they can be processed in ei-
ther order.

• M: A directed edgea 7→ b means that ifa occurs,b will
be moot. Unless the reverse edge exists, it is legal to perform
b thena. However, it is not legal to performa thenb.

The B graph must be acyclic. The M graph need not be
– in fact, it is common to have two tasks make each other moot. We
assume that M is a (directed) subgraph of C: if a moots
b, thena andb cannot both be processed simultaneously. Finally,
the graphs must all be∆-sparse; having bounded degree∆ ∈ O(1).

Since we have not yet defined the oracles, we cannot bound their
cost. However, we can discuss the overhead of parallel processing.

• ComputingG is linear work and constant depth. This follows
directly from C and B being sparse graphs.

• Colouring the graph isO(lg |S|) parallel depth andO(|S|)
work. One could also trade depth and work using an al-
gorithm of Goldberg, Plotkin, and Shannon [13], and get
O(lg∗ |S|) depth forO(|S| lg∗ |S|) work.

• The main loop sees each task at most once, doesO(1) work
per task looking upw to see whether it has become moot, and
if not, doesO(1) more work removing fromS the tasks that
w makes moot. The remaining time is simply to iterate over
the colours:

One iteration of PWS is called around. Every round,
every task on the work set is either processed, mooted, or blocked.
Blocked tasks will reappear next round unless they were mooted,
alongside new tasks generated by the processed tasks.

What we’ve just shown is that the depth of each round is es-
sentiallyO(lg |S|) per round, due to the colouring, and the optimal
O(|S|) work. It remains to discover the number of rounds.

S(〈T, reason〉)
1: If T has been removed,return
2: Let B = B(c(T),kr(T)).
3: ComputeS the set of neighbouring simplices that intersectB
4: for ∀ T ′ ∈ S {in series} do
5: for ∀ p ∈ T ′ {in parallel} do
6: if p ∈ kr(T), choosep
7: end for
8: end for
9: if no p was chosen, letp = c(T).

10: for ∀ T ′ ∈ S {in series} do
11: for ∀ Y ∈ T ′ {in parallel} do
12: if p encroachesY, and eitherp is a Steiner point, orp is

the second point to encroach uponY then
13: E(〈Y, 〉)
14: end if
15: end for
16: end for
17: if noY was enqueuedthen
18: I(p, T)
19: else
20: E(〈T, 〉)
21: end if

Figure 4. Processing a task. We first see if there is a lower-dimensional
vertex to insert. If not, we try to insert the circumcenter. Even then,
we check whether we must yield to lower-dimensional facets that we
encroach. If we do yield, we try this task again by re-enqueueing it for
next round. If not, we insert the point we chose.

4.2 Processing
Each task in the work set is a pair consisting of a simplexT and the
reason, defined below, that this task is on the work set. To process
a task, we use a variant of the S call described in the sequential
algorithm to find a pointp to insert, and to check for encroach-
ment on lower-dimensional features (see Figure 4). If thereis no
encroachment, we insertp using a variant of I (see Figure 5).

I has three phases: the first updates the mesh, the second
updates the mapping to lower-dimensional cells, the third updates
the mapping to higher-dimensional cells. We will show that the
mesh is sparse; implying that the first and third phases are constant
time and can therefore be done sequentially. The second phase,
however, could cost as much asO(n), so we must parallelize that
phase. Thankfully, we can do it in the obvious trivial fashion, tak-
ing O(1) depth and linear work on a CRCW.

4.3 Populating the work set
Given a cellT in some meshM that corresponds to a featureF,
we can determine whether that cell and feature define a task, using
the rules that follow. After processing, then, we can examine every
cell created by I and see if it matches any or several of the
rules. The necessary sequencing of rules is written at the end of
this section.

R 1 (). If RM(T)/rM(T) > ρ then we add the task
〈T, 〉.

R 2 (). If T contains at least one uninserted point
p, then we add the task〈T, 〉.

R 3 (). During aTI in a mesh MF in
dimension d, if the query point q is a Steiner point (it has con-
tainment dimension d), and is inside the circumball of a lower-

I(p, T)
1: Compute Delaunay cavityC of p in M(T), starting atT
2: Create a new vertexv for p
3: Compute the new starS aroundv
4: Relocate points and protective balls:
5: for ∀ T ′ ∈ C {in series} do
6: for ∀ Y ∈ T ′ {in parallel} do
7: for ∀ T ′′ ∈ S {in series} do
8: if B(Y) intersectsT ′′, assignY to T ′′

9: end for
10: end for
11: end for
12: for ∀ T+ that contain members ofC do
13: replaceC by {S, v}
14: end for
15: for ∀ T ′′ ∈ S {in series} do
16: check Rules 1, 2, 4
17: end for

Figure 5. Performing the insertion of a point p. We compute the change
to the current mesh M(T), notify higher-dimensional meshes about the
change, then reassign lower-dimensional uninserted points and protec-
tive balls. Loops over the cavity and star can be in series, as can loops
over higher-dimensional meshes: these sets have bounded cardinality.
Loops over the lower-dimensional features must be in parallel.

dimensional simplex T , then we add the task〈T, 〉. Sim-
ilarly, if q has containment dimension d′ < d, but a vertex of the
mesh MF already encroaches upon T, we add the task〈T, 〉.

D 4.1. A simplex T (and its associated circumball) is
said to bepartially resolved if at least two of its vertices appear in
the D-mesh.

R 4 ( ). Assume T holds two partially
resolved lower-dimensional circumballs T′ and T′′. If T ′ and T′′

intersect each other, then we add two tasks:〈F, T ′,-〉
and, symmetrically,〈F, T ′′,-〉.

The weak-encroachment move is not in the original sequential
code; however, we will see that it is required for achieving the full
parallelism allowed by the problem. This was first noted by Spiel-
man, Teng, and Üngör [31].

We check the clean, break, and weak-encroachment rules on
all cells created during I. Encroachment is checked during
TI.

Each of the first few rules are very cheap to check: the clean
move is a few arithmetic operations. The break move requiresnot-
ing, in the the parallel redistribution step of I, whether the cell
has any uninserted points inside. The weak-encroachment rules re-
quires checking any feature being redistributed for whether it has
become partially resolved. Because of quality guarantees and the
α-Lemma (Lemmas 5.1 and 5.3), there are onlyO(1) partially-
resolved features in any cell, so we can check all pairs in constant
time.

4.4 Conflict graph
The goal of the conflict graph is to ensure that two tasks can bepro-
cessed simultaneously without special processing. Here, we show
how in a sparse mesh we can define a sparse conflict graph, which
then allows us to stage insertions into the mesh in parallel without
much modification to standard sequential codes for incrementally
updating a mesh.

With each simplex, we associate aprotected zonewith respect
to a given feature mesh; describing the area where a point being
inserted could possibly modify the local geometry and/or topology.
If two tasks being performed in parallel concurrently both modify
the same simplex, this might require some special handling.Thus,
we will put a  edge between any two such tasks. More
formally:

D 4.2. Given a simplex T , theprotected zone of T is
the union of all circumballs who intersect T ’s circumball.

Clearly, then, adding a new vertexu into the mesh only affects
the cellV(v) if u is inside the protected zone ofv. Furthermore, it
is important to note that the conflicts we want to maintain will not
change during the processing of a round: any conflict not present
before any colour has been processed will never become a conflict.
The protected zone was defined in an continuous way; but it is easy
to choose a discrete set of open balls that cover the protected zone:
namely, the union of the Delaunay balls around the vertex:

F 4.3. With each Voronoi node p of a cell VM(v), associate
the ball B(p, |vp|). The intersection of the protected zone of v with
the mesh domain M is equal to the union of all those balls.

Finally, we define the conflict graph. We put an edge between
two tasksa andb if their respective protective zones intersect, and
a is on a subfeature or the same feature asb.

L 4.4. The conflict graph is of bounded degree.

P. Observe that this graph is just the square of the intersec-
tion graph of all the circumballs, thus it suffices to prove that the
intersection graph of the circumballs is of bounded degree.This is
precisely true for a radius-edge quality Delaunay triangulation [24,
16] The protected zone of a vertexv is precisely the union of the cir-
cumballs of all Delaunay simplices incident onv. Therefore, any
work item only encroaches on a constant number of cells in any
mesh. A conflict edge goes between two tasks that both encroach
upon the same cell. Clearly, there can only be a constant number of
such edges.

The results in this section showed that (a) the conflict graphal-
lows parallel processing of tasks with minimal changes to standard
codes; (b) the conflict graph is cheap to compute; (c) the conflict
graph matches the requirements of the generic algorithm.

4.5 Blocking graph
In the previously-published sequential code, the algorithm very rigidly
ordered the moves on its work set. Any task anywhere in space was
blocked by any lower-dimensional clean task anywhere in space.
Any break task was blocked by any clean task anywhere, in any
dimension.

We can achieve rather more parallelism by loosening the block-
ing graph. We will generalize the proofs of the sequential code, and
show that we can achieve the same algorithmic properties with the
following blocking graph:

• A break or weak encroachment move is blocked by any clean
move with which it has a conflict edge.

• Any move is blocked by a lower-dimensional yield move
with which it has a conflict edge.

Since this blocking graph is a subset of the conflict graph, itis
clear that it takes onlyO(1) time to check any node for any blocks
it may have.

4.6 Mooting graph
We put a mooting edge froma to any other moveb if a andb are
working on the same feature, and the pointa inserts is inside the
ball of the Voronoi node ofb. The intuition is that the moveb
identified a Voronoi node it wanted to eliminate for some reason.
The Voronoi node has now been eliminated, thusb is moot.

We also put a mooting edge from a taska to a break moveb
if the point inserted bya will change the cell ofb. The intuition
is that a break move indicates that a cell is too large; we break to
whittle it down slowly to the local feature size. As long as some
point modifies the cell, we have whittled at it and need to check if
any further whittling is in order.

5. RUNTIME ANALYSIS
In this section, we present the runtime analysis of ParallelSVR.
First, we will state some useful structural lemmas from the sequen-
tial algorithm analysis [15].

We can sketch the proof as follows: The algorithm quickly makes
progress. Any task stays on the work set for onlyO(1) rounds, even
if blocked by clean moves or lower-dimensional work. Once this is
established, we need only show that every task enters the work set
within O(lg L/s) rounds.

First we show that withinO(lg L/s) rounds, the mesh conforms
to the input features. This proof will rely on packing results from
the sequential algorithm that bound the spatial propagation of mesh
tasks, thus removing the possibility of long chains of discovery.
One the algorithm has conformed to the feature size, it only remains
to improve the quality of the mesh before outputting.

As the algorithm draws toward completion, we show that only
O(lg L/s) more rounds of cleaning are necessary. As in the sec-
ond part, this will be due to a bound on the spatial propagation of
cleaning moves, again eliminating the possibility of long chains of
discovery.

5.1 Structural Lemmas
We use a few key facts repeatedly through our proofs. The first
is that every mesh always has good quality, even at intermediate
stages of the algorithm.

L 5.1 ([16, T 8.5]). At all times during the algo-
rithm, every mesh has qualityρ′ ∈ O(ρ).

The most important corollary of this, that we use repeatedly
throughout the runtime proofs is the following: because of the qual-
ity guarantees, we cannot pack more than a constant number ofver-
tices around a point before the feature size of the mesh is forced to
fall.

L 5.2 (P L: [16, L 6.7]). Given a point
p in a mesh M, the algorithm can only fit O(1) more points around
p until cfsM′ (p) ∈ o(cfsM(p)).

Finally, except at initialization, there is a correspondence in the
size between all sub-meshes: essentially, if the algorithmperforms
any actions in a lower-dimensional mesh, it is because that mesh
locally has about the same scale as the top-dimensional mesh.

L 5.3 (α-L: [16, L 7.5]). Suppose p is consid-
ered for insertion into a mesh M. At that time, we know that
cfsMΩ (p) < α cfsM(p)

5.2 Fast progress
Recall that a task is always either processed, mooted, or blocked
every round. We want to make sure that a task is not blocked for
too long – in fact, we will require that it be blocked onlyO(1)
rounds.

L 5.4. If two taskss a and b conflict, then the Voronoi cells
that define the protected zones of each have r(a) ∈ Θ(r(b)).

P. If the two tasks are of the same dimension, then by the
quality condition they have the same size. Otherwise, we canin-
stead invoke theα-lemma for the same result.

L 5.5. Given a task a, blocked by tasks in a lower-dimensional
mesh F, at most O(1) insertions can be performed in F before a is
no longer blocked by F.

P. By the α-lemma, we know that all tasks inF that are
blockinga have about the same geometric size asa. By the Packing
Lemma, then, we can only insertO(1) points intoF such that the
tasks that insert them will blocka.

T 5.6. A task on the work set blocks O(1) rounds before
it is either processed or mooted.

P. Any moveb that blocksa has about the same size as
a, and the two moves must be geometrically near each other. By
induction on the type and dimension ofb, we can assume thatb
is processed withinO(1) rounds. Therefore, if we are to blocka
for many rounds, we needb to name a successorb′. However, we
cannot do this more thanO(1) times by the Packing Lemma: if we
tried, that would violate the condition thatb′ has the same size and
is neara. The induction bottoms out at clean moves in dimension 1
and tops out at break moves in dimensionD, so for constantD, the
longest chain of blocks isO(1). If b is mooted, that only speeds up
the time at which it is removed from the work set.

5.3 The mesh conforms inO(lg L/s)

In this section we show that the mesh will conform to the inputsiz-
ing within O(lg L/s) rounds. The general idea is that every round,
everywhere that the mesh is too large for the local feature size, we
will insert a point nearby. The packing proof guarantees that af-
ter insertingO(1) points near an input point or protective ball, the
mesh size locally has shrunk in scale by half. Given that the initial
scale isO(L) and the final scale isΩ(s), we can only perform this
halving at mostO(lg L/s) times in the finest part of the mesh.

L 5.7. If a point p does not appear in the D-mesh M, then
within O(1) rounds some point q will appear in the new D-mesh
M′, such that|pq| ≤ cfsM(p) and NNM′ (q) ∈ Ω(cfsM(p)).

P. If p is not in the mesh, then there is a break move asso-
ciated withp on the work queue. From Theorem 5.6, we know that
the break move will either occur or be removed from the queue in
O(1) rounds. If it occurs, thenq is the point inserted by the break
move. If it does not occur, then someq was inserted that modified
the cell that containsp, obviating the break move.

L 5.8. If a lower-dimensional cell VM− (v) does not con-
form to the local feature size – that is, it has rM− (v) ∈ ω(lfs v), then
within O(1) rounds some point q will appear in the new D-mesh
M′, such that|vq| ≤ cfsM(v), and NNM′ (q) ∈ Ω(cfsM(v)).

P. If the cell is resolved (it and its neighbours inM− all
appear in theD-mesh), then if it does not conform to lfs, it must
weakly encroach on another feature. This will trigger the weak-
encroachment rule, and a point will be inserted nearby soon.If
instead the cell is not resolved, then it or one of its neighbours in
M− will trigger one of the two break rules, and a point will be
inserted nearby soon.

T 5.9. After O(lg L/s) rounds, thePR algo-
rithm has produced a mesh of qualityρ′ ∈ O(ρ) that conforms to
local feature size.

P. By the Packing Lemma, afterO(1) applications of either
Lemma 5.7 or Lemma 5.8, everywhere the mesh size was larger
than lfs, the mesh size will fall by half. There areO(lg L/s) length
scales.

5.4 The mesh is cleaned inO(lg L/s)
The Theorem of the previous section showed that we achieved a
conformal mesh of some constant quality. What’s left is to show
that the cleanup work afterwards takes only anotherO(lg L/s) rounds,
at which point we will have produced the quality the user asked
for. This result rests on two facts: first, that clean moves are al-
ways geometrically larger (in a sense) than the move that created
the skinny cell being cleaned. Second, that if we split a celldue to a
clean move, the split move is not much smaller than the clean move.
Given that clean moves only spawn geometrically larger moves, a
clean move can only haveO(lg L/s) generations of descendents.

L 5.10 (C  ). Consider a mesh vertex v
whose cell VM(v) is skinny, and whose nearest neighbour u was
inserted into a prior version M′ of the mesh. The outradius of v is
larger than the radius of the task w that inserted u: RM(v) ≥ ρǫ2 r(w).

P. We know thatRM(v) ≥ ρrM(v) sinceVM(v) is skinny.
Furthermore,rM(v) = |uv|/2. Clearly,v is a neighbour ofu, so|uv| ≥
NNM′ (v). The taskw that insertedu was considering inserting some
point p. It may have warped tou, up to a distance of (1− ǫ)r(w).
ThusNNM′ (u) > ǫr(w).

L 5.11. Consider an task b. The task was
spawned by some higher-dimensional task a. Then r(b) > 2d−1/2r(a).

This is a standard result which comes directly out of the spac-
ing proof of SVR [16, proof of Lemma 7.4]. Thus, so long as
ρǫ > 2d−3/2, a clean movea will only spawn moves – “children” of
a – of size larger than the predecessor ofa. What is left to show
is that all the descendents ofa are larger than the children. This
is, in fact, false in general: until the mesh is conformal, sizes do
shrink. However, we know from Theorem 5.9 that we need only
wait O(lg L/s) rounds before reaching strong conformality. After-
wards, a yield move will never itself yield to another feature: it will
only spawn clean moves, which we know grow.

T 5.12. Given a strongly conformal mesh of qualityρ′,
thePR algorithm takes O(lg L/s) rounds before reach-
ing qualityρ.

5.5 Overall Analysis
T 5.13. Given as input a Piecewise Linear Complex, a

parameter k∈ (0,1), and a radius/edge qualityρ such that both
kρ > 2d−3/2 and (1 − k)ρ > 2d−3/2, then thePR algo-
rithm produces a Strongly Conforming output mesh of size m with
every simplex having radius/edge at leastρ, in O(lg(L/s) lg(m))
parallel depth and work O(n lg L/s+m).

P. Theorem 5.9 shows that afterO(lg L/s) rounds, the mesh
is strongly conforming. Theorem 5.12 shows that at most another
O(lg L/s) rounds later, the mesh is both strongly conforming and
has good radius/edge quality. According to the analysis in Sec-
tion 4.1, each round takesO(lg |S|) time, where|S| is the size of the
workset in that round. A constant fraction of tasks end up inserting
a point into the input, so we can bound the sum of all|S| over time
by O(m). This establishes the parallel depth bound.

The work bound follows directly from the analysis of the static
algorithm, and from the work-efficiency of the parallelization.

6. PARALLEL SLIVER REMOVAL
So far, we have shown how to produce a good radius-edge Delau-
nay mesh. In 3D or higher dimension, bounded radius-edge meshes
are unsuitable for many applications due to the presence ofslivers–
tetrahedra with good radius-edge ratio but poor aspect ratio. There
have been several papers written on sliver-free meshing, orsliver
exudation, i.e. modifying a mesh to remove slivers [7, 12, 20].

In this section, we overview how to parallelize the sliver elimina-
tion algorithm of Li and Teng [21, 22] as an easy extension of Par-
allel SVR. As input, their algorithm takes a strongly-conforming,
bounded radius-edge mesh such as the one output by PR-
, and parametersδ, b, ρ, andσ. Iteratively, they remove a sliver
T by inserting a pointp into the circumball ofT. Instead of using
the circumcenter ofT, however, they define apicking regionnear
c(T) – a ball B(c(T), δr(T)). Li and Teng, following Chew [10],
made the following powerful observation:

T 6.1 ([21, T 4.6]). For appropriateδ, b,ρ, and
σ, a constant fraction of points in B(c(T), δr(T)) induce only new
slivers of size at least br(T).

Thus, by randomly selecting points from the picking region until
we find such a safe point, we can ensure that destroying slivers only
generates geometrically larger slivers, guaranteeing swift termina-
tion.

The specific changes needed to make PR produce a
good aspect ratio mesh are the following. First, we must change the
procedure for choosing a Steiner point as described here. Second,
we add a new kind of task:

R 5 (). If ρ(T) < ρ butσ(T) > σ, or, in D > 3, if any
subfacet of T satisfies those conditions, then add T to the work set
with reason.

Sliver elimination is only guaranteed to terminate if locally the
mesh has good radius-edge radio. Therefore, tasks are blocked
by  tasks.

The run time follows by methods analogous to Lemma 5.10.
Thus we still get at mostO(lg L/s) rounds. Hence, we can remove
slivers in only a constant increase in work and time over justgen-
erating a bounded radius-edge mesh.

7. CONCLUSIONS
A standard assumption is that the spreadL/sof the input is polyno-
mial in the input size. Indeed, on integer-valued input, thespread
is at mostO(n1/d). Under the polynomial spread assumption, the
bounds we have proven are that our algorithm achieves the opti-
mal work bound ofO(n lg n + m), and is only a logarithmic fac-
tor O(lg m) off-optimal in depth (the lower bound is from sorting).
Theoretically, we could achieveO(lg(n) lg∗(m)) time but at the cost
of aO(lg∗m) factor in work.

In more practical terms, we predict near-linear speedup as we
add processors for as many processors as we know how to build.
Furthermore, the data structures and analysis techniques are of ob-
vious interest in analyzing several related problems: the distributed-
memory case [8], out-of-core and streaming computation [17], and
dynamic mesh refinement [1].

Several authors have experimented with shared-memory parallel
Delaunay mesh refinement. A common technique is that ofopti-
misticparallelization, where operations are performed specu-
latively, and backed out if a conflict is noticed [2, 19]. As noted by
Kulkarni et al., “optimistic parallelization is useful only if the risk
of rollbacks is small.” In Ruppert’s algorithm, the conflictgraph
may have high degree (up to linear), and the risk of rollbacksmay
accordingly be large. Antonopouloset al. note that in their code,
they see a rollback rate of only about 6-10%; but they implement
an algorithm that produces a near-uniform mesh. Kulkarniet al.
do not report rates, but seem highly troubled by the number ofroll-
backs they see in their experiments. We suggest that our sparse par-
allel Delaunay algorithm, given that it has a small conflict graph,
is likely to have a tiny rollback rate even in 3D. Furthermore, prior
solutions need to produce a Delaunay triangulation in a preprocess-
ing phase, likely by using a separate parallel triangulator[6]. Our
preprocessing is far simpler, reducing software development time
and probably also overall runtime.

References
[1] U. A. Acar and B. Hudson. Optimal-time dynamic mesh re-

finement: preliminary results. InProc. 16th Fall Workshop on
Computational Geometry, 2006.

[2] C. D. Antonopoulos, X. Ding, A. Chernikov, F. Blagojevic,
D. S. Nikolopoulos, and N. Chrisochoides. Multigrain paral-
lel delaunay mesh generation: challenges and opportunities
for multithreaded architectures. InICS ’05: Proceedings of
the 19th annual international conference on Supercomputing,
pages 367–376, New York, NY, USA, 2005. ACM Press.

[3] M. Bern, D. Eppstein, and J. R. Gilbert. Provably Good
Mesh Generation.Journal of Computer and System Sciences,
48(3):384–409, June 1994.

[4] M. W. Bern, D. Eppstein, and S.-H. Teng. Parallel con-
struction of quadtrees and quality triangulations.Interna-
tional Journal of Computational Geometry and Applications,
9(6):517–532, 1999.

[5] D. K. Blandford, G. E. Blelloch, and C. Kadow. Engineering
a compact parallel delaunay algorithm in 3d. InProceedings
of the ACM Symposium on Computational Geometry, 2006.
To Appear.

[6] G. E. Blelloch, J. C. Hardwick, G. L. Miller, and D. Talmor.
Design and Implementation of a Practical Parallel Delaunay
Algorithm. Algorithmica, 24(3–4):243–269, Aug. 1999.

[7] S.-W. Cheng, T. K. Dey, H. Edelsbrunner, M. A. Facello, and
S.-H. Teng. Sliver Exudation.Journal of the ACM, 47(5):883–
904, Sept. 2000.

[8] A. Chernikov and N. Chrisochoides. Generalized delaunay
mesh refinement: From scalar to parallel. In15th Interna-
tional Meshing Roundtable, pages 563–580, Birmingham,
AL, Sept 2006.

[9] L. Chew, N. Paul, and F. Sukup. Parallel constrained delaunay
meshing, 1997.

[10] L. P. Chew. Guaranteed-Quality Delaunay Meshing in 3D.In
Proceedings of the Thirteenth Annual Symposium on Compu-
tational Geometry, pages 391–393, Nice, France, June 1997.
Association for Computing Machinery.

[11] N. Chrisochoides and D. Nave. Simultaneous mesh genera-
tion and partitioning for delaunay meshes, 1999.

[12] H. Edelsbrunner, X.-Y. Li, G. L. Miller, A. Stathopou-
los, D. Talmor, S.-H. Teng, A. Üngör, and N. Walkington.
Smoothing and cleaning up slivers. InProceedings of the
32th Annual ACM Symposium on Theory of Computing, pages
273–277, Portland, Oregon, 2000.

[13] A. Goldberg, S. Plotkin, and G. Shannon. Parallel symmetry-
breaking in sparse graphs. InProc. 19th ACM Symposium on
Theory of Computing, pages 315–324, 1987.

[14] S. Har-Peled and A. Üngör. A Time-Optimal Delaunay Re-
finement Algorithm in Two Dimensions. InSymposium on
Computational Geometry, 2005.

[15] B. Hudson, G. Miller, and T. Phillips. Sparse Voronoi Re-
finement. InProceedings of the 15th International Meshing
Roundtable, pages 339–356, Birmingham, Alabama, 2006.
Long version available as Carnegie Mellon University Tech-
nical Report CMU-CS-06-132.

[16] B. Hudson, G. Miller, and T. Phillips. Sparse Voronoi Refine-
ment. Technical Report CMU-CS-06-132, School of Com-
puter Science, Carnegie Mellon University, Pittsburgh, Penn-
sylvania, June 2006.

[17] M. Isenburg, Y. Liu, J. R. Shewchuk, and J. Snoeyink. Stream-
ing computation of Delaunay triangulations.ACM Trans.
Graph., 25(3):1049–1056, 2006.

[18] C. Kadow.Parallel Delaunay Refinement Mesh Generation.
PhD thesis, Carnegie Mellon University, Pittsburgh, April
2004.

[19] M. Kulkarni, L. P. Chew, and K. Pingali. Using transactions
in delaunay mesh generation. InWorkshop on Transactional
Memory Workloads, 2006.

[20] F. Labelle. Sliver Removal by Lattice Refinement. InPro-
ceedings of the Twenty-Second Annual Symposium on Com-
putational Geometry. Association for Computing Machinery,
June 2006.

[21] X.-Y. Li. Generating well-shapedd-dimensional Delaunay
meshes.Theor. Comput. Sci., 296(1):145–165, 2003.

[22] X.-Y. Li and S.-H. Teng. Generating well-shaped Delaunay
meshed in 3D. InProceedings of the twelfth annual ACM-
SIAM symposium on Discrete algorithms, pages 28–37. ACM
Press, 2001.

[23] G. L. Miller, S. E. Pav, and N. J. Walkington. When and why
ruppert’s algorithm works. InProceedings, 12th International
Meshing Roundtable, pages 91–102. Sandia National Labora-
tories, September 14-17 2003.

[24] G. L. Miller, D. Talmor, S.-H. Teng, and N. Walkington.
A Delaunay based numerical method for three dimensions:
generation, formulation, and partition. InProceedings of the
27th Annual ACM Symposium on Theory of Computing, pages
683–692, Las Vegas, May 1995. ACM.

[25] G. L. Miller, D. Talmor, S.-H. Teng, and N. Walkington.
On the radius–edge condition in the control volume method.
SIAM J. Numer. Anal., 36(6):1690–1708, 1999.

[26] S. Mitchell and S. Vavasis. Quality mesh generation in three
dimensions. InProc. 8th ACM Symp. Comp. Geom., pages
212–221, 1992.

[27] D. Nave and N. Chrisochoides. Boundary refinement in de-
launay mesh generation using arbitrarily ordered vertex inser-
tion. In CCCG, pages 282–285, 2005.

[28] D. Nave, N. Chrisochoides, and L. P. Chew. Guaranteed-
quality parallel delaunay refinement for restricted polyhedral
domains. InSoCG’02, 2002.

[29] J. Ruppert. A Delaunay refinement algorithm for quality2-
dimensional mesh generation.J. Algorithms, 18(3):548–585,
1995. Fourth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA) (Austin, TX, 1993).

[30] M. Shephard, J. E. Flaherty, H. L. de Cougny, C. Ozturan,
C. L. Bottasso, and M. Beall. Parallel automated adaptive pro-
cedures for unstructured meshes. Technical report, RPI, 1995.
URL: http://www.scorec.rpi.edu/REPORTS/1995-11.pdf.

[31] D. Spielman, S.-H. Teng, and A. Üngör. Parallel De-
launay refinement: Algorithms and analyses. InProceed-
ings, 11th International Meshing Roundtable, pages 205–
218. Sandia National Laboratories, September 15-18 2002.
http://www.arxiv.org/abs/cs.CG/0207063.

[32] D. A. Spielman, S.-H. Teng, and A. Üngör. Time complex-
ity of practical parallel steiner point insertion algorithms. In
SPAA ’04: Proceedings of the sixteenth annual ACM sympo-
sium on Parallelism in algorithms and architectures, pages
267–268, New York, NY, USA, 2004. ACM Press.

[33] T. Tu, D. O’Hallaron, and O. Ghattas. Scalable paralleloc-
tree meshing for terascale applications. InACM/IEEE Super
Computing Conference, Seattle, WA, 2005.

[34] M. J. Turner, R. W. Clough, H. C. Martin, and L. P. Topp.
Stiffness and deflection analysis of complex structures.J.
Aeronaut. Sci., 23:805–824, 1956.

