
This research is sponsored in part by the Wright Laboratory, Aeronautical Systems Center, Air Force Material
Command, USAF, and the Advanced Research Projects Agency (ARPA) under grant number F33615-93-1-1330, and
in part by NSF Grant CCR-9016641. Cray C-90 computing time was provided by the Pittsburgh Supercomputing
Center under Grant ASC890018P. The U.S. government is authorized to reproduce and distribute reprints for govern-
ment purposes, notwithstanding any copyright notation thereon.

The views and conclusions contained in this document are those of the authors and should not be interpreted as
representing the official policies or endorsements, either expressed or implied, of ARPA, NSF, or the U.S. govern-
ment.

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Keith D. Gremban Marco ZaghaGary L. Miller

Performance Evaluation
of a

New Parallel Preconditioner

 October 1994
CMU-CS-94-205



Keywords: linear systems, iterative methods, preconditioners, sparse and very large systems, parallel algorithms,
parallel processors, vector processors



Abstract

Solution of partial differential equations by either the finite element or the finite difference methods
often requires the solution of large, sparse linear systems. When the coefficient matrices associated
with these linear systems are symmetric and positive definite, the systems are often solved iteratively
using the preconditioned conjugate gradient method. We have developed a new class of precondition-
ers, which we callsupport tree preconditioners, that are based on the connectivity of the graphs corre-
sponding to the coefficient matrices of the linear systems. These new preconditioners have the
advantage of being well-structured for parallel implementation, both in construction and in evalua-
tion. In this paper, we evaluate the performance of support tree preconditioners by comparing them
against two common types of preconditioners: those arising from diagonal scaling, and from the
incomplete Cholesky decomposition. We solved linear systems corresponding to both regular and
irregular meshes on the Cray C-90 using all three preconditioners and monitored the number of itera-
tions required to converge, and the total time taken by the iterative processes. We show empirically
that the convergence properties of support tree preconditioners are similar, and superior in many
cases, to those of incomplete Cholesky preconditioners, which in turn are superior to those of diago-
nal scaling. Support tree preconditioners require less overall storage, less work per iteration, and yield
better parallel performance than incomplete Cholesky preconditioners. In terms of total execution
time, support tree preconditioners outperform both diagonal scaling and incomplete Cholesky precon-
ditioners. Hence, support tree preconditioners provide a powerful, practical tool for the solution of
large sparse systems of equations on vector and parallel machines.





1

1 Introduction

Solution of many partial differential equations by either the finite element or finite difference methods requires
the solution of systems of equations of the form , whereA is large and sparse. Large sparse systems are
often solved iteratively. WhenA is also symmetric and positive definite, the method of conjugate gradients
(CG) is frequently the iterative method of choice. The performance of CG can be improved by the use of a pre-
conditioner to accelerate convergence; this yields the method of preconditioned conjugate gradients (PCG).

Much research has focused on the development of good preconditioners. Three criteria should be met by a
good preconditioner  for the coefficient matrix  [4][25]:

• Preconditioning with  should reduce the number of iterations required to converge.

•  should be easy to compute. That is, the cost of constructing the preconditioner should be small
compared to the overall cost of solving the linear system.

• The system  should be easy to solve. This can be interpreted in two ways. First, the work
per iteration due to applying the preconditioner should be small, of roughly the same order of mag-
nitude as the work per iteration without preconditioning; this is particularly important on serial
machines. Second, the time per iteration due to applying the preconditioner should be small; thus,
on parallel machines it is important that the application of the preconditioner be parallelizable.

Preconditioners can be categorized as being eitheralgebraic, or multilevel [15]. Algebraic preconditioners
depend only on the algebraic structure of the coefficient matrixA; we classify these preconditioners asa poste-
riori , since they depend only on the coefficient matrix and not on the details of the process used to construct
the linear system. Diagonal scaling and incomplete Cholesky [19] are two examples of algebraic precondition-
ers. Multilevel preconditioners are less general in that they depend on some knowledge of the differential
equation or of the discretization process [13]; we classify these preconditioners asa priori, since they depend
on knowledge about the construction of the coefficient matrix, rather than on just the matrix itself.

The best performance is achieved by multilevel preconditioners; some multilevel preconditioners can achieve
nearly optimal convergence rates [15]. In addition, many multilevel preconditioners can be effectively parallel-
ized [13][15]. However, as stated above, they requirea priori knowledge involving the formation of the linear
system, and such information is often unavailable.

A posteriori preconditioners are the most general. Of the two mentioned above, diagonal scaling can be effec-
tively parallelized, but yields little improvement in the convergence rate. The incomplete Cholesky precondi-
tioners are effective at reducing the number of iterations required for convergence, but are very difficult to
parallelize in general.

Therefore, there exists a need for effective, parallelizable,a posteriori preconditioners. The support tree pre-
conditioners, to be introduced in the next section, are a step towards fulfilling this need.

Currently, support tree preconditioners can only be determined for a subset of the symmetric positive definite
matrices — those that are also diagonally dominant with non-positive off-diagonals. This subset of matrices
represents a large number of important applications, however; many second-order, elliptic boundary value
problems discretized using either finite differences, or finite elements with linear or bilinear elements yield
these matrices.

In this paper, we evaluate the performance of the preconditioned conjugate gradient method using support
trees (STCG) by comparison with the performance using diagonal scaling (DSCG) and incomplete Cholesky
preconditioning (ICCG). In all cases considered, we found that STCG yielded convergence rates competitive
with, or superior to ICCG (and therefore much better than DSCG), and execution times superior to either

Ax b=

B A

B

B

Bz r=



2

ICCG and DSCG on a single processor of a Cray C-90. Figure 1 illustrates an example of the results obtained
for a set of linear systems defined on a sequence of meshes of increasing size. The meshes were 8x8xn, where
n varied from 8 to 1024. DSCG, ICCG, and STCG were each applied to solving the linear systems. The figure
shows the number of iterations required for each of the methods to converge and the total execution time.

We use the work of Greenbaum, Li, and Chao [13] as a guide in our evaluation procedure. We take a typical
problem, discretize it at various levels of resolution to obtain problems of various sizes, and compare the per-
formance of the three PCG methods as a function of problem size. We take the model problem used by Green-
baum et al. as our two-dimensional model problem, but also compare the results for more complicated right
hand sides. Since the model problem uses regular meshes, we also compare the performance of the precondi-
tioners on a sequence of irregular two-dimensional meshes. Finally, we extend the study to three dimensions,
and compare results for two different sequences of three dimensional regular meshes.

In the next section, we present an overview of diagonal scaling and incomplete Cholesky preconditioners. In
section 3 we introduce support tree preconditioners, and show how they can be constructed. In section 4 we
discuss our implementation of STCG, and show that the resource requirements (storage and work per iteration)
of support tree preconditioners are less than those of incomplete Cholesky preconditioners. Then, section 5
presents empirical results from solving systems of equations arising from regular and irregular meshes in 2D,
as well as over regular 3D meshes. All experiments were performed on a Cray C-90, using a single vector pro-
cessor.

2 Diagonal Scaling and Incomplete Cholesky

In this section, we review diagonal scaling and incomplete Cholesky preconditioners and point out the advan-
tages and disadvantages of each.

Diagonal scaling is the simplest form of preconditioner to implement. The preconditionerB is defined by
. Diagonal scaling is not very effective at reducing the number of iterations required to con-

0.0

2000.0

4000.0

6000.0

8000.0

10000.0

12000.0

to
ta

l t
im

e 
(m

se
c)

8 16 32 64 128 256 512 1024
Mesh Length

ICCG

DSCG

STCG0

200

400

600

800

1000

1200

1400

1600

1800

Ite
ra

tio
ns

8 16 32 64 128 256 512 1024
Mesh Length

DSCG

STCG

ICCG

Figure 1: Performance Results for Preconditioners on 8x8xn Meshes.
a) Iterations to convergence.

b) Total execution time for iterative process on a Cray C-90 (msecs).

a) b)

B diag A( )=



3

verge, but is easily parallelized, yielding very high computational rates on vector and parallel architectures [8],
[13], [17], [24]. In fact, the computational rates achievable by DSCG can often make up for the high number of
iterations, making DSCG the iterative method of choice in many cases [8], [17].

Incomplete Cholesky (IC) preconditioners were first proposed by Meijerink and van der Vorst [19]. Let

, whereE is obtained by performing the standard Cholesky factorization ofA while setting

 wherever . Then  is the IC preconditioner ofA [12]. The intuition behind IC precon-

ditioning is that sinceEEt is an approximate factorization ofA, B should be a good approximation ofA. Incom-
plete Cholesky preconditioners are effective at accelerating the rate of convergence. Compared to DSCG,
ICCG requires slightly less than twice as much work per iteration, but can reduce the number of iterations by
more than a factor of two, and is therefore suitable to apply on scalar architectures. However, ICCG has proven
difficult to parallelize.

The slowest part of ICCG is the solution of the preconditioned system, which requires two triangular solves

, and . Since the preconditioner has the same sparsity pattern asA, the triangular solves
require as much work per iteration as the matrix-vector multiply. More important from the standpoint of paral-
lel processing is the fact that it is difficult to parallelize triangular solves. Three major directions have been fol-
lowed in attempts to make ICCG more efficient and parallel: reformulations to reduce the amount of work per
iteration; determination of orderings to increase the amount of parallelism; use of factored inverses. We dis-
cuss each of these approaches in the paragraphs below.

Eisenstat [11] reported an efficient implementation of ICCG for cases in which the preconditioner can be rep-

resented in the form , where . By rescaling the original

system by  to obtain , where , , and , one can solve

the explicitly preconditioned system , where ,

and  using unpreconditioned CG. Further manipulation of the relationships shows that, for the

explicitly preconditioned system, the matrix-vector product at each iteration of unpreconditioned CG can be
performed by two triangular solves, the multiplication of a vector by a diagonal matrix, and two vector addi-
tions. As a consequence, each iteration with the explicitly preconditioned system requires only slightly more
flops than an iteration of unpreconditioned CG with the original system.

There are two major problems with this method that keep it from being applicable in general. First, the form of
the factorization is only equivalent to ICCG in the case of rectangular grids [8]. Second, although the solution
to the original system obtained from the exact solution to the explicitly preconditioned system is correct, the
convergence properties of the systems are different; a small residual with respect to the explicitly precondi-
tioned system does not necessarily yield a small residual with respect to the original system. Consequently, it is
not possible to compare Eisenstat’s formulation with general preconditioning methods.

By carefully ordering the nodes of the linear system, quite significant parallelism can be obtained in some
cases. In the case ofnxn rectangular meshes, nodes that lie along diagonals are independent, and may be pro-
cessed in parallel. In [25], van der Vorst reports an experiment in which he achieved 76% of the Mflop rate of
unpreconditioned CG by using Eisenstat’s method and diagonal ordering. In [8], Dongarra et al. presented the
results of a similar experiment in which ICCG achieved 84% of the Mflop rate of unpreconditioned CG.

The technique of determining independent nodes to evaluate in parallel is known aslevel scheduling, and was
first discussed in general by Anderson and Saad [2]. The effectiveness of ordering nodes for optimal parallel
performance is limited by the topology of the original system, however. The excellent results reported above
were for regular rectangular graphs. For graphs with high connectivity or irregular structure, the inherent par-
allelism may be minimal, and an optimal ordering may be difficult to determine.

Node ordering is a method for obtaining the best possible parallelism inherent in performing triangular solves

A EEt R+=

Ei j 0= Ai j 0= B EEt=

Ey r= Etz y=

K L D+( ) D 1− D Lt+( )= A L diag A( ) Lt+ +=

D 1 2⁄− Ãx̃ b̃= Ã D 1 2⁄− AD 1 2⁄−= x̃ D1 2⁄ x= b̃ D 1 2⁄− b=

L̃ I+( )
1−
A I L̃+( )

1−
y L̃ I+( )

1−
b= Ã L̃ diag Ã( ) L̃

t
+ +=

y I L̃
t

+( ) x=



4

by the usual backward and forward substitution algorithms. An alternative is to use a different algorithm for
solving triangular systems. Alvarado and Schreiber [1] presented a method of solving a sparse triangular sys-
tem by representing the inverse as the product of a few sparse factors, which enables solving the system as a
sequence of sparse matrix-vector multiplications. Parallel efficiency is improved since all the scalar multiplica-
tions required can be performed in parallel, while all the necessary additions can be performed in time logarith-
mic in the number of non-zeros in the largest row of any factor. The improvement in performance is quite
dramatic for fairly dense matrices, but the authors note that little improvement is gained when the triangular
factors are very sparse, as is the case for ICCG.

In summary, no general methods have been found to be effective at improving the parallel performance of
ICCG. Several studies have shown that, despite impressive reductions in the number of iterations required for
convergence, incomplete Cholesky preconditioners have such poor parallel performance that they cannot com-
pete with diagonal scaling with respect to total execution time on either parallel or vector machines
[8],[13],[17],[24].

3 Support Trees

3.1 Background

Discretization of many boundary value problems using either the finite element or finite difference methods
leads to linear systems of the form , where the coefficient matrix A is a symmetric, diagonally domi-

nant M-matrix. (A is an M-matrix if  for ,A is nonsingular, and  [19].) We call these matri-

cesLaplacianmatrices, or simplyLaplacians.

Laplacian matrices are isomorphic to edge-weighted undirected graphs. We also refer to the Laplacian as an
operator that maps an edge-weighted undirected graph to a Laplacian matrix as defined below:

Let G = G(A) be an undirected graph on n nodes with weighted edges. LetA be annxn matrix such
that:

• , whenever nodes i andj are connected with an edge of weightω;

• , wheredi is the weight of the self-loop at nodei (if node i has no

self-loop, then );

thenA is the Laplacian ofG.

A Laplacian matrix also corresponds to a resistive network [9]. In this case, an edge weight corresponds to the
conductanceof the connection between two nodes, and extra diagonal weight corresponds to the conductance
of a resistive connection between the node and ground.

Let A be a Laplacian matrix of ordern, and letG be the weighted, undirected graph onn nodes corresponding
to A. LetH be a support tree forG. ThenH is a regular tree such that the leaves ofH are the nodes ofG. H con-
tains more nodes thanG, but will in general have fewer edges. ForG a 2D planar mesh,H can be visualized as
“sticking out” in the third dimension withG hanging off ofH; hence the namesupport tree.

We claim, forH constructed in a certain way depending on the topology and edge weights ofG, thatH is a
good preconditioner forG. We can analytically prove this statement (see [14]), but here prefer to provide intu-
ition.

Ax b=

Ai j 0≤ i j≠ A 1− 0≥

Ai j Aj i ω−= =

Ai i di Ai j
i j≠
∑+=

di 0=



5

The central concept behind support trees is the idea of maintaining the volume of communication between sub-
sets of the nodes in a graph, while reducing the distance required for the communication. Solving a system of
linear equations defined over a graph using an iterative method is like amixing problem. Every matrix-vector
multiply is equivalent to mixing the data at one node with the data from its neighbors; at the fixed point of the
system, no further mixing occurs. Since a matrix-vector multiply only lets nodes communicate with their
immediate neighbors, mixing cannot be complete until information from distant nodes has been obtained.
Thus, convergence is limited by some function of the diameter of the graph. For a planar graph withn nodes,

the diameter is O( ). The diameter of a support tree for that graph is only O(logn), implying that mixing (and
hence convergence of the iterative method) will occur more rapidly. The method of construction and the
weighting of the support tree ensures that the mixing that occurs in the support tree is similar to the mixing that
occurs in the original graph.

In the next subsection, we show how to constructH.

3.2 Construction

Let A be a Laplacian matrix of ordern, and letG = G(A) be the weighted, undirected graph onn nodes corre-
sponding toA. Let S0 be an edge separator ofG; that is, removal of the edges inS0 partitionsG into two dis-

connected subgraphsG0 andG1 such that . Now, continue the process recursively. Then, at the next

level, S00 partitionsG0 into G00 andG01, while S01 partitionsG1 into G10 andG11. The process terminates
when only singleton sets of nodes remain. Construct theseparator tree by introducing a node for each edge
separator, and connecting each node to its unique parent (if any) above it, and its children (if any) below it. The
node representingS0 is the root of the tree. The separator tree specifies a sequence of operations that can be
used to partition the graph to any level of resolution. Figure 2 illustrates a simple graph, a path on 8 nodes, and
a separator tree for the graph.

Each nodeS of the separator tree defines a subset R of the nodes inG: R is the set of singleton nodes at the
leaves of the subtree rooted atS. For any setR of nodes in G, letw(R) denote the total weight of the edges in
the frontier ofR, where the frontier ofR is the set of edges in G that connectR andR. Weight the edge in the
separator tree connectingS to its parent byw(R). Connect each leaf node in the separator tree to the singleton
nodes ofG, weighting the edges, as above, by the total weight of the edges incident to the node. Denote the
resulting tree byH; H has logn depth, 2n-1 nodes, andn leaves. We callH asupport tree for G. Figure 3 illus-

n

Gi
n
3

≥

S000 S00 S001 S010 S01 S011

0 4 5 6 71 2 3

S0
S0

S01
S00

S000 S001 S010 S011

a) b)

Figure 2: A Graph and Separator Tree.
a) A simple graph with separators shown.

b) Separator tree corresponding to separators in a.



6

trates a support tree constructed for the graph of Figure 2a, using the separator tree of Figure 2b.

The reason for weighting the edges of the support tree as given above is to maintain the volume of communi-
cation in and out of subsets. This is easiest to understand in terms of the resistive network analogy. For the set
S above, the flow of current into and out ofS is limited by the sum of the conductances of the edges incident to
S. By weighting the support tree as above, the current flow into and out ofS is preserved.

It should be noted that the process of constructing a support tree can be easily parallelized on several levels.
First, there is parallelism within the partitioning processes. Second, the partitioning processes applied to each
subgraph are independent. Thus, as each separator is applied, yielding two (or more) subgraphs, the indepen-
dent partitioning processes can be spawned off separately, and executed in parallel.

Support trees are not unique, because they depend upon the separators used to construct them. In practice, any
method for graph partitioning may be used to construct support trees. For example, we have constructed sup-
port trees using variants of dual tree bisection [7], and recursive coordinate bisection [23]. In the near future,
we will construct separator trees using spectral separators [16][21][23], and geometric separators [20] as part
of our research on the relationship between the method of partitioning and the performance of the correspond-
ing support tree preconditioner.

As stated previously, the exact form and weighting of the support tree depends on the partitioning method
employed. Even with a given partitioning method, support trees may take different forms. In the description
above of the construction process, the resulting support tree was a binary tree. It is clearly possible to partition
two or more times at a single level, yielding support trees that are quadtrees, oct-trees, and so on. In practice,
we have found it convenient to make the degree of the support tree correspond to the number of dimensions of
the space in which the graph is embedded. Hence, planar graphs yield quadtrees, while 3D meshes yield oct-
trees. Figure 4 illustrates a quadtree support tree for a 2D regular mesh.

3.3 Implementation as a Preconditioner

Let H be the support tree forG constructed using the recursive procedure outlined above. LetB be the Lapla-
cian matrix corresponding toH. We would like to useB as a preconditioner forA, butB is of order 2n-1, andA
is of ordern. How can this be accomplished? In another paper [14], we describe the theory proving thatB can
be used as a preconditioner forA. In this section, we present an overview of the theory in order to gain some
intuition. The essential idea is thatB is equivalent in some sense to a dense matrixK of ordern that is a good
preconditioner forA; B can be considered to be a computationally efficient form ofK.

Suppose thatH is a binary tree withn leaves andn-1 internal nodes. Assume that the leaves are numbered 1
throughn, so that the nodes ofH not shared byG are numberedn+1 to 2n-1. ThenB, the matrix corresponding
to H, has the form:

0 4 5 6 71 2 3

1413

12

1110

9

8

Figure 3: Support Tree.
This support tree was constructed using the graph and separator tree of Figure 2.

1

2

1

1

1

1

12 2222

2

2



7

(1)

whereD is nxn and diagonal. Figure 5 illustrates the form of the support tree matrix for a simple example. In
the figure, all the edges of the original graph are shown as dotted lines, and are assumed to have unit weights.
The nodes of the original graph have additional diagonal weightsdi. From the figure, the reasons for the form
of B are apparent.D, the upper left block, is diagonal because the nodes of the original graph are not connected
in the support tree. The blockR (andRt) represent the connections between the nodes of the original graph and
the new nodes of the support tree.S represents the connections between the new nodes of the support tree.

a) b)

Figure 4: 2D Regular Mesh and Support Tree.
a) A 2D regular 4-connected mesh.

b) A support tree for the mesh in a), constructed using recursive quadrisection. The
edges of the original mesh are shown as dotted lines in order to make the relationship

between the tree and the graph more clear.

B
D R

Rt S
=

1 2 3 4

5 6 7 8
9

11

10

12

13
d1+2

0
0
0
0
0
0
0
-2
0
0
0
0

0
d2+3

0
0
0
0
0
0
-3
0
0
0
0

0
0

d3+3
0
0
0
0
0
0
-3
0
0
0

0
0
0

d4+2
0
0
0
0
0
-2
0
0
0

0
0
0
0

d5+2
0
0
0
0
0
-2
0
0

0
0
0
0
0

d6+3
0
0
0
0
-3
0
0

0
0
0
0
0
0

d7+3
0
0
0
0
-3
0

0
0
0
0
0
0
0

d8+2
0
0
0
-2
0

-2
-3
0
0
0
0
0
0
8
0
0
0
-3

0
0
-3
-2
0
0
0
0
0
8
0
0
-3

0
0
0
0
-2
-3
0
0
0
0
8
0
-3

0
0
0
0
0
0
-3
-2
0
0
0
8
-3

0
0
0
0
0
0
0
0
-3
-3
-3
-3
12

D R

Rt S

Figure 5: A Support Tree Preconditioner and its Block Decomposition.
A support tree is shown at left, with the underlying graph shown in dotted lines. At

right is the matrix corresponding to the support tree, decomposed into the four
constituent blocks.



8

Since a Laplacian matrix is isomorphic to a graph, matrix operations correspond to graph operations. In partic-
ular, it can be shown that Gaussian elimination corresponds to a graph operation we call node reduction. A sin-
gle step of symmetric Gaussian elimination applied to row/columnk of a Laplacian matrixM corresponding to
a graphG yields a matrix  that corresponds to the graph  obtained fromG by deleting all the edges inci-
dent to nodek and adding edges between all the (former) neighbors of nodek.  is theSchur complementof
M with respect to the nodek. Pivoting in a matrix exchanges rows and columns, and is equivalent to renumber-
ing the nodes in the corresponding graph. These fact yield two particularly useful results:

• Applying Gaussian elimination to a tree from the root down, stopping at the leaves, results in a
complete graph on the leaves. We use this result to show how to construct a preconditionerK from
B such thatK is the same size asA. K has the disadvantage of being dense, however.

• Any tree has a zero-fill ordering. Gaussian elimination applied to the leaves of a tree produces no
fill. By applying symmetric Gaussian elimination recursively to the leaves of the new trees that
result at each step, complete reduction to a diagonal matrix can be performed using a transforma-
tion with the same sparsity pattern as the original matrix. We use this result to construct a factoriza-
tion of B that has the same sparsity pattern asB and yields a particularly efficient implementation of
the solution ofBz = r.

Figure 6 illustrates the relationship between pivoting and Gaussian elimination on matrices, and node ordering
and node reduction on graphs. At the top of the figure, we show how to reduce a tree from the root to the leaves
to obtain a (dense) preconditioner of the same order as the number of leaves in the tree. The bottom of the tree
illustrates how node reduction in the other direction, from leaves to root, produces no fill.

Applying Gaussian elimination toB in the order from root to leaves (i.e., from row 2n-1 up to rown+1), stop-
ping at the leaves, yields a matrixC of the form:

(2)

whereE is a diagonal matrix of ordern-1, andK is dense of ordern, and corresponds to an edge-weighted
complete graph defined on the leaves ofH, which are the nodes ofG.

M' G'
M′

2
-1
-1
0
0

-1
3
0

-1
-1

-1
0
1
0
0

0
-1
0
1
0

0
-1
0
0
1

0

2 1

3 4

=
reduce nodes 0,1

2
0
0
0
0

0
2.5

0
0
0

0
0
.4

-.2
-.2

0
0

-.2
.6

-.4

0
0

-.2
-.4
.6

0

2 1

3 4

=

1 1

1 1
.2 .2

.4

a)

1
0
0

-1
0

0
1
0

-1
0

0
0
1
0

-1

-1
-1
0
3

-1

0
0

-1
-1
2

4

2 3

1 0

=
reduce nodes 0,1

1
0
0
0
0

0
1
0
0
0

0
0
1
0

-1

0
0
0
1

-1

0
0

-1
-1
2

4

2 3

1 0

=

1 1

1 1

1 1
b)

Figure 6: The Effects of Node Ordering on Fill in Gaussian Reduction.
a) Two steps of symmetric Gaussian reduction performed on a matrix corresponding to

a tree numbered from the root to the leaves, yielding maximum fill.
b) Two steps of symmetric Gaussian reduction performed on a matrix corresponding to

a tree numbered from the leaves to the root; no fill results.

C K 0
0 E

=



9

In [14], we show the following:

• K is an effective preconditioner forA;

• If , then we also have .

That is, we can reduce the support tree preconditioner matrixB to a smaller, but dense, matrixK of the same
order as the original system that is an effective preconditioner for A. But, we need not solve the large, dense
system of equations defined byK to apply the preconditioner. Instead, we can obtain the same preconditioning
effect using the larger, but sparser tree-structured matrixB, by discarding the unneeded additional vector ele-
ments ( , above). We shall show in the next section that the tree-structured system is both very sparse, in
many cases having fewer non-zero elements than the original matrix, and computationally efficient, leading to
highly parallel code.

4 Implementation of STCG

In this section, we describe our implementation of the preconditioned conjugate gradient (PCG) method using
support tree preconditioners.

The key step in PCG is solving a linear system involving the preconditioner. That is, given a vectorr, find z
such thatBz = r, whereB is the preconditioner. A symmetric matrix corresponding to a tree has a zero-fill
ordering, or perfect ordering. For purposes of solving a linear system, this means that there exists a permuta-

tion matrixP such that , whereD is diagonal,L is unit lower triangular, and  has
the same sparsity pattern asA. Therefore, ifB is a support tree preconditioner,B has a perfect ordering. Prior to
calling our subroutine that implements STCG, we find the perfect ordering and permute the equations (equiva-
lently, renumber the tree) so that the factorization will be zero-fill.

Let B, be the matrix corresponding to a support tree ordered such that the leaves are numbered first, the root
last, and every other node is numbered such that ifi is the parent ofj, theni > j. Such an ordering is a perfect

ordering. Let  be the Cholesky factorization ofB. ThenC represents a directed tree with all edges

directed from the leaves towards the root, andCt represents the same tree, but with the edges reversed. Thus,
solving a tree-structured linear system involves propagating information up the tree, then propagating informa-
tion back down the tree. Figure 7 illustrates the graph-theoretic interpretation of Cholesky factorization.

K z⋅ r= B z
w

⋅ r
0

=

w

P B Pt⋅ ⋅ L D Lt⋅ ⋅= L L+ t

B C Ct⋅=

1
0
0

-1
0

0
1
0

-1
0

0
0
1
0

-1

-1
-1
0
3

-1

0
0

-1
-1
2

4

2 3

1 0

=

1 1

1 1

1.4
0
0
0
0

0
1
0
0
0

0
0
1
0
0

-.7
-1
0

1.2
0

0
0

-1
-.8
.58

1.4
0
0

-.7
0

0
1
0

-1
0

0
0
1
0

-1

0
0
0

1.2
-.8

0
0
0
0

.58

*

4

2 3

1 0

1 .8

1 .7

= *

4

2 3

1 0

1 .8

1 .7

Figure 7: Graph-theoretic Interpretation of Cholesky Factorization.
a) Cholesky factorization of a Laplacian matrix.

 b) Equivalent factorization of a tree into an tree directed from leaves to root, and a tree
directed from root to leaves.

a)

b)



10

We can make the process slightly more efficient by factoring a diagonal scaling matrix out of each Cholesky

factor, yielding , where  is now unit lower triangular. Graph theoretically, solving the precon-
ditioned system requires propagating information up a tree, scaling the values at each node, then propagating
information back down the tree.

The same properties of a tree that permit a zero-fill Cholesky factorization also permit efficient parallel evalu-
ation. The fact that a leaf is only adjacent to one node, its parent, means that leaves can be evaluated indepen-
dently going up the tree, and the result of each independent evaluation is only passed to one other node, the
parent. Similar parallel potential exists for propagating information back down the tree. Hence, a complete
binary tree withn leaves requires only  parallel steps, with the largest step requiring at mostn par-
allel evaluations. Prior to calling the STCG subroutine, we determine the order in which to evaluate nodes so
that as many leaves as possible are evaluated at each parallel step. We call this orderingrake-order and the
evaluation processleaf raking, since all existing leaves are “raked” off the tree at each step. Parallel node eval-
uation by leaf raking is a special case of a more general parallel algorithm known as parallel tree contraction
[22].

Figure 8 illustrates the process of leaf raking on a simple tree. An analogous process exists for the downward
directed tree: expansions from parents to children can be performed independently in parallel. Leaf raking can
result in impressive parallel performance. For example, consider the case of a quadtree support tree for annxn
mesh. The first and last steps in the evaluation of the preconditioner can be performed by evaluatingn2 nodes
in parallel.

In summary, our implementation of STCG differs from other implementations of PCG in the subroutine that
solves for the solution of the linear system involving the preconditioner. For this subroutine, we break the pre-
conditioner up into 3 factors: an upward pointing tree, a diagonal matrix, and a downward pointing tree. To
solve the linear system, we use leaf raking to move up one tree by solving for all leaves at a single level in par-
allel, we then divide by the diagonal at all nodes in parallel, then move down the tree using a leaf expanding
procedure, again solving for all the nodes at a single level in parallel. In total, O(logn) parallel steps are
required to solve the preconditioned system.

The performance of PCG is dominated by two operations: sparse matrix multiplication and preconditioning. In
fact, when applying the support tree preconditioner, the raking operation performed at each level is essentially
a sparse matrix multiplication. Thus, the bulk of the computation in the PCG algorithm can be implemented
with a single general-purpose sparse matrix multiplication subroutine. On the Cray C-90, we use an algorithm
called SEGMV, which accommodates arbitrary row sizes using “segmented scan” operations [6]. Compared to
other methods (such as Ellpack/Itpack and Jagged Diagonal), SEGMV performance is comparable for struc-
tured matrices, and superior for most irregular matrices. Thus our PCG implementations perform well on both
regular and irregular meshes.

B C̃ D C̃⋅
t

⋅= C̃

2 nlog⋅

rake

rake

rake

Figure 8: Leaf Raking and the Solution of a Lower Triangular System.
A linear system corresponding to a tree directed from leaves to root is shown at the left.

In the first parallel step, the solutions at the leaves are computed, and the right hand
side values at the parents are updated. In succeeding parallel steps, the process is

repeated at the leaves obtained when the previous set of leaves is removed. At the last
step (not shown), the solution at the root is computed.



11

4.1 Resource Requirements

Finally, we evaluate the resource requirements of STCG, and compare them with those of DSCG and ICCG.
We assume that the entire diagonal is stored for DSCG. For ICCG and STCG, we assume that the precondi-
tionerB has been factored asB = LDLt, whereL is unit lower triangular, and D is diagonal. Table 1 and Table 2
give the storage and work requirements for the solution of 2D square and 3D cubic meshes, respectively. For
the entries in the tables, lower order terms have been ignored. In 2D, ICCG is compared against a quadtree
form of a support tree. In 3D, an octtree form of a support tree is used.

Note from the tables, that DSCG is, of course, the cheapest preconditioner to use, in terms of both storage and
work per iteration required. In 2D, STCG is slightly better than ICCG in terms of both storage and work, but
the difference increases with increasing dimensionality. In general, the resource requirements for ICCG
increase with increasing graph connectivity. On the other hand, the resource requirements for STCG are
dependent only upon the number of nodes in the original graph and the form of the support tree, and are inde-
pendent of the graph connectivity.

In summary, although STCG involves more nodes than the graph underlying the preconditioner, the graph is so
sparse that the resource requirements are actually less than those of ICCG.

5 Empirical Evaluation of STCG

Greenbaum et al.[13] and Heroux et al.[17] both conducted empirical evaluations of preconditioner perfor-
mance with respect to convergence rates, and execution time (per iteration and total) on multiple processors.
Greenbaum et al. conducted their research on a simple analytically defined PDE, which allowed them to scale
the problem by varying the mesh size, and examine the performance as a function of problem size. Heroux et
al. used various matrices from the Harwell-Boeing set with artificial values. Several conclusions were common
to both studies. In particular, both studies found that ICCG significantly improved the convergence rate on
even fairly small matrices. However, because ICCG lacks significant potential parallelism, both studies also
found that the advantages of ICCG essentially vanish on vector and parallel machines. In this section, prima-
rily using the methods of Greenbaum et al., we will demonstrate that STCG is superior to ICCG for solving
large problems using serial machines, and is easily and effectively parallelized. Consequently, STCG vastly
outperforms ICCG and DSCG for solving large problems on vector and parallel machines.

Because we are interested in the effects on performance as the scale of the problem changes, we primarily fol-
low the methodology used by Greenbaum et al. in their study of preconditioners. We limit ourselves, to only
comparing DSCG (diagonally scaled conjugate gradient), ICCG (incomplete Cholesky conjugate gradient),
and STCG (support tree conjugate gradient). We compare the performance of the three solution methods ver-
sus problem size with respect to number of iterations and total running time over all iterations. In separate sec-
tions, we present the results for problems defined on a 2D regular mesh, a 2D irregular mesh, and two kinds of
3D regular meshes.

Table 2: Preconditioner Resource
Requirements for annxnxn Mesh.

Table 1: Preconditioner Resource
Requirements for annxn Mesh.

2D (nxn)
storage
+
*
/

DSCG
n2

0
0
n2

ICCG
5n2

3n2

4n2

n2

STCG
4n2

2n2

(8/3)n2

(4/3)n2

3D(nxnxn)
storage
+
*
/

DSCG
n3

0
0
n3

ICCG
7n3

5n3

6n3

n3

STCG
(24/7)n3

2n3

(16/7)n3

(8/7)n3



12

In all the results reported below, we report only the time utilized by the iterative process, and do not include the
time required for formation of the preconditioners. While total time is important, in many instances the linear
system will be solved many times, and the cost of forming the preconditioner can be amortized over the num-
ber of times the system is solved. Additionally, we are currently investigating the performance of various par-
titioning methods as one step towards constructing a version of STCG that is optimized from end to end.
Currently, the code used to generate support tree preconditioners is written in NESL, an experimental data-par-
allel language [5]. The various implementations of PCG were written in Fortran.

We made no attempt to go beyond the obvious optimizations to improve the performance of ICCG. Numerous
other authors have reported on the effects of ordering on ICCG (see, for example, [10]), and on parallel imple-
mentations of ICCG (see [8], [24], and [25]). Rather than reproduce their work, we decided to extrapolate val-
ues for an optimistic implementation of ICCG.

We applied the results of other researchers discussed in section 2 in order to determine an optimistic execution
time for ICCG. First, we assumed that a good node ordering could be computed and that solving the precondi-
tioned system could be performed at the same Mflop rate as the sparse matrix-vector multiply performed at
each iteration. We further assumed that the relative amount of work per iteration of ICCG was roughly twice
that of DSCG. These assumptions yielded an optimistic time per iteration of ICCG to be a little more than
twice that of DSCG. To be generous, we assigned a time per iteration for an optimistic ICCG to be exactly
twice that of DSCG. We used this factor of two in all comparisons reported in this paper. We refer to the
extrapolated optimistic ICCG as ICCG_OPT.

All results were obtained using a single processor on the Cray C-90 at the Pittsburgh Supercomputing Center.

In the discussions of the experiments that follow, all experimental results are presented as graphs. The raw
results in tabular form can be found in Appendix A.

5.1 Two-dimensional PDE on Regularnxn Meshes

In their work, Greenbaum et al. consider the discretization of a time-independent version of the diffusion equa-
tion defined on the unit square with Dirichlet boundary conditions:

For our experiments on regular meshes, we used the same equation withρ(x,y) = 1.0. We discretized the equa-
tion using the 5-point finite difference operator for the Laplacian, and varied the size of thenxn mesh usingn
ranging from 8 to 512 in powers of 2. In graph-theoretic terms, the resulting coefficient matrices correspond to
graphs that arenxn meshes with unit weight edges and self-loops on all boundary nodes.

The support tree preconditioners for this problem were constructed using recursive coordinate partitioning in
which, for each subset of points, the subset was split into four parts by bisecting first with respect to the x-coor-
dinates and then with respect to the y-coordinates. Hence, each support tree had the form of a quadtree.

5.1.1  Smooth Input Data

For our initial experiments, we used the same forcing function as Greenbaum et al.:

∇ ρ x y,( ) ∇u x y,( )⋅ f x y,( )=

x y,( ) 0 1,( ) 0 1,( )×∈

u 0 y,( ) u 1 y,( ) u x 0,( ) u x 1,( ) 0= = = =

f x y,( ) 2x 1 x−( )− 2y 1 y−( )−=



13

Our starting vector was . We used as our stopping criterion the condition reported to be superior by
Arioli et al. [3]:

(3)

We halted whenω2 ≤ 1.0 x 10-10.

Figure 9a shows the results in terms of number of iterations for convergence. The figure clearly shows that,
while ICCG outperforms STCG in terms of number of iterations required for convergence on small meshes,
the curves cross, and STCG is superior as the meshes get fairly large.

The total execution times are plotted in Figure 9b, with the extrapolated optimistic ICCG plotted as
ICCG_OPT. Both STCG and ICCG_OPT outperform DSCG in total time, although STCG is the fastest
method overall. Moreover, as the problem size increases, the difference between STCG and ICCG_OPT is
increasing.

5.1.2  Random Input

The forcing function used in the previous subsection was very smooth, and the problem converged to the solu-
tion fairly quickly. In a second set of experiments, we selected a more difficult right hand side. We used a ran-
dom vector in which each component was independently selected from the uniform distribution on [0,1].

We used the same stopping criterion as before, and halted when≤ 1.0 x 10-10. Our starting vector was

again .

Figure 10a shows the results in terms of number of iterations for convergence. In this set of experiments, con-
vergence required as many as three times the number of iterations for the same size mesh as did the smooth
input, and differences between the preconditioners became more pronounced. STCG started out performing

x0 0=

ω2

b A x̂⋅− ∞

A ∞ x̂ 1⋅ b ∞+
=

0

50

100

150

200

250

300

350

Ite
ra

tio
ns

8 16 32 64 128 256 512
sqrt(Mesh Size)

DSCG

STCG

ICCG

0.0

1000.0

2000.0

3000.0

4000.0

5000.0

6000.0

7000.0

8000.0

9000.0
to

ta
l t

im
e 

(m
se

c)

8 16 32 64 128 256 512
sqrt(Mesh Size)

ICCG

DSCG

STCG

ICCG-OPT

Figure 9: Results for 2D Regular Meshes, Smooth Input.
a) Iterations to convergence.

b) Total time for iterative process on Cray C-90 (msecs).

a) b)

ω2

x0 0=



14

similarly to ICCG, but improved rapidly, outperforming ICCG on the largest meshes.

Figure 10b shows total time for the iterative process. As above, we also show the results for an extrapolated
optimistic ICCG_OPT. STCG clearly had the best total execution time. Moreover, the difference between
STCG and the other methods increased with increasing mesh size.

5.1.3  Impulse Function Input

In a third set of experiments, we selected an additional difficult right hand side. We used an impulse function
for b, defined byb0 = 1.0, bi = 0.0 for i > 0. In our node ordering, node 0 is the lower left hand corner of the
mesh.

We used the same stopping criterion as before, and halted when≤ 1.0 x 10-10. Our starting vector was

again .

Figure 11a shows the results in terms of number of iterations for convergence. In this set of experiments, con-
vergence required even more iterations for the same size mesh as did the random input, and differences
between the preconditioners became even more pronounced. Again, STCG started out with performance simi-
lar to that of ICCG, but significantly outperformed ICCG on the largest meshes

Figure 11b shows total time for the iterative process. Since STCG requires less work per iteration than does
ICCG_OPT, and because STCG is highly vectorizable, STCG was the clear winner in terms of execution time.

5.2 Two-dimensional Problem on Irregular Meshes

The results for the PDE on a 2D regular mesh are one indication of the utility of STCG. Most application prob-
lems are not defined on regular meshes, however, so it is worthwhile to investigate the relative performance of
STCG on an irregular case. We were fortunate to have available to us a nested sequence of meshes developed

0.0

2000.0

4000.0

6000.0

8000.0

10000.0

12000.0

to
ta

l t
im

e 
(m

se
c)

8 16 32 64 128 256 512
sqrt(Mesh Size)

ICCG

DSCG

STCG

ICCG-OPT

0

50

100

150

200

250

300

350

400

Ite
ra

tio
ns

8 16 32 64 128 256 512
sqrt(Mesh Size)

DSCG

STCG

ICCG

Figure 10: Results for 2D Regular Meshes, Random Input.
a) Iterations to convergence.

b) Total time for iterative process on Cray C-90 (msecs).

a) b)

ω2

x0 0=



15

for an application problem — the computation of stress on a two-dimensional cracked plate. There are 9
meshes in all, with 10x2i nodes in each mesh,i = 0,1,2,3,4,5,6,8,9,10. (The data for the mesh withi = 7 was
unavailable.) Each mesh is a refinement of the next smaller (coarser) mesh. This sequence enabled us to inves-
tigate the performance of STCG as a function of grid size for an irregular mesh.

Figure 12 illustrates the coarsest and finest of the meshes. The crack in the plate runs from the center to the left
side, parallel to the x-axis. The crack was defined by creating two nodes for each visible mesh point; the two
nodes are not connected to each other; one connects only to nodes above the crack, while the other connects
only to nodes below the crack.

The crack data consisted of pattern-only information and node coordinates. We used the pattern information to
construct non-singular coefficient matrices by augmenting the Laplacian matrices of the meshes with addi-
tional diagonal weight  added to the nodes corresponding to the four corners. Mesh edges were given

unit weights.

The support tree preconditioners for this set of problems had the form of quadtrees and were constructed using
recursive coordinate partitioning.

We performed two sets of experiments. The first was conducted with a random vector (values selected uni-
formly between 0.0 and 1.0) as the input. The second was conducted with an impulse function as input (b0 =
1.0,bi = 0.0, fori > 0). For all the crack meshes, node 0 is the node at the lower left of the mesh.

For the experiments done with the crack meshes, we again usedω2 as the stopping criterion, and halted when

ω2 ≤ 1.0 x 10-10. Our starting vector was again .

Figure 13 illustrates the results of the experiments using the random vector as input. Figure 13a illustrates the
number of iterations needed to converge to the specified tolerance as a function of the mesh size. The horizon-
tal axis (mesh size) is plotted logarithmically. Both ICCG and STCG converge more rapidly than DSCG.
While ICCG initially outperforms STCG, STCG converges more rapidly on the larger meshes.

0.0

5000.0

10000.0

15000.0

20000.0

25000.0

30000.0

to
ta

l t
im

e 
(m

se
c)

8 16 32 64 128 256 512
sqrt(Mesh Size)

ICCG

DSCG

STCG

ICCG-OPT

0

100

200

300

400

500

600

700

800

900

1000
Ite

ra
tio

ns

8 16 32 64 128 256 512
sqrt(Mesh Size)

DSCG

STCG

ICCG

a) b)

Figure 11: Results for 2D Regular Meshes, Impulse Function Input.
a) Iterations to convergence.

b) Total time for iterative process on Cray C-90 (msecs).

di 1.0=

x0 0=



16

Figure 13b illustrates the total time taken to converge as a function of the mesh size. Again, we obtained a
curve for ICCG_OPT by assuming that such an implementation would require only twice the time per iteration
of DSCG. However, even this optimistic ICCG performed no better in overall time than DSCG; the two curves
track each other almost perfectly. The advantage of STCG over the other methods is apparent, and the advan-
tage is increasing with increasing mesh size. The largest crack mesh is only 10240 nodes, which is quite small
for many applications.

a) b)

Figure 12: Crack Meshes.
a) crack00 with 10 nodes.

b) crack10 with 10240 nodes.

0

50

100

150

200

250

Ite
ra

tio
ns

10 40 160 640 2560 10240
Mesh Size

DSCG

STCG

ICCG

Figure 13: Results on 2D Irregular Meshes, Random Input.
a) Iterations to convergence.

b) Total execution time for iterative process on Cray C-90 (msecs).

a)

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

to
ta

l t
im

e 
(m

se
c)

10 40 160 640 2560 10240
Mesh Size

ICCG

DSCG

STCG

ICCG-OPT

b)



17

Figure 14 illustrates the results of the experiments using the impulse function as input. Figure 14a illustrates
the number of iterations needed to converge, while Figure 14b illustrates the total time taken for the iterative
process. Again we see that STCG started off requiring more iterations than ICCG, but does not increase as fast
as ICCG. On the largest meshes, STCG required fewer iterations than did ICCG. Again, because of the vector-
izable nature of the support tree preconditioners, STCG was the clear winner in terms of execution time.

5.3 Three-Dimensional Problem on Regularnxnxn Meshes

In section 4.1, we showed that the advantage of STCG in terms of work required per iteration should increase
with increasing graph dimensionality. To investigate this empirically, we performed a number of experiments
in three dimensions using a regularnxnxn mesh.

In this set of experiments, we extended the two-dimensional problem from section 5.1 into three dimensions.
That is, we considered the discretization of a time-independent version of the diffusion equation defined on the
unit cube with Dirichlet boundary conditions:

For our experiments, we usedρ(x,y) = 1.0. We discretized the equation using the 7-point finite difference oper-
ator for the Laplacian, and varied the size of thenxnxn mesh usingn ranging from 8 to 512 in powers of 2. In
graph-theoretic terms, the resulting coefficient matrices correspond to graphs that arenxnxn meshes with unit
weight edges and self-loops on all boundary nodes.

The support tree preconditioners for this set of problems had the form of oct-trees and were constructed using
recursive coordinate partitioning.

0

50

100

150

200

250

300

350

Ite
ra

tio
ns

10 40 160 640 2560 10240
Mesh Size

DSCG

STCG

ICCGa)

0.0

100.0

200.0

300.0

400.0

500.0

600.0

to
ta

l t
im

e 
(m

se
c)

10 40 160 640 2560 10240
Mesh Size

ICCG

DSCG

STCG

ICCG-OPT

b)

Figure 14: Results on 2D Irregular Meshes, Impulse Function Input.
a) Iterations to convergence.

b) Total execution time for iterative process on Cray C-90 (msecs).

∇2u x y z, ,( ) f x y z, ,( )=

x y z, ,( ) 0 1,( ) 0 1,( )× 0 1,( )×∈

u 0 y z, ,( ) u 1 y z, ,( ) u x 0 z, ,( ) u x 1 z, ,( ) u x y 0, ,( ) u x y 1, ,( ) 0= = = = = =



18

We ran two sets of experiments. The first was conducted with random vectors (values selected uniformly
between 0.0 and 1.0) as the input. The second was conducted with impulse functions as input (b0 = 1.0,bi =
0.0, fori > 0). For thenxnxn mesh, node 0 is a corner node.

For these experiments, we again usedω2 as the stopping criterion, and halted whenω2 ≤ 1.0 x 10-10. Our start-

ing vector was .

Figure 15 illustrates the results of the experiments conducted with random vectors as input. Figure 15a illus-
trates the number of iterations required for convergence, while Figure 15b illustrates the total execution time
required for the iterative process.

Figure 16 illustrates the results of the experiments conducted with impulse functions as input. Figure 16a illus-
trates the number of iterations required for convergence, while Figure 16b illustrates the total execution time
required for the iterative process.

For both random vectors and impulse functions, the problem converged extremely quickly, so it is difficult to
draw definite conclusions. As for previous problems, in both of thenxnxn cases, STCG began by requiring
more iterations for convergence than did ICCG. As observed in the previous problems, the rate of increase in
the number of iterations for STCG appears to be less than that of ICCG. In terms of execution time, STCG is
superior to STCG and roughly the same as ICCG_OPT.

5.4 Three-dimension Problem on Regular 8x8xn Meshes

We stated in section 3 that convergence is a function of the graph diameter. In three dimensions, the volume of
a cube increases so rapidly with respect to diameter that it is difficult to construct a cubic 3D problem with a
diameter large enough to require many iterations. Therefore, we defined an alternate 3D problem that would
allow us to investigate convergence as a function of the graph diameter.

In this set of experiments, we modified the three-dimensional problem from section 5.3 by extending it along

x0 0=

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

1400.0

1600.0

1800.0

to
ta

l t
im

e 
(m

se
c)

8 16 32 64
cuberoot(Mesh Size)

ICCG

DSCG

STCG

ICCG-OPT

0

10

20

30

40

50

60

70

80

Ite
ra

tio
ns

8 16 32 64
cuberoot(Mesh Size)

DSCG

STCG

ICCG

a) b)

Figure 15: Results on 3Dnxnxn Meshes, Random Input.
a) Iterations to convergence.

b) Total execution time for iterative process on Cray C-90 (msecs).



19

one of the three dimensions. That is, we considered the discretization of a time-independent version of the dif-
fusion equation defined on a box:

Furthermore, we used mixed boundary conditions: Dirichlet conditions on the long ends of the box, and Neu-
mann conditions on the sides:

For our experiments, we discretized the equation using the 7-point finite difference operator for the Laplacian,
and varied the size of the 8x8xn mesh usingn ranging from 8 to 1024 in powers of 2. In graph-theoretic terms,
the resulting coefficient matrices correspond to graphs that are 8x8xn meshes with unit weight edges and self-
loops on all boundary nodes of the 8x8 faces.

The support tree preconditioners for this set of problems had the form of binary trees and were constructed
using recursive coordinate partitioning.

We ran two sets of experiments. The first was conducted with random vectors (values selected uniformly
between 0.0 and 1.0) as the input. The second was conducted with impulse functions as input (b0 = 1.0,bi =
0.0, fori > 0). For the 8x8xn mesh, node 0 is a corner node.

For these experiments, we again usedω2 as the stopping criterion, and halted whenω2 ≤ 1.0 x 10-10. Our start-

ing vector was .

0

20

40

60

80

100

120

140

160

Ite
ra

tio
ns

8 16 32 64
cuberoot(Mesh Size)

DSCG

STCG

ICCG

a)

0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

to
ta

l t
im

e 
(m

se
c)

8 16 32 64
cuberoot(Mesh Size)

ICCG

DSCG

STCG

ICCG-OPT
b)

Figure 16: Results on 3Dnxnxn Meshes, Impulse Function Input.
a) Iterations to convergence.

b) Total execution time for iterative process on Cray C-90 (msecs).

∇2u x y z, ,( ) f x y z, ,( )=

x y z, ,( ) 0 1,( ) 0 1,( )× 0 8n,( )×∈

u x y 0, ,( ) u x y 8n, ,( ) 0= =

x∂
∂ u x 0 z, ,( )

x∂
∂ u x 1 z, ,( ) 0= =

y∂
∂ u 0 y z, ,( )

y∂
∂ u 1 y z, ,( ) 0= =

x0 0=



20

Figure 17 illustrates the results of the experiments with random vectors as inputs. Figure 17a illustrates itera-
tions required to converge, while Figure 17b illustrates total time required for the iterative process.

Figure 18 illustrates the results of the experiments with impulse functions as inputs. Figure 18a illustrates iter-
ations required to converge, while Figure 18b illustrates total time required for the iterative process.

The results of this set of experiments are particularly interesting. The large diameters of the graphs and the
Neumann boundary conditions on the sides of the boxes led to problems that required very many iterations to

0.0

1000.0

2000.0

3000.0

4000.0

5000.0

6000.0

to
ta

l t
im

e 
(m

se
c)

8 16 32 64 128 256 512 1024
Mesh Length

ICCG

DSCG

STCG

ICCG-OPT

0

100

200

300

400

500

600

700

800

900

Ite
ra

tio
ns

8 16 32 64 128 256 512 1024
Mesh Length

DSCG

STCG

ICCG

a) b)

Figure 17: Results on 3D 8x8xn Mesh, Random Input.
a) Iterations to convergence.

b) Total execution time for iterative process on Cray C-90 (msecs).

0

200

400

600

800

1000

1200

1400

1600

1800

Ite
ra

tio
ns

8 16 32 64 128 256 512 1024
Mesh Length

DSCG

STCG

ICCG

a)

0.0

2000.0

4000.0

6000.0

8000.0

10000.0

12000.0

to
ta

l t
im

e 
(m

se
c)

8 16 32 64 128 256 512 1024
Mesh Length

ICCG

DSCG

STCG

ICCG-OPT

b)

Figure 18: Results on 3D 8x8xn Mesh, Impulse Function Input.
a) Iterations to convergence.

b) Total execution time for iterative process on Cray C-90 (msecs).



21

converge. The differences between the preconditioners is now very apparent. While in all cases, STCG
required more iterations than ICCG for small meshes, the number of iterations required for STCG is almost
constant with respect to mesh diameter, while that of ICCG is clearly increasing. By the time the mesh diame-
ter is over 512, STCG requires fewer than half the number of iterations of ICCG.

The difference in execution time is even more dramatic. As stated previously, STCG vectorizes extremely
well. For problems of the size considered here, the vector lengths at the lowest level of the support tree range
from thousands to hundreds of thousands.

6 Summary and Discussion

In this paper, we presented a new class of parallel preconditioners, the support tree preconditioners. Support
tree preconditioners are constructed based on the topology of the graph corresponding to the coefficient matrix
A of the linear systemAx = b. We defined a new variant of preconditioned conjugate gradient using support
trees as preconditioners. Through analysis and numerical experiments run on a single vector processor of a
Cray C-90, we have demonstrated that on both irregular and regular meshes:

• STCG requires less overall storage and less work per iteration than ICCG.

Support tree preconditioners, while of greater dimension than the matrices they precondition, are
extremely sparse. A support tree preconditioner often has fewer non-zeros than the matrix it pre-
conditions. Consequently, support tree preconditioners have reasonable storage requirements and,
since work is related to the number of non-zeros, require only moderate increases in the amount of
work per iteration (again, STCG less than doubles the work required per iteration). An incomplete
Cholesky preconditioner, on the other hand, doubles both the storage required and the work per
iteration.

The advantage of support tree preconditioners increases with increasing graph connectivity, since
the resource requirements increase as a function of the number of nodes in the graph, not the num-
ber of edges. In contrast, the resource requirements of ICCG increase with the number of edges in
the graph.

• the performance of STCG, in terms of iterations to converge, meets or exceeds the performance of
ICCG, which in turn, outperforms DSCG.

In all but one of the sets of experiments reported here, STCG began to outperform ICCG on fairly
small matrices (2000 to 5000 nodes), with the difference in performance increasing with the size of
the problem. In the experiments in which STCG did not outperform ICCG in terms of convergence
rate, convergence was extremely rapid, so acceleration from preconditioning had a minimal effect,
and STCG exhibited performance very close to that of ICCG. On problems that take many itera-
tions to converge, STCG requires far fewer iterations than does ICCG.

• in terms of execution time, STCG outperforms both ICCG and DSCG on scalar processors, and far
outperforms them on vector processors.

On a scalar machine, execution time is the product of the number of iterations and the time/work
per iteration. In comparison to DSCG, our analysis showed that STCG requires slightly less than
twice the amount of work per iteration, and our experiments showed that STCG requires fewer than
half the number of iterations. Hence, STCG is preferable to DSCG for large problems on a scalar
processor. Analysis also showed that STCG requires less work per iteration than ICCG, and our
experiments showed that, in most cases, STCG requires fewer iterations. Therefore, STCG is also
preferable to ICCG on scalar processors.



22

All our experiments were performed on a single vector processor of a Cray C-90. Without excep-
tion, for large meshes STCG outperformed both DSCG and ICCG, often by very wide margins.The
reason for the performance advantage is that the STCG preconditioner has a tree structure, which
allows all nodes at a given level to be evaluated in parallel.

STCG preconditioners can be easily and efficiently level scheduled by leaf raking. The lower trian-
gular matrices that appear in ICCG will not, in general, allow as many nodes to be evaluated in par-
allel as can be evaluated in STCG. For example, in the case of square meshes, moderate parallel
efficiency can be obtained by ordering the nodes so that the incomplete Cholesky preconditioner is
evaluated along diagonals of the mesh [8]; for annxn mesh, this ordering requires 2n parallel steps
with an average ofn/2 nodes evaluated in parallel at each step. In contrast, the STCG precondi-
tioner for annxn mesh yields  parallel steps with an average ofn2/logn nodes evaluated at
each step.

For irregular graphs, the ordering problem is even more complicated. Figure 19 shows the graph
structure of the incomplete Cholesky preconditioner for the fifth mesh in the crack series (160
nodes). An examination of the graph shows that it would be difficult to determine an optimal evalu-
ation order for level scheduling. In contrast, Figure 20 shows the graph structure of the support tree
preconditioner for the same graph. The simplicity of the support tree structure is apparent. More-
over, we believe that the regular structure of the support tree also makes implementation easier on
distributed memory machines by reducing the amount of communication and synchronization
required.

2 nlog

Figure 19: The graph structure of the incomplete Cholesky preconditioner for the 160
node crack mesh.



23

Additional parallelism of STCG is possible due to the tree structure of the STCG preconditioner —
separate subtrees may be evaluated in parallel on multiple vector processors.

We believe that support tree preconditioners can be constructed relatively quickly and easily. The construction
depends upon application of a graph partitioning algorithm, and there are various partitioning algorithms that
have been optimized to run quickly. Additionally, the construction is essentially a divide-and-conquer algo-
rithm which leads to many independent subproblems that can be executed in parallel.

Currently, we are working to determine the optimal combination of partitioning algorithm and edge weighting
to yield the best convergence rates. In the near future, we will develop a complete, fully optimized package for
constructing and applying support tree preconditioners.

At present, support tree preconditioners can only be applied to a limited but important class of matrices which
we call Laplacian matrices. These matrices are symmetric, diagonally dominant, positive definite, with non-
positive off-diagonal elements. Laplacian matrices commonly arise from application of the finite difference
method or the finite element method using linear elements to second order elliptic boundary value problems.
One of our goals is to extend the support tree methodology to larger classes of matrices.

7 Acknowledgments

The authors would like to thank Guy Blelloch, Omar Ghattas, and Mike Heroux for many useful conversa-
tions. We would also like to thank Omar Ghattas for the crack meshes.

Figure 20: The graph structure of the support tree preconditioner for the 160 node
crack mesh.



24

8 References

[1] F. L. Alvarado and R. Schreiber,Optimal parallel solution of sparse triangular systems. SIAM J.
Sci. Comput. 14(2):446-460, 1993.

[2] E. Anderson and Y. Saad,Solving sparse triangular linear systems on parallel computers. Int. J. of
High Speed Computing1(1):73-95, 1989.

[3] M. Arioli, I. Duff, D. Ruiz, Stopping criteria for iterative solvers. SIAM J. Matrix Anal. Appl.
13(1):138-144, 1992.

[4] O. Axelsson and V. A. Barker,Finite Element Solution of Boundary Value Problems. Academic
Press, 1984.

[5] G. E. Blelloch,NESL: A nested data-parallel language. CMU-CS-93-129, School of Computer
Science, Carnegie Mellon University, 1993.

[6] G. E. Blelloch, M. A. Heroux, and M. Zagha,Segmented operations for sparse matrix computation
on vector multiprocessors. CMU-CS-93-173, School of Computer Science, Carnegie Mellon Uni-
versity, 1993.

[7] L. Dagum,Automatic partitioning of unstructured grids into connected components.Proc. Super-
computing ‘93.

[8] J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. van der Vorst,Solving Linear Systems on
Vector and Shared Memory Computers.SIAM, 1991.

[9] P. G. Doyle and J. L. Snell,Random Walks and Electric Networks. Carus Mathematical Mono-
graphs #22, Mathematical Association of America, 1984.

[10] I. S. Duff and G. A. Meurant,The effect of ordering on preconditioned conjugate gradients. BIT
29:635-657, 1989.

[11] S. C. Eisenstat,Efficient implementation of a class of preconditioned conjugate gradient methods.
SIAM J. Sci. Stat. Comput. 2:1-4, 1981.

[12] G. H. Golub and C. F. Van Loan,Matrix Computations . Johns Hopkins University Press, 1989.

[13] A. Greenbaum, C. Li, and H. Z. Chao,Comparison of linear system solvers applied to diffusion-
type finite element equations. Numer. Math. 56:529-546, 1989.

[14] K. D. Gremban and G. L. Miller,Towards the Application of Graph Theory to Finding Parallel
Preconditioners for Sparse Symmetric Linear Systems.Technical Report, Computer Science
Department, Carnegie Mellon University, in preparation.

[15] X. -Z. Guo,Multilevel Preconditioners: Analysis, performance enhancements, and parallel algo-
rithms. CS-TR-2903, Department of Mathematics, University of Maryland, 1992.

[16] B. Hendrickson and R. Leland,An improved spectral graph partitioning algorithm for mapping
parallel computations.SAND92-1460, Sandia National Laboratories, 1992.

[17] M. A. Heroux, P. Vu, and C. Yang,A parallel preconditioned conjugate gradient package for solv-
ing sparse linear systems on a Cray Y-MP. Appl. Num. Math. 8:93-115, 1991.



25

[18] M. S. Khaira, G. L. Miller, and T. J. Sheffler,Nested Dissection: A survey and comparison of vari-
ous nested dissection algorithms. CMU-CS-92-106R, Computer Science Department, Carnegie
Mellon University, 1992.

[19] J. A. Meijerink and H. A. van der Vorst,An iterative solution method for linear systems of which
the coefficient matrix is a symmetric M-matrix.Math. Comp. 31:148-162, 1977.

[20] G. L. Miller, S. -H. Teng, W. Thurston, and S. A. Vavasis,Automatic mesh partitioning. Proc of the
1992 Workshop on Sparse Matrix Computations: Graph Theory Issues and Algorithms.

[21] A. Pothen, H. D. Simon, and K. Liou,Partitioning sparse matrices with eigenvectors of graphs.
SIAM J. Matrix Anal. Appl . 11(3):430-452, 1990.

[22] M. Reid-Miller, G. L. Miller, and F. Modugno,List ranking and parallel tree contraction. in Syn-
thesis of Parallel Algorithms, ed. John Reif, Morgan Kaufmann, 1993.

[23] H. D. Simon,Partitioning of unstructured problems for parallel processing. Comp. Sys. in Eng.
2(2/3):135-148, 1991.

[24] H. A. van der Vorst,ICCG and related methods for 3D problems on vector computers.Comp.
Physics Comm.53:223-235, 1989.

[25] H. A. van der Vorst,High performance preconditioning. SIAM J. Sci. Stat. Comput. 10(6):1174-
1185, 1989.



26

A   Tabulated Experimental Results

A.1 Results From 2D Regular Meshes

Table 3 through Table 5 present the raw data from the experiments conducted on the 2D regular meshes.

Table 3 summarizes the results of the experiments with the smooth input used by Greenbaum et al.

Table 4 summarizes the results of the experiments with the random input.

Table 5 summarizes the results of the experiments with the impulse function as input.

Table 3: Results of Experiments on 2D Square Meshes, Smooth Input

STCG

10
19
28
37
48
64
79

STCG

.39

.41

.54
1.03
2.90
8.91

37.73

STCG

3.9
7.8

15.1
38.0

139.0
570.4

2981.0

ICCG

9
13
21
29
40
56

101

ICCG

.43

.88
2.61
9.56

37.00
144.94
578.69

ICCG

3.9
11.4
54.8

280.0
1480.0
8116.7

58447.6

DSCG

2.9
6.2

14.4
48.0

222.0
1002.5
8164.9

DSCG

.29

.28

.36

.66
1.83
5.63

24.30

DSCG

10
22
40
73

121
178
336

n

8
16
32
64

128
256
512

size iterations time/iteration (msecs) total time (msecs)

Table 4: Results of Experiments on 2D Square Meshes, Random Input

STCG

18
25
33
41
54
66
81

STCG

.35

.38

.50

.94
2.76
8.96

36.42

STCG

6.3
9.4

16.4
38.7

148.9
591.1

2950.0

ICCG

11
16
24
37
55
77

106

ICCG

.43

.86
2.60
9.44

36.73
144.95
578.78

ICCG

4.7
13.7
62.5

349.1
2020.4

11161.1
61350.7

DSCG

.26

.27

.34

.61
1.68
5.67

24.54

DSCG

25
44
76

123
184
257
357

n

8
16
32
64

128
256
512

size iterations time/iteration (msecs) total time (msecs)

DSCG

6.6
11.8
25.8
75.3

308.9
1456.4
8761.8

Table 5: Results of Experiments on 2D Square Meshes, Impulse Input

STCG

20
28
40
54
74

101
125

STCG

.35

.38

.49

.87
2.66
8.50

35.58

STCG

6.9
10.5
19.4
46.9

195.8
858.1

4447.0

ICCG

11
17
29
54
98

178
300

ICCG

.43

.86
2.58
9.38

36.28
143.55
572.17

ICCG

4.7
14.6
74.7

506.3
3555.0

25551.7
171649.9

DSCG

7.0
14.2
32.2
99.2

537.6
3259.2

23266.5

DSCG

.26

.27

.34

.56
1.65
5.62

23.50

DSCG

27
53
96

176
326
580
990

n

8
16
32
64

128
256
512

size iterations time/iteration (msecs) total time (msecs)



27

A.2 Results From 2D Irregular Meshes

Table 6 and Table 7 present the results from the experiments on the crack meshes.

Table 6 summarizes the results from the experiments with the random input.

Table 7 summarizes the results from the experiments with the impulse function as input.

STCG

10
16
22
29
39
48
52
77
88
98

STCG

.33

.34

.35

.35

.36

.40

.47

.76
1.26
2.02

STCG

3.3
5.5
7.6

10.1
14.2
19.3
24.2
58.8

110.9
198.0

ICCG

7
10
13
15
22
30
41
73
94

109

ICCG

.31

.33

.37

.44

.59

.89
1.50
4.97
9.46

18.35

ICCG

2.2
3.3
4.8
6.6

12.9
26.7
61.6

363.1
889.2

1999.9

DSCG

2.7
4.7
6.4
8.9

11.7
16.7
26.8
77.8

131.7
298.1

DSCG

.27

.28

.28

.26

.26

.28

.32

.53

.84
1.45

DSCG

10
17
23
34
45
60
83

148
156
206

n

10
20
40
80

160
320
640

2560
5120

10240

size iterations time/iteration (msecs) total time (msecs)

Table 6: Results of Experiments on 2D Irregular Meshes, Random Input.

Table 7: Results of Experiments on 2D Irregular Meshes, Impulse Input.

STCG

10
16
23
31
39
49
59
87
95

112

STCG

.33

.35

.34

.35

.37

.40

.47

.77
1.21
1.99

STCG

3.3
5.6
7.9

11.0
14.3
19.7
27.7
66.9

115.1
222.9

ICCG

7
10
13
17
24
33
48
93

130
174

ICCG

.31

.33

.36

.44

.58

.89
1.48
4.93
9.40

18.27

ICCG

2.2
3.3
4.7
7.4

14.0
29.4
71.2

458.3
1222.2
3178.4

DSCG

2.7
4.7
7.1
9.3

13.4
20.0
32.1
95.4

209.4
467.8

DSCG

.27

.28

.27

.26

.26

.28

.32

.53

.82
1.38

DSCG

10
17
26
36
51
72

101
181
255
338

n

10
20
40
80

160
320
640

2560
5120

10240

size iterations time/iteration (msecs) total time (msecs)



28

A.3 Results From 3D Regular Grid (nxnxn)

Table 8 and Table 9 present the results from the experiments on regularnxnxn grids.

Table 8 summarizes the results from the experiments with the random input.

Table 9 summarizes the results from the experiments with the impulse function as input.

STCG

20
26
29
33

STCG

.45
1.07
6.28

20.48

STCG

8.9
27.7

182.1
675.9

ICCG

11
15
23
23

ICCG

1.54
10.13
78.23

260.41

ICCG

16.9
152.0

1799.3
5989.4

DSCG

9.0
35.0

276.7
985.3

DSCG

.32

.78
4.46

13.88

DSCG

28
45
62
71

n

8
16
32
48

size iterations time/iteration (msecs) total time (msecs)

Table 8: Results of Experiments onnxnxn Regular Meshes, Random Input.

Table 9: Results of Experiments onnxnxn Regular Meshes, Impulse Input.

STCG

23
34
44
54

STCG

.43
1.05
5.53

18.69

STCG

9.8
35.6

243.1
1009.1

ICCG

12
20
34
45

ICCG

1.53
9.94

76.76
251.93

ICCG

18.3
198.8

2609.8
11336.8

DSCG

10.7
45.0

449.4
1818.4

DSCG

.31

.74
4.20

12.62

DSCG

34
61

107
144

n

8
16
32
48

size iterations time/iteration (msecs) total time (msecs)



29

A.4 Results From 3D Regular Grid (8x8xn)

Table 10 and Table 11 present the results from the experiments on regular 8x8xn grids.

Table 10 summarizes the results from the experiments with the random input.

Table 11 summarizes the results from the experiments with the impulse function as input.

Table 10: Results of Experiments on 8x8xn Regular Meshes, Random Input.

STCG

29
31
29
32
38
53
72
90

STCG

.48

.58

.80
1.13
1.98
3.24
5.91

11.57

STCG

13.8
18.0
23.2
36.3
75.2

171.9
425.2

1041.7

ICCG

15
18
24
38
66
94

138
261

ICCG

1.49
2.68
5.01
9.54

18.66
37.67
72.95

145.01

ICCG

22.3
48.2

120.3
362.7

1231.8
3446.7

10066.6
37848.2

DSCG

11.5
19.2
35.4
76.3

214.6
580.9

1591.6
5741.8

DSCG

.30

.38

.49

.66
1.15
1.99
3.74
7.05

DSCG

38
51
72

115
186
292
426
815

n

8
16
32
64

128
256
512

1024

size iterations time/iteration (msecs) total time (msecs)

Table 11: Results of Experiments on 8x8xn Regular Meshes, Impulse Input.

STCG

35
39
41
45
54
63
83

111

STCG

.46

.57

.77
1.06
1.88
3.31
5.95

11.32

STCG

16.2
22.2
31.7
47.6

101.7
208.7
493.9

1256.7

ICCG

16
22
32
47
79

147
282
553

ICCG

1.48
2.65
4.94
9.47

18.57
36.58
72.62

144.32

ICCG

23.6
58.4

158.2
445.2

1467.1
5377.3

20479.8
79811.1

DSCG

14.8
23.2
46.7

100.7
285.3
881.3

3230.7
11935.6

DSCG

.30

.36

.48

.69
1.16
1.95
3.71
6.96

DSCG

49
64
98

145
246
453
870

1714

n

8
16
32
64

128
256
512

1024

size iterations time/iteration (msecs) total time (msecs)


